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A key aspect of cancer metastases is the tendency for specific cancer
cells to home to defined subsets of secondary organs. Despite these
known tendencies, the underlying mechanisms remain poorly
understood. Here we develop a microfluidic 3D in vitro model to
analyze organ-specific human breast cancer cell extravasation into
bone- and muscle-mimicking microenvironments through a micro-
vascular network concentrically wrapped with mural cells. Extrav-
asation rates and microvasculature permeabilities were significantly
different in the bone-mimicking microenvironment compared with
unconditioned or myoblast containing matrices. Blocking breast
cancer cell A3 adenosine receptors resulted in higher extravasation
rates of cancer cells into the myoblast-containingmatrices compared
with untreated cells, suggesting a role for adenosine in reducing
extravasation. These results demonstrate the efficacy of our model
as a drug screening platform and a promising tool to investigate
specific molecular pathways involved in cancer biology, with poten-
tial applications to personalized medicine.
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Dissemination of cancer cells from a primary tumor to sec-
ondary loci is responsible for more than 90% of cancer-

migration of cancer cells in the lung of mouse models (12). In
vivo models have been developed to study breast cancer metas-
tases to bone by means of i.v. and skeletal injection of breast
cancer cells in mice (13). Although in vivo models play an es-
sential role in replicating physiological conditions, they lack the
possibility to analyze highly specific interactions between human
cancer cells, human blood vessels, and tissues, and they are not
well suited to perform reproducible parametric studies. To
remedy this, several in vitro models have been developed to
analyze cell migration mechanisms and particularly the invasive
potential of cancer cells (14). However, these models are often
highly simplified, such as the Boyden chamber or wound assays
(15), which fail to allow the analysis of complex cell–cell and cell–
matrix interactions, are limited in their capability to tightly control
the local microenvironment, and offer only limited imaging.
Microfluidics overcomes some of the technical limitations of

traditional assays (16), allowing the study of cancer metastases
under biochemically and biophysically controlled 3D microen-
vironments coupled with high-resolution real-time imaging (17).
Various microfluidic models have been developed for studying
tumor angiogenesis (18), transition to invasion (19), intravasation
(20), the role of interstitial flow (21) and matrix stiffness (22) on
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related mortality (1). Despite significant advances in diagnostics 
and therapy, most of the available treatments are not effective, 
because the disseminated cells are resistant to conventional 
agents (2). Invasion and metastasization are complex and mul-
tistep processes guided by a wide spectrum of genetic and bio-
chemical determinants (3). A key aspect of metastases is reflected 
in the interactions between specific cancer cell types and different 
secondary organs. Although circulatory patterns and flow rates 
may play some role in cancer cell dissemination, it appears that 
the organ specificity of metastases is primary due to the cross-talk 
between specific cancer cells and biologically unique tissues: the 
seed-and-soil paradigm (4). For example, breast and prostate 
cancers are known to metastasize frequently to bone (5), with 70%
of advanced breast cancer patients affected by skeletal metastases, 
leading to high rates of morbidity and mortality (6). Moreover, 
it has been recently demonstrated that breast cancer cells can 
reseed from bone to other sites including the breast, further 
emphasizing the key role of the bone microenvironment in the 
metastatic process (7).
Metastasis organ specificity and extravasation appear to be 

tightly coupled because specific chemo-attractant molecules are 
secreted by organ-specific stromal cells (8). Furthermore, posi-
tive interactions with circulating noncancer cells, e.g., platelets, 
leukocytes, and monocytes/macrophages, promote cancer cell 
transendothelial migration into surrounding tissues (9).
In vivo and ex vivo studies have been performed to investigate 

cancer cell extravasation in mouse models through liver sinusoids 
and pulmonary circulation (10) or in zebrafish embryos (11). 
Recently, Schumacher et al. have shown the influence of platelet-
secreted nucleotides playing a crucial role in the 
transendothelial
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cancer cell migration, adhesion (23), and extravasation (24, 25). 
Recently, our group presented a microfluidic model to in-
vestigate the specificity of breast cancer metastasis to bone, 
providing quantitative data on cancer cell extravasation rate and 
reproducing the effects of the CXCL5–CXCR2 interaction be-
tween bone cells and metastatic breast cancer cells observed in 
vivo (26). However, in that system, the vascular wall was repre-
sented by an endothelial monolayer on the side of a central gel 
region. With the recent attempts in inducing vasculogenesis (27, 
28), vascular networks have been generated inside the gel region 
either by coculture with human lung fibroblasts in separate gel 
regions or by interstitial flow. Despite the tremendous advances 
in modeling angiogenesis and vasculogenesis, these models have 
not previously been used to study metastasis organ specificity and 
investigate the role of human organ-specific microenvironments.
Here we present an organ-specific human 3D microfluidic 

model that enables the study of human metastatic breast cancer 
cell extravasation within a perfusable human microvascularized 
bone-mimicking (BMi) microenvironment. The resulting model 
represents a functional human quad-culture in which breast 
cancer cells flow into, adhere to, and metastasize through human 
microvascular networks. These networks are supported by pri-
mary human bone marrow-derived mesenchymal stem cells 
(hBM-MSCs) that have undergone phenotypical transition to-
ward the smooth muscle cell lineage, embedded in a BMi micro-
environment with homogeneously distributed osteo-differentiated 
(OD) primary hBM-MSCs.

Results
Generation of Functional 3D Microvascular Networks Within a BMi 
Microenvironment. We report an in vitro platform that enables 
the study of organ-specific human breast cancer cell extravasa-
tion into a human BMi microenvironment through a functional, 
perfusable 3D microvascular network. Primary hBM-MSCs were 
obtained from patients undergoing hip arthroplasty under writ-
ten informed consent. A triculture of primary hBM-MSCs, OD 
primary hBM-MSCs (14-d differentiation in osteogenic medium 
before seeding, according to a previously optimized protocol)
(26), and primary GFP-human umbilical vein endothelial cells 
(HUVECs) was embedded in a fibrin gel to generate a micro-
vascular network enclosed in a BMi matrix characterized by ac-
tively secreting OD cells, which create naturally formed 
molecular gradients affecting both microvasculature and 
cancer cells. The microfluidic model used in this study 
consists of a microfluidic device containing a microvascular 
network used to conduct organ-specific extravasation 
experiments (Fig. 1A). Functional micro-vascular networks, 
characterized by anastomoses with the lateral media channels, 
were formed over 4 d (Fig. 1B, Fig. S1,andMovie S1),

at which time, breast cancer cells were introduced, and extravasation 
events were monitored during the next 8 h.
Formation of functional microvascular networks within a BMi 

microenvironment was characterized by the expression of spe-
cific bone markers, i.e., osteocalcin and bone alkaline phospha-
tase (Fig. 1 C and D and Fig. S2), and vascular markers, i.e., 
vascular endothelial (VE)-cadherin and zonula occludens (ZO)-1 
(Fig. 1 E and F and Movie S2), and α smooth muscle actin (α-
SMA) (Fig. 1G). Primary hBM-MSCs cultured with HUVECs 
showed a phenotypic adaptation toward a mural cell lineage, as
demonstrated by positive α-SMA immunofluorescent staining, 
and wrapped around patent microvessels. Furthermore, the 
presence of endothelial cell–cell adherens and tight junctions 
represents a key factor for the development of effective extrav-
asation models: the immunofluorescent staining demonstrates the 
existence of mature vessel walls with well-formed cell–cell 
junctions. The microvascular network, characterized by complex 
interconnections and continuous hollow lumens (Fig. S3A and 
Movie S3), was embedded in a BMi microenvironment with 
primary OD hBM-MSCs secreting bone proteins such as osteo-
calcin and bone alkaline phosphatase (Fig. 1 C and D). We also 
previously demonstrated our OD primary hBM-MSCs secreted 
osteopontin and osteonectin and generated calcium deposits 
within 3D matrices (26).
Endothelial cells displayed morphological features similar to in 

vivo vasculatures, such as an elongated shape aligned with 
microvessel axes (Fig. S3B), in contrast to the random alignment 
exhibited by endothelial monolayers or endothelialized micro-
channels in the absence of flow (29). Finally, fluorescent micro-
spheres (3 and 10 μm in diameter) were perfused through the 
system showing patent microvessels.
Cancer Cell Extravasation in a BMi Microenvironment. A perfusable 
microvascular network generated via a vasculogenesis-like pro-
cess from endothelial cells suspended in gel solution within the 
microfluidic device was used to model the extravasation process 
of breast cancer cells toward a BMi microenvironment (Fig. 1B and 
Fig. S1). The katushka-expressing bone seeking clone (BOKL) of 
the MDA-MB-231 metastatic breast cancer cells flowed into 
the microvascular network, rolled on, and adhered to the 
endothelium or became physically trapped, and subsequently 
spread, extended filopodia through intercellular junctions into 
the local microenvi-ronment and finally invaded the extracellular 
matrix (ECM; Fig. 2 A and B and Movie S4). Cancer cells 
transmigrated through the endothelium into the matrices 
engineered to mimic three different microenvironments: bone, 
muscle, and acellular collagen matrix (Fig. 2E). Extravasation 
rates of the cancer cells in the BMi mi-croenvironment were 
significantly higher compared with the other

Fig. 1. Characterization of the extravasa-
tion model. (A) Two side media channels
allow addition of cancer cells, biochemi-
cal factors, and flow across the vasculature
formed in the gel channel. Endothelial cells
(ECs), MSCs, and osteoblast-differentiated
cells (OBs) are initially seeded in the gel.
ECs form vasculature, whereas MSCs and
OBs create a BMi microenvironment. Cancer
cells introduced in the vessel extravasate
into the organ-mimicking gel. (B) The mi-
crovascular network is characterized by
highly branched structures. Establishment
of BMi microenvironment is shown by
staining for osteocalcin (OCN, red; C ) and
bone alkaline phosphatase (ALP, red; D),
which are both secreted by OD hBM-MSCs.
Formation of vasculature is confirmed by
staining for endothelial adherens (VE-cadherin, red; E) and tight (ZO-1, red; F) junctions. Differentiation of hBM-MSCs tomural cell lineagewhen colocalized with ECs
is indicated by immunofluorescent staining of α-smooth muscle actin (α-SMA, red; G). HUVECs (green). DAPI (nucleus, blue).
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conditions such as the microenvironment conditioned with the 
myoblast cell line C2C12, mimicking a muscle microenvironment, 
or control matrix without any cells. BOKL average extravasation 
rate was 56.5 ± 4.8% in the presence of OD hBM-MSCs com-
pared with 8.2 ± 2.3% with C2C12 myoblasts and 14.7 ± 3.6%
without stromal cell addition (control matrix; Fig. 2C). The av-
erage extravasation rate within the BMi microenvironment was 
then 3.8-fold higher than without stromal cell addition, which is 
higher compared with our previous work analyzing the extrava-
sation of cancer cells through a simple and less physiologically 
relevant endothelial monolayer (2.06). It is noteworthy that the 
presence of actively secreting mural cell-like hBM-MSCs that 
enabled the generation of a more in vivo-like microenvironment 
could have also played a role in the increased extravasation ratio. 
No significant differences were quantified comparing cancer cell 
migration distance following extravasation in BMi microenviron-
ments and control matrices (23.26 ± 2.73 vs. 30.63 ± 6.07 μm).
Vessel permeability was quantified by analyzing 70-kDa dextran 

diffusion through the microvascular wall and compared among ex-
perimental conditions (Fig. S3A). Permeability values were signifi-
cantly higher in BMi microfluidic devices 4.12 × 10−6 ± 0.75 × 10−6 

cm/s compared with control matrices 0.89 × 10−6 ± 0.31 × 10−6 cm/s 
(Fig. 2D). Finally, the highest permeability values were found in the

presence of C2C12 myoblasts 8.37 × 10−6 ± 1.53 × 10−6 cm/s, re-
sulting in a 2.0-fold increase compared with the BMi systems (Fig. 
2D). It is surprising that the most leaky environment C2C12 gave 
rise to the lowest extravasation rate. This demonstrates that per-
meability is only one of multiple factors affecting extravasation.
We also explored the capability of the assay to distinguish 

between the extravasation potentials of different cell types and 
cellular environments. First, an inflammatory model was set up 
with the addition of a macrophage cell line. RAW264.7 macro-
phages were homogeneously dispersed within the fibrin gel. The 
average extravasation rate within macrophage conditioned BMi 
microenvironment was significantly higher (32.4 ± 4.3%) com-
pared with matrices without addition of stromal cells (14.7 ± 
3.6%) but lower with respect to standard BMi microenvironment 
(56.5 ± 4.8%; Fig. S4A). The promising nature of these data were 
confirmed by microvessel permeability values, which were higher 
(6.77 × 10−6 ± 1.56 × 10−6 cm/s) in presence of macrophages 
compared with BMi matrices (4.12 × 10−6 ± 0.75 × 10−6 cm/s; Fig. 
S4B). We also performed a control experiment introducing 
nonmetastatic mammary epithelial cells (MCF-10A) within the 
BMi microenvironment. MCF-10A extravasation rate was signifi-
cantly lower (5.2 ± 2.5%) compared with BOKL (56.5 ± 4.8%; Fig. 
S5), thus demonstrating the specificity of the interaction between 
metastatic cancer cells and a BMi microenvironment.

The Role of Adenosine in Cancer Cell Extravasation. As we found 
striking differences between cancer cell extravasation within BMi 
and muscle-mimicking microenvironments, we asked which fac-
tors secreted by muscle might be responsible. It is reported that 
the skeletal muscle microenvironment reduces cancer cell tu-
morigenicity and elicits paracrine-mediated cytotoxic and cyto-
static responses from metastatic cancer cells (30). In particular, 
several studies identified the A3 adenosine receptor (A3AR), 
which is expressed by multiple cancer cell types (31), as key in the 
antimetastatic and protective effect of skeletal muscle cells (32). 
Before investigating the role of A3AR in extravasation, we first 
demonstrated through immunofluorescence that BOKL intro-
duced in our system expressed the A3AR (Fig. 3A and Fig. S6). 
Then, we introduced the A3AR antagonist PSB-10 within C2C12 
containing microfluidic devices (Fig. 3H) and preincubated 
cancer cells with A3AR before seeding (33). With the addition of 
the antagonist, cancer cell extravasation rate significantly in-
creased (32.4 ± 7.7%) compared with nontreated C2C12 ma-
trices (8.2 ± 2.3%; Fig. 3E), whereas microvessel permeability 
was not significantly affected (7.4 × 10−6 ± 2.61 × 10−6 vs. 8.04 × 
10−6 ± 1.72 × 10−6 cm/s; Fig. 3G). These data indirectly dem-
onstrate the presence of C2C12-secreted adenosine in the sys-
tem, as well as the protective role of this molecule against cancer 
metastases. Mass spectrometry (MS) analyses performed on cell 
culture supernatants provided further evidence of adenosine se-
cretion by the C2C12-conditioned microenvironment (Fig. 3B and 
Fig. S7), whereas immunofluorescence staining demonstrated the 
expression of the adenosine converter CD73 (Fig. 3C), which cat-
alyzes the conversion of AMP to adenosine (34).
Supported by our results with untreated or conditioned 

(A3AR antagonist) C2C12 microenvironments, we investigated 
the role of adenosine on cancer cell extravasation within a BMi 
microenvironment using our model as drug screening platform 
(Fig. 3H). The presence of adenosine significantly reduced can-
cer cell extravasation (12.7 ± 2.8%) compared with the untreated 
BMi microenvironment (56.5 ± 4.8%; Fig. 3D). Furthermore, we 
found a dramatic increase in microvasculature permeability 
(8.22 × 10−6 ± 1.76 × 10−6 cm/s) compared with BMi control 
(4.12 × 10−6 ± 0.75 × 10−6 cm/s; Fig. 3F). It is interesting to note 
that treating BMi microenvironments with adenosine led to ex-
travasation rate and permeability values comparable to C2C12-
conditioned matrices, suggesting this molecule could be theoretically 
used to tune a specific microenvironment with antimetastatic

Fig. 2. Cancer cell extravasation. (A) Extravasation of cancer cells (red) in-
troduced into the vascular network (HUVECs, green) is monitored in real 
time. (B) Magnified images of white dotted box in A show extravasation of 
cancer cells. (C) Percent of cancer cells extravasated varies significantly 
among the vascular networks embedded in different microenvironments, 
i.e., acellular and bone or muscle-mimicking microenvironment, respectively.
(D) Permeability values increased when cells are added to mimic the two 
organ-specific microenvironments compared with HUVEC only condition. (E) 
Schematic of HUVEC only, osteo-cell, and C2C12 cell added systems. HUVECs
are shown as green cells that form vessel, osteo-cells are blue colored cells 
and secrete bone matrix as shown in yellow, and C2C12 cells are depicted as 
yellow cells. Cancer cells are colored in red and seen both in the vessels as 
well as extravasated out in the surrounding matrix.
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the screening of new therapeutics. The efficacy and potentiality of
our microfluidic model go beyond the established role of adeno-
sine as a promising anticancer molecule to specifically demon-
strate its involvement in the extravasation process.
The microfluidic model presented is based on the coculture of

endothelial and hBM-MSC–derived mural cells to create physi-
ologically relevant highly branched structures, characterized by
reduced microvessel diameter and increased branch number
compared with microvascular networks made of endothelial cell
alone (27). Particularly, this model overcomes some of the lim-
itations of previously developed elegant models that showed
impaired perfusability when supportive stromal cells were added
to the system (37). It is known that a wide panel of molecules is
involved in vessel wall and network maturation including vas-
cular endothelial growth factor (VEGF), platelet derived growth
factor (PDGF-B), and members of the TGF-β family. Moreover,
it is reported that angiopoietin-1 (Ang-1) represents a key

Fig. 3. Percent of cancer cell extravasation and
vascular permeability in bone and muscle-mimicking
microenvironment with addition of stimulating or
blocking molecules. Cancer cells express the A3

adenosine receptor (A), whereas C2C12 embedded
matrices secrete adenosine as shown by MS data
(268 m/z peak) (B) and CD73 immunofluorescent
staining (C). Percentage of cancer cells that extrav-
asate (D) and permeability of the vasculature (F) in
the BMi microenvironment with OD hBM-MSCSs,
with and without adenosine. Extravasation rate
decreased significantly with addition of adenosine,
whereas the permeability increased with adeno-
sine. Percentage of cancer cells that extravasate
(E ) and permeability of the vasculature (G) in the
muscle-mimicking microenvironment with C2C12
cells, with and without PSB10. Although block-
ing of A3AR with the addition of PSB10 did not
alter the permeability of the vasculature, cancer
cell extravasation rate increased significantly. (H)
Schematic of osteo-cell and C2C12 cell added sys-
tems with adenosine, A3 adenosine receptor and
its antagonist PSB10.

Fig. 4. Cancer cell extravasation and endothelial cell (EC) permeability
change in the presence of flow through the vasculature. Extravasation of
cancer cells (A) and permeability of the vasculature (B) decreased signifi-
cantly with the addition of flow. (C) Extravasated cancer cells migrated
further in the flow condition vs. the static condition. Actin (yellow) within
ECs in static condition (D) and under conditions when flow was added in the
vasculature (E). DAPI (nucleus, blue).

properties. Finally, Live/Dead and MTT assays were performed at 
different time points on cancer cells treated with adenosine, 
confirming that the A3AR antagonist action in reducing extrava-
sation was not due to a cytotoxic effect on BOKL (Figs. S8 and S9).

Effect of Shear Stress on Microvasculature and Cancer Cell Extravasation. 
Because extravasation normally occurs during blood flow, we 
next examined the effects on microvascular networks condi-
tioned by physiological levels of shear stress. In these experi-
ments, we preconditioned microvascular networks with flow 
overnight before cancer cell seeding and analyzed the effects of 
flow on extravasation and microvessel permeability. We selected 
a flow  rate  of  2  μL/min in the channel, which resulted in an 
average velocity in the vasculature of 220 μm/s and a wall shear 
stress of 0.25 dyne/cm2 (35).
Cancer cell extravasation within the flow conditioned BMi 

microenvironment occurred at a rate of 38.6 ± 4.8% (Fig. 4A), 
significantly lower than under static conditions (56.5 ± 4.8%). 
We also found that microvessel permeability decreased 2.4-fold 
compared with static conditions (1.72 × 10−6 ± 0.53 × 10−6 cm/s 
compared with 4.12 × 10−6 ± 0.75 × 10−6 10−6 cm/s; Fig. 4B). 
Endothelial cells exposed to a laminar flow were characterized 
by an elongated morphology and a clear actin filament alignment 
in the flow direction as shown in Fig. 4 E (flow) and D (static 
control) and measured using anisotropy score (Fig. S10 and SI 
Materials and Methods), with compelling stress fibers at cell–cell 
junctions (Fig. S3B), thus displaying morphological features 
resembling in vivo microvessels (36). Finally, it is worth noting 
that flow-conditioned breast cancer cells migrated further into 
the surrounding matrix (33.7 ± 4.3 μm) compared with static 
experiments (23.3 ± 2.7 μm; Fig. 4C).

Discussion
An organ-specific 3D microfluidic model was created to study 
human breast cancer cell extravasation into an actively secreting 
BMi microenvironment generated with OD hBM-MSCs through 
perfusable human microvascular networks composed of endo-
thelial and mural-like cells. The relevance of the present work lies 
in the application of a complex model to investigate and sub-
sequently tune a specific step of the metastatic cascade within 
different organ-specific microenvironments with implications for
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compared with static conditions. Moreover, a significant over-
expression has been highlighted for β-catenin (adherens junc-
tions) and ZO-1 (tight junctions), with respect to disturbed
flow or static conditions (43). Overall, these studies suggest that
exposure of endothelial cells to controlled, laminar flows results
in cell–cell junction tightening with a corresponding decrease in
vasculature permeability. These findings agree with our results
showing decreased microvessel permeability due to flow shear
stress in the same BMi microenvironment. It is likely that the
reduced extravasation rate within the flow conditioned BMi
microenvironment could be due to enhanced endothelial cell
intercellular forces and cell–cell junction tightening. Further-
more, we can speculate the presence of an interstitial flow within
the BMi matrix during flow conditioned experiments could
partially explain the increased migration distance shown by
breast cancer cells compared with static controls, as previously
demonstrated by several studies highlighting the link between
flow-induced mechanical stimulation and cell migration (21).
Our data demonstrate that generation of a more physiological
microenvironment with the addition of endothelial wall shear
stress can dramatically affect extravasation potential, which
could have critical implications on drug screening tests and in
vitro model development. We would like to emphasize that, in
addition to endothelial cell preconditioning, our platform ena-
bles real time monitoring of cancer cell extravasation under flow,
thus allowing the in situ analysis of extravasation in the micro-
environment where both endothelial and cancer cells are ex-
posed to physiological stimuli.
In conclusion, an organ-specific vascularized 3D microfluidic

model was created to study human breast cancer cell extrava-
sation into an actively secreting human BMi microenvironment
through perfusable human microvascular networks composed of
endothelial and mural-like cells. We found clear evidence of the
seed (breast cancer cells) and soil (BMi microenvironment)
coupling and provided quantitative results regarding the anti-
metastatic and protective role played by skeletal muscle cells.
Particularly, we demonstrated the effectiveness of the model as
a drug screening assay, being able to investigate both the effects
of A3AR antagonist on cancer cell extravasation in a C2C12
myoblast conditioned matrix and the antimetastatic role of
adenosine in a human BMi microenvironment, thus overcoming
limitations of traditional in vitro models. These assays contribute
to the continued evolution of 3D in vitro models, improving on
drawbacks of animal studies, e.g., differences in drug metabolism
that affect the outcome of therapeutic treatments, and capable of
bridging highly specific human in vitro cultures with physiological
in vivo conditions. Success in these modeling efforts will help to
foster a more effective screening of tailored anticancer therapies
in the context of personalized medicine and promote the study of
key molecular pathways involved in cancer biology in controlled,
organ-specific, physiological-like conditions.

Materials and Methods
Microfluidic System. The microfluidic system contains a 1.3-mm-wide central
hydrogel region flanked by two lateral media channels, as previously used in
our group for other studies (27). The microfabrication process of the device
was documented in detail for other configurations (26). Briefly, the micro-
fluidic device was fabricated with poly-dimethyl-siloxane (PDMS, Silgard 184;
Dow Chemical) using soft lithography techniques from patterned SU-8 sili-
con wafers. Inlet and outlet ports were created with biopsy punches, and
a cover glass was bonded to the PDMS after 60-s oxygen plasma treatment
to generate 200-μm-deep microchannels. A thrombin solution (4 U/mL) was
used to resuspend cells, and 10-μL aliquots were mixed with 10 μL fibrinogen
solution (5 mg/mL) to create a fibrin gel. After gelation, media channels
were filled with cell culture medium, and microfluidic devices were cultured
for 4 d. The two channels system enabled easy access to the hydrogel region
for cancer cell extravasation studies under static or dynamic conditions.

molecule in vessel stabilization and could play a role in the re-
cruitment of mesenchymal cells (38). As we recently demon-
strated, the addition of Ang-1 within HUVEC + hBM-MSC 
cocultures significantly induces mesenchymal cell expression 
of common markers displayed by mural cells, e.g., α-SMA, 
SM22α, and NG-2 (27), which contribute to network stabiliza-
tion. Taken together, these findings provide evidence that the 
combination of endothelial-mesenchymal stem cell coculture 
and the external addition of stabilizing molecules promote the 
generation of functional microvascular networks, which repre-
sent a suitable model to study cancer cell extravasation within 
an actively secreting BMi microenvironment.
Cancer cell extravasation rates were significantly higher in the 

BMi microenvironment compared with control matrices without 
stromal cells or muscle-mimicking microenvironments. Although 
the higher permeability in the BMi microenvironment is likely 
due to a combination of factors, it may also contribute to the 
increase in extravasation. Indeed, matrix-specific cell-secreted 
chemokines can both generate molecular gradients affecting 
cancer cell transendothelial migration (39) and alter endothelial 
permeability (40). Of particular note is the increase in micro-
vasculature permeability when adenosine is added. It has been 
reported that adenosine can interact with endothelial cells 
expressing A2B adenosine receptors, promoting the release of 
proangiogenic factors including VEGF and IL-8, which could 
lead to the increased permeability (41). Although A2B adenosine 
receptors are preferentially expressed by human microvascular 
endothelial cells compared with HUVECs, the external addition 
of adenosine in the BMi microenvironment played a role in the 
increased microvessel permeability compared with untreated 
matrices, despite reducing cancer cell extravasation. These data 
highlight that permeability represents only one of the key factors 
driving cancer cell extravasation. C2C12-secreted adenosine 
could also partially explain permeability differences detected 
comparing no stromal cell addition, BMi microenvironment, and 
C2C12 conditioned matrices. Moreover, the presence of high 
values of microvessel permeability with the addition of the A3AR 
antagonist within C2C12-embedded microenvironments, which 
are comparable to data obtained with untreated C2C12 matrices, 
suggests the A3AR antagonist did not adversely affect the me-
chanical properties of the endothelium, confirming previous stud-
ies demonstrating low expression levels of A3AR by endothelial 
cells (41). However, the addition of the antagonist did promote 
an increase in the extravasation rate compared with untreated 
microenvironments, suggesting a specific interaction with cancer 
cells. Indeed, it should also be considered the A3AR antagonist 
could have affected endothelial cell secretory activity or the ex-
pression of surface markers contributing to cancer cell adhesion/
extravasation, thus leading to increased extravasation rates.
Substantial clinical and experimental evidence indicates a key 

role of macrophages in multiple steps of the metastatic cascade. 
Based on previous experiments performed in our laboratory on 
cancer cell intravasation (20), we suggest the increased micro-
vasculature permeability could be due to the macrophage secre-
tion of the inflammatory cytokine TNF-α. However, it is known 
that TNF-α inhibits osteoblast differentiation and bone-specific 
protein expression, particularly osteocalcin, while inducing osteo-
clastogenesis (42). Then, we can speculate the macrophage-
secreted TNF-α could have conditioned the BMi microenvironment, 
limiting the prometastatic effect induced by OD cell secretome. 
Further analyses are required to in-depth investigate specific role 
and impact of macrophages and particularly macrophage-se-
creted TNF-α on breast cancer bone metastases.
Several works have recently shown that when endothelial cells 

are subjected to laminar flow shear stress, transendothelial elec-
trical resistance increases, microvasculature permeability decrea-
ses, actin filaments become more aligned, and cytoskeletal tension 
and intercellular forces between endothelial cells increase



Immunofluorescent Staining and Image Acquisition. All devices were washed
with PBS (Invitrogen), fixed with 4% paraformaldehyde (PFA) for 15 min and
permeabilized with 0.1% Triton-X 100 solution for 5 min at room temper-
ature. Samples were treated with 5% BSA + 3% (wt/vol) goat serum solution
for at least 3 h at 4 °C before incubation with primary antibody. Mouse
polyclonal α-SMA antibody (abcam; dilution 1:100), rabbit polyclonal VE-
cadherin antibody (abcam; dilution 1:100), mouse polyclonal ZO-1 antibody
(Invitrogen; dilution 1:100), rabbit polyclonal osteocalcin antibody (BTI; di-
lution 1:50), and mouse monoclonal bone alkaline phosphatase (abcam;
dilution 1:40) were used for staining. Red fluorescently labeled secondary
antibodies (Invitrogen) were used at 1:200 dilution (Invitrogen). Cell nuclei
were stained with DAPI (5 mg/mL; Invitrogen) at 1:500 dilution, and F-actin
filaments were stained with AlexaFluor633 phalloidin (Invitrogen) at 1:100
dilution. All images were captured using a confocal microscope (Olympus
IX81) and processed with Imaris software (Bitplane Scientific Software).

Addition of Adenosine and Antagonist for the Adenosine Receptor. Additional
experiments were performed to test the role of the muscle-secretedmolecule
adenosine as an antimetastatic agent. Adenosine (R&D Systems) was diluted
at a final concentration of 10 μM and added to BMi microfluidic devices for
24 h before cancer cell addition. Cancer cells were preincubated with
adenosine 4 h before the seeding. Extravasation events were monitored in

presence of adenosine. To confirm the presence and effect of adenosine
within C2C12 myoblast conditioned matrices, the highly specific A3AR an-
tagonist (PSB-10; R&D Systems) at 10 μM was introduced into the micro-
fluidic devices for 24 h before cancer cell addition, and cancer cells were
preincubated with A3AR for 4 h before injection. Extravasation events were
monitored in presence of A3AR antagonist.

Statistics. All extravasation percentages are reported as averages ± standard
error of the mean (SEM). Measurements are obtained from a minimum of 10
regions of interest (ROIs) from three or more independent devices, whereas
all permeability values are averages of five (minimum) to seven (maximum)
measurements from two (minimum) to four (maximum) independent de-
vices. Measurements were compared using an unpaired Student t test. Sta-
tistical tests were performed with SigmaPlot12. All tests with P < 0.05 and
P < 0.005 were assumed to be statistically significant.
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