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Abstract. Nowadays, clinicians have multiple tools that they can use
to stimulate the brain, by means of electric or magnetic fields that can
interfere with the bio-electrical behaviour of neurons. However, it is still
unclear which are the neural mechanisms that are involved and how the
external stimulation changes the neural responses at network-level. In
this paper, we have exploited the simulations carried out using a spiking
neural network model, which reconstructed the cerebellar system, to shed
light on the underlying mechanisms of cerebellar Transcranial Magnetic
Stimulation affecting specific task behaviour. Namely, two computational
studies have been merged and compared. The two studies employed a
very similar experimental protocol: a first session of Pavlovian associa-
tive conditioning, the administration of the TMS (effective or sham), a
washout period, and a second session of Pavlovian associative condition-
ing. In one study, the washout period between the two sessions was long
(1 week), while the other study foresaw a very short washout (15 min).
Computational models suggested a mechanistic explanation for the TMS
effect on the cerebellum. In this work, we have found that the duration of
the washout strongly changes the modification of plasticity mechanisms
in the cerebellar network, then reflected in the learning behaviour.

Keywords: Brain simulation · Cerebellum · Spiking Neural
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1 Cerebellar Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a noninvasive technique that can be
used to study, diagnose, or treat neural pathologies. A coil induces a magnetic
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field that generates an electric field in the brain tissue. The electric field directly
interferes with nervous system functions by changing the electrical behaviour of
neurons.

Among the different protocols that are available for TMS, continuous theta-
burst stimulation is usually delivered to influence long-term plasticity changes.
The stimulation protocol can consist of pulse bursts 50 Hz repeated every 200 ms,
given in a continuous train lasting tens of seconds. The stimulation intensity is
calibrated using the active motor threshold, defined as the lowest intensity stably
evoking motor-evoked potentials. Common values for the stimulation amplitudes
for theta-burst TMS range between 0.5 and 0.7 kV, generating a peak magnetic
field of ∼1 T reaching a depth of 20–30 mm from the scalp surface [13].

Cerebellar TMS foresees the administration of the stimulation over one cere-
bellar hemisphere or the cerebellar vermis, and it can be used during cerebellar-
driven protocols to interfere with the learning processes at neural level. It has
been shown that cerebellar TMS stimulation influences the learning processes,
but the underlying mechanisms are still unconfirmed [7,10,12,16].

In order to better understand the effects of cerebellar TMS, both experimen-
tal and computational approaches have been used in the last years.

2 Experimental Protocols

Monaco and colleagues [13,14] have employed TMS stimulation on human partic-
ipants between two sessions of eyeblink conditioning protocol (EBC), a temporal
associative task in which the subject learns, thanks to cerebellar plasticity, the
precise timing associations between two stimuli. In EBC, the participant learns
the association between a neutral conditioned stimulus (e.g., a sound) and a
following unconditioned stimulus, eliciting an eyeblink (e.g., an electric shock
near the eye). Initially, subjects respond with a reflexive eyelid closure, following
the unconditioned stimulus. Along with learning of this association, participants
start to express a Conditioned Response (CR), anticipating the unconditioned
stimulus.

The two EBC studies [13,14] have common features, such as the presence of
two consecutive sessions of EBC (session1 and session2), each one composed
of 6 blocks of acquisition, where two stimuli were provided to the subject, and
one block of extinction, where only one stimulus was provided to the subject. In
the acquisition phase, the subject learns the timing association between the two
stimuli, thus exhibiting an increasing percentage of correct CRs. In the extinction
phase, the subject unlearns the association between the two stimuli, since the
second one no more follows the first one. In both studies, an effective or a sham
cerebellar TMS stimulation was administered at the end of the first session. The
studies aimed at investigating the behavioural differences between the TMS and
the control (sham) groups in the second session.

There are some minor discrepancies between the two experimental protocols
(see Table 1), but the most important one is the washout period between the
first and the second session of EBC: a long one (i.e., 1 week) in Monaco et al.
2014 [13], and a short one (i.e., 15 min) in Monaco et al. 2018 [14].
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Table 1. Details of the two EBC experimental protocols

Property Monaco et al. 2014 Monaco et al. 2018

Number of subjects for each group 11 12

Number of groups 2 3

Stimulated hemisphere Right Right or left

Number of trials per block 10 11

Inter-stimulus interval 600 ms 400 ms

Washout period 1 week 15 min

In both experimental datasets, changes in the learning and unlearning trajec-
tories of CRs between the TMS and the control groups were observed. Namely,
with a long washout, the TMS group showed impairment in the extinction phase
of session2 (from block 6 to block 7), where the unlearning resulted in being
slowed down (Fig. 1.A). With a short washout, the TMS groups (right or left
stimulated hemisphere) showed a less effective relearning phase at the beginning
of acquisition (block 1 of session2) and, again, a slowed down unlearning during
the extinction phase (Fig. 1.B).

Overall, the findings from both experimental studies suggested that TMS can
impair memory consolidation processes in the cerebellum, possibly by interfering
with memory transfer from the cerebellar cortex to deeper structures. However,
due to the noninvasive nature of TMS investigation, it was possible to only
speculate about the putative mechanisms underlying the behavioural differences.
To have a greater insight about the neural processes involved by the TMS, a
computational approach was used in two previous works [1,3].

3 Computational Modelling

Historically, computational models of the brain have been widely used to acquire
new knowledge that cannot be obtained from physiological studies and abstract
theories. These models proved to be a powerful tool that can support the other
approaches in tackling the complex problem of understanding how the brain
works. Spiking Neural Networks (SNNs) have been used to mimic the neural
organization, employing single units (i.e., the neurons) organized and connected
similarly to the relative biological structures [4,9].

Recently, a detailed spiking neural network model of the cerebellar microcir-
cuit proved able to reproduce multiple cerebellar-driven tasks [5], among which
the EBC paradigm [2]. Having been validated, the SNN model was challenged
to fit the two experimental datasets recorded by Monaco and colleagues from
human subjects [13,14], with a long [1] or a short washout [3]. In both studies,
the SNN model was able to capture the specific alterations in the second EBC
session caused by TMS interference. Indeed, TMS affected motor response evolu-
tion along task repetitions, and we inferred the underpinning plasticity changes
over the whole network.
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Fig. 1. CR percentages in experimental and modelling studies. A) Box-plots of CR
percentages along the seven blocks of the EBC protocol with a long washout (1 week)
between session1 and session2. Left panel: session1, Central panel: session2 with
sham TMS, Right panel: session2 with effective TMS. Boxes represent the upper and
lower quartiles, the whiskers identify the range, and the red lines represent median
values. Black boxes represent experimental data from [13] and blue boxes represent
modelling data from [1] B) Box-plots of CR percentages along the seven blocks of the
EBC protocol with a short washout (15 min) between session1 and session2. Grey
boxes represent experimental data from [14], and white boxes represent modelling data
from [3]. (Color figure online)

The SNN cerebellar microcircuit was populated with leaky Integrate&Fire
neurons, distinguishing between different neural groups. Mossy Fibers (MFs),
the input neurons of the system, encode the first (conditioned) stimulus. In fact,
it has been shown that these neurons encode the state of the system (e.g., the
presence of a certain sound). Granular Cells (GrCs) represent in a sparse way
the input from the MFs. Inferior Olive neurons (IOs), the other input to the sys-
tem, encode the second (unconditioned) stimulus, since this neural population
is active in presence of pain. Purkinje Cells (PCs) integrate the sparse infor-
mation coming from the GrCs through the Parallel Fibers (PFs), while Deep
Cerebellar Nuclei (DCNs), the only output of the cerebellar microcomplex, acti-
vate the motor response (i.e., the anticipatory CR). While the network structure
and connectivity are the same in the two computational studies (Fig. 2), the
number of neurons for each population is different, as reported in Table 2, since
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the SNN used in Antonietti et al. 2018 is three-times larger than the one used
in Antonietti et al. 2016. Both studies used EDLUT simulator environment to
perform the neural simulations [17].

The connectivity between the different neural populations follows the same
rules. MFs send projections to the GrCs, each GrC receives input from 4 MFs;
IOs send one-to-one teaching connections to PCs; DCNs receive both excitatory

Fig. 2. Spiking Neural Network model used to simulate the cerebellar circuit. Both
computational studies [1,3] used the same network architecture, but with a different
number of neurons for each neural population (see Table 2). Circles represent neurons
and lines represent synaptic connections. Plasticity sites are marked by orange labels.
The first (conditioned) stimulus is encoded by MFs, while the second (unconditioned)
is encoded by IOs. The activity of DCNs is the network output and generates CRs.
(Color figure online)

Table 2. Number of neurons and synapses of the SNNs cerebellar models

Neural population Antonietti et al. 2016 Antonietti et al. 2018

MFs 100 300

GrCs 2000 6000

IOs 12 36

PCs 12 36

DCNs 6 18

Synaptic connection

MF-GrC (static) 8000 24000

PF-PC (plastic) 19164 172806

IO-PC (static) 12 36

MF-DCN (plastic) 600 5400

PC-DCN (plastic) 12 36
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inputs directly from MFs and inhibitory synapses from PCs. The SNN models
has three plasticity sites, at cortical level (PF-PC) and at nuclear level, between
MF-DCN and PC-DCN, all based on different kinds of Spike-Timing Dependent
Plasticity (STDP) [6,11]. PF-PC plasticity is modulated by IO activity, MF-
DCN by PC activity, while PC-DCN is a standard unsupervised STDP learn-
ing, depending only on the difference between the pre- and post-synaptic firing
times [8,15,18]. Each learning rule encompasses two different plasticity mech-
anisms: Long Term Depression (LTD), decreasing the synapse strength, and
Long Term Potentiation (LTP), strengthening the connection. Therefore, each
plasticity site can be characterized by two constants that regulate the amount
of synaptic change. These constants cannot be directly computed from physio-
logical data; as a result, we have treated those as free parameters of the SNN
model, to be optimized according to the desired behaviour. The two computa-
tional studies employed evolutionary algorithms to identify the best six parame-
ters (PF-PC LTP, PF-PC LTD, MF-DCN LTP, MF-DCN LTD, PC-DCN LTP,
and PC-DCN LTD) in each experimental condition (session1, session2sham, and
session2TMS).

Employing realistic SNN models, Antonietti and colleagues have shown how
closed-loop simulations can be successfully used to fit real experimental datasets.
Thus, the changes in the model parameters in the different sessions of the pro-
tocol unveil how microcircuit mechanisms let implicitly emerge healthy and
altered behavioural functions. In this work, we have analyzed the data gen-
erated by experimental and computational studies, in order to clarify the role of
the washout period, the main difference between the two datasets.

4 Comparative Analysis

The elements analyzed in the present study are the learning and unlearning
trajectories (i.e., the variation in CR percentage between blocks) and the values
of LTP and LTD parameters at the three plasticity sites that yielded to different
behaviours in the simulations.

The two computational studies have already demonstrated that the behav-
ioural response generated by the model in each block was a good representation
of the experimental recordings. Figure 1 shows that the CRs generated by the
model (blue boxes in Panel A, white boxes in Panel B) were comparable with
the experimental results (black boxes in Panel A, grey boxes in Panel B). The
degree of variability of the experimental data was higher than the computational
studies, but a certain degree of variability was maintained. The variability in the
results generated by SNN models was due to the fact that multiple combinations
of LTP and LTD parameters have been considered. In fact, the evolutionary algo-
rithm identified a family of optimal parameter combinations, leading to similar
performances.

For the short washout protocol, two distinct TMS groups were identified, one
receiving a stimulation of the left cerebellar hemisphere, the other one receiving
the stimulation on the right hemisphere. Since there were no significant differ-
ences between the CRs recorded from the two groups, in the present study, the
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results of both groups have been merged in a single TMS group, then compared
to the sham group. In this way, we can make a direct comparison between the
two studies, considering only two groups: sham vs TMS.

We focused our analysis on the two salient phases that were changed in
session2 for the TMS group with respect to the sham group. Namely, the fast
acquisition (from zero to block 1, Fig. 3.A) and the extinction (from block 6 to
block 7, Fig. 3.B). After a prolonged washout, the percentage of CRs acquired
in the first block did not differ between the sham and the TMS groups. On the
other hand, TMS slowed down the fast learning phase when a short washout
interleaved the two EBC sessions (73% sham, 54.5% TMS, Fig. 3.A).

Conversely, the TMS administration interfered with the extinction phase
after both long and short washouts. In fact, with a long washout the TMS group
decreased the percentage of CRs of only −30% [−40 −10], while the sham group
unlearnt faster −50% [−60 −40]. The same behaviour was observed with a short
washout, where the extinction rate was −36% [−55 −27] in TMS group and
−55% [−64 −45] in the sham group.

Fig. 3. Comparison of learning and unlearning rates in session1, session2sham, and
session2TMS . A) Fast learning rates, i.e., increase in CRs in the first acquisition block
with long (left) or short (right) washouts. B) Unlearn rates, i.e. decrease in CRs from
the last block of extinction (block 6) to the extinction (block 7). Boxes represent the
upper and lower quartiles, the whiskers identify the range, and the red lines represent
median values. Blue boxes represent modelling data from [1] and white boxes represent
modelling data from [3]. (Color figure online)

Summarizing, the TMS affected both the fast acquisition and the extinction
only with a short washout, while it impacted only the extinction phase with a
long washout. We have then analyzed the LTP and LTD parameters of the SNN
distributed plasticity that generated this different behaviour.

Figure 4 illustrates the overall variations of LTP and LTD parameters for
the cortical plasticity (PF-PC, Panel A) and the nuclear plasticities (MF-DCN,
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Fig. 4. Changes for LTP and LTD Parameter at the Three Different Plasticity Sites:
A) PF-PC, B) MF-DCN, and C) PC-DCN. The left column represents box-plots of
the parameter change in session2 for the TMS group with respect to the parameter
values for the sham group. Boxes represent the upper and lower quartiles, the whiskers
identify the range, and the red lines represent median values. Blue boxes represent
modelling data from [1] and white boxes represent modelling data from [3]. The right
column presents a synthesis of the parameter changes (LTP and LTD) and the overall
effect on the CR generation. Plus/minus symbols indicate qualitatively the amount of
increase/decrease of the parameter in the TMS group or an increase/decrease in CR
percentage generation. Equal symbols indicate negligible changes. (Color figure online)
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Panel B, and PC-DCN, Panel C). The left column reports the percentage vari-
ation of the LTP and LTD parameters in the TMS group with respect to the
sham group. An increased LTP parameter implicates a stronger potentiation of
the synapses, while an increased LTD parameter entails a stronger weakening.
The right column summarizes the combined effect of LTP and LTD changes and
their effect on the CR generation process, that can be favoured or hindered.

Considering the PF-PC plasticity, it is possible to observe that while the
LTD constant was not influenced by the TMS stimulation, the LTP parameter
was decreased with a long washout and increased with a short one. This cause
an increased and a decreased generation of CRs in the long and short washout
case, respectively.

Considering the nuclear plasticities, the changes were limited for both LTP
and LTD parameters in the long washout case. On the other hand, the changes
were evident for the short washout case, where the variations of LTP and LTD
parameters moved in favour of a generation of CRs. In fact, the LTD of the
excitatory MF-DCN synapses was decreased, while the LTD of the inhibitory
PC-DCN synapses was strongly increased. As a result, more excitatory inputs
from the MFs and a weaker inhibition from the PCs increased the firing rate of
DCN, thus generating more CRs.

5 Discussion and Conclusions

The analysis of LTP and LTD parameters showed that changes in behaviour with
short and long washout are due to different rate in the rules driving synaptic
modifications.

In particular, it can be observed that the administration of TMS followed by
a prolonged washout caused a significant modification of the cortical plasticity
only, with minor involvement of nuclear plasticities. Besides, the decrease of
the PF-PC LTP parameter was in favour of a generation of CRs, therefore the
fast acquisition in session2TMS was not impaired since the SNN expressed a
high number of CRs, but this change impacted the extinction phase, where
suppression of CRs was required.

In the case of a short washout, the parameters changed in a completely differ-
ent way. First of all, it has been observed an involvement of both the cortical and
the nuclear sites. While the cortical plasticity expressed a higher value of LTP,
thus hindering CRs generation, the LTP and LTD constants of nuclear plastici-
ties moved toward values that promoted CRs. As a matter of fact, the cortical
and the nuclear mechanisms worked in opposite directions. This is the reason
why, in the short washout case, both the learning and unlearning phases were
impaired. The learning phase was slowed down by a weaker PF-PC response,
while the reduced extinction was due to a higher DCN activity caused by the
nuclear plasticities.

We can, therefore, conclude that the duration of the washout after the TMS
administration is a crucial variable that can change the reorganization of plas-
ticity and neural dynamics in the cerebellum. Since the TMS induces an elec-
trical field in the most superficial areas of the tissue, the cortical plasticity is
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the one primarily involved, as reflected by major changes concerning its LTP
mechanisms (increasing or decreasing the potentiation effectiveness). However,
if sufficient recovery time is granted, the TMS effect is limited to the cerebellar
cortex and does not interfere with deeper systems (i.e., nuclear plasticities) and
memory transfer. Viceversa, if the inter-session pause after TMS perturbation
is shortened, the cortical impairment in the acquisition phase triggers a com-
pensatory effect of the nuclear plasticities, that try to favour CRs generation,
but on a longer time-scale. Then, the nuclear compensation becomes an obstacle
during the extinction phase.

It is important to highlight that the effect of TMS is more evident for the
short washout, both in the experimental and computational studies. In fact,
session2sham and session2TMS experimental data for the long washout proto-
col show high variability during the acquisition blocks. At the same time, the
computational model fit those blocks with less fidelity. The second EBC ses-
sion after a long washout suffers from the interference of the neural activity and
synaptic changes that naturally happen during one week of participants’ life,
where external stimuli and internal processes can disrupt or modify cerebellar
memory formation and consolidation.

This work carried out a retrospective analysis and a comparison of TMS-
perturbed EBC paradigms that present some differences both from the experi-
mental protocol (see Sect. 2, Table 1) and the related computational studies (see
Sect. 3, Table 2). However, we believe that this comparative analysis provides
a summary of the mechanistic explanations that can be derived from the inter-
pretation of the SNN model parameters, highlighting the effects of the washout
period in studies that foresee the administration of (cerebellar) TMS on human
participants.

Data Availability. Datasets and Codes to reproduce the findings and fig-
ures reported in this paper is publicly available at Harvard Dataverse (DOI:
10.7910/DVN/9HPEV4).
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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