
 

Permanent link to this version 

http://hdl.handle.net/11311/1202471 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
C.A. Yan, R. Vescovini, L. Dozio 
A Framework Based on Physics-Informed Neural Networks and Extreme Learning for the 
Analysis of Composite Structures 
Computers & Structures, Vol. 265, 2022, 106761 (20 pages) 
doi:10.1016/j.compstruc.2022.106761 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.compstruc.2022.106761 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



A Framework based on Physics-Informed Neural Networks and1

Extreme Learning for the Analysis of Composite Structures2

C.A. Yan* R. Vescovini and L. Dozio

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Via La Masa 34, 20156 Milano, Italy

3

Abstract4

This paper presents a novel approach for solving direct problems in linear elas-5

ticity involving plate and shell structures. The method relies upon a combination of6

Physics-Informed Neural Networks and Extreme Learning Machine. A subdomain de-7

composition method is proposed as a viable mean for studying structures composed by8

multiple plate/shell elements, as well as improving the solution in domains composed9

by one single element. Sensitivity studies are presented to gather insight into the effects10

of different network configurations and sets of hyperparameters. Within the framework11

presented here, direct problems can be solved with or without available sampled data.12

In addition, the approach can be extended to the solution of inverse problems. The13

results are compared with exact elasticity solutions and finite element calculations, il-14

lustrating the potential of the approach as an effective mean for addressing a wide class15

of problems in structural mechanics.16

Keywords: Physics-Informed Neural Networks; Extreme Learning Machine; Structural17

analysis; Shell structures.18

1 Introduction19

The standard modeling approach in the field of solid mechanics is based on the definition20

of governing equations starting from balance principles. The solution is generally sought21

using analytical or computational techniques, such as the Finite Element Method (FEM)22

*Corresponding author. Email address: chengangelo.yan@polimi.it (Cheng Angelo Yan),

1



[1] and meshfree methods [2]. The resulting computational models can be referred to as23

physics-based, as they are completely defined by the set of equations arising from the rel-24

evant principles. However, physics-based modeling is not applicable whenever the lack of25

an exhaustive understanding of the problem does not allow the problem to be formulated26

in terms of governing equations. An alternative paradigm is represented by data-driven27

techniques, which are typically based on Machine Learning (ML) methods. In this case, the28

model is constructed by fitting large volumes of data representing the behavior of the system29

under investigation. This approach allows the main features of the process to be modeled30

even if the governing equations are not available. In this context, Artificial Neural Networks31

(ANNs) represent one of the most popular ML methods for building data-driven models.32

This is even more true due to recent progresses in this field (see, e.g., Deep Learning [3]) and33

availability of new advanced algorithms for ML, such as Automatic Differentiation [4]. In34

the field of solid mechanics, several applications have been proposed. Petrolo and Carrera [5]35

suggested the use of ANNs as an effective mean for selecting the element kinematics in finite36

element meshes. A finite element zooming technique where boundary conditions are esti-37

mated using neural networks is presented in Ref. [6]. Another example is the work of Liu et38

al. [7], where neural networks are used for modeling complex nonlinear constitutive laws and39

for predicting damage accumulation in composite materials. Data-driven models based on40

ANNs were developed in Ref. [8] to be adopted as surrogates for accelerating the stress anal-41

ysis of isotropic elastic structures with different geometries. Bisagni and Lanzi [9] trained42

ANNs with data coming from nonlinear FE analysis for a post-buckling optimization pro-43

cedure of composite stiffened panels loaded in compression. In the above-mentioned works,44

ANNs are used as a “black-box”, whose effectiveness is highly dependent on the available45

data, both qualitatively and quantitatively. In many real-world applications, however, data46

can be scarce and/or very expensive to be generated. Hybrid approaches, based on the idea47

of combining the mathematical model with available data, are a promising way for develop-48

ing reliable and accurate models. Several strategies have been proposed for building such49

models in the framework of ML methods [10]. One possibility is represented by Physics-50

Informed Neural Networks (PINNs) [11], a novel ML paradigm consisting in incorporating51

the available governing equations in a Deep Learning framework. This approach allows the52

“black-box” neural network to be enriched with information available on the underlying53

2



physical laws. The result is a “gray-box” approach: the learning process is physics-oriented54

and so the requirements on training data can be relaxed. The idea of PINNs was first55

proposed by Raissi et al. [11], who demonstrated the effectiveness of PINNs for solving and56

discovering partial differential equations. Other recent studies in the field are due to Zhang57

et al. [12], addressing the solution of stochastic differential problems, and Haghighat et58

al. [13], solving the PDE corresponding to the linear equilibrium of elastic bodies. A neu-59

ral network-based plasticity model embedding thermodinamical consistency as a physical60

constraint is illustrated in Ref. [14]. Recent contributions focused on the improvement of61

PINNs learning performance. A variational form of PINNs is proposed in Refs. [15] and [16],62

the main advantage consisting in faster training due to the reduced order of the derivatives63

entering the loss function. Adaptive activation functions were employed by Jagtap et al.64

[17]. The authors concluded that a progressive scaling of the activation function during the65

training process can improve the convergence rate and the accuracy of PINNs. Similarly,66

an adaptive method was proposed in Ref. [18] for selecting training points for PINNs with67

a criterion based on the loss function value. Better robustness of the training process was68

achieved, especially for problems characterized by non-smooth solutions. Domain decompo-69

sition approaches were integrated in the PINN framework in Refs. [19] and [20]. A division70

of the computational domain into subregions and the combined use of multiple subnetworks71

were found to lead to improved representation performance, more efficient hyperparameter72

tuning and the possibility of representing steep gradients or discontinuities. A crucial aspect73

in the development of PINNs regards the time for training. One attempt to obtain more74

efficient strategies is found in Refs. [21] and [22]. They exploited the concept of Transfer75

Learning, obtaining improved computational efficiencies starting the training process from76

a pretrained state holding an initial knowledge of the problem. Extreme Learning Machine77

(ELM) [23] is another learning algorithm that has been successfully applied aiming at re-78

ducing the computational cost for training, without affecting the performance of PINNs. In79

ELM, the weights of the hidden layer are generated randomly and do not need to be learnt,80

with a clear advantage in terms of learning speed. Successful applications of ELM within81

PINN frameworks are found in Refs. [20, 24].82

Starting from the idea pursued in these two references, this paper aims at presenting, for83

the first time, a PINN/ELM-based approach for the direct and inverse solution of linear84

3



elasticity problems. A formulation is presented, which is capable of handling the analysis85

of composite thin-walled structures. Past efforts have focused on applications with rela-86

tively simple domains. The proposed approach brings the application of PINN/ELM one87

step further by developing a domain decomposition strategy as a viable mean for studying88

assemblies of plate and shell-like structural elements. Exemplary test cases are presented to89

illustrate the potentials of this strategy and its use with or without labeled data available.90

The paper is organized as follows: the governing PDEs expressing the shell mathematical91

model to be used during the training process of PINNs are derived in Section 2; Section 392

is devoted to the description of the PINN framework and the learning procedures adopted93

in this work; the results are presented in Section 4, where a comparison against reference94

solutions is shown for validation purposes, along with a set of parametric studies on the95

networks hyperparameters. Two practical applications are then illustrated regarding the96

static analysis of an isotropic panel with a cutout and the free vibration analysis of a stiff-97

ened composite panel. A final example is devoted to the application of the method to solve98

an inverse problem, where the stacking sequence of a variable-stiffness plate is identified for99

a target static response.100

2 Formulation101

The starting point of PINNs is the definition of the relevant physical laws governing the102

problem at hand. While the overall framework of PINNs offers a wide range of applica-103

tions – meaningful examples are found in the field of fluid dynamics, quantum mechanics,104

solid mechanics [11, 13] –, the present work aims at presenting their use in the context105

of linear elasticity. Specifically, the class of problems considered here encompasses static,106

free vibration and buckling analysis of thin plates and shells, as well as assemblies of them.107

Donnell theory [25] is used as underlying theory along with the assumptions of linear elas-108

tic material response. Composite structures are considered and the elastic properties are109

allowed to vary along the in-plane directions, so variable-stiffness (VS) configurations, see110

e.g. [26, 27, 28, 29, 30], can be studied.111

This preliminary section aims at presenting the governing equations to be used later to in-112

form the neural network in the training process. Despite the possibility of adopting energy113

4



formulations relying upon a variational principle [16], the mathematical model is expressed114

here in terms of Partial Differential Equations (PDEs). So, a strong-form approach is pre-115

sented.116

It is worth highlighting that the neural networks presented in this work are informed with117

mathematical physics models and do not necessarily need to be supplemented with data.118

In spite of this, the acronym PINN is retained for consistency with the earliest works in the119

literature [11], although the latest definitions of physics-informed machine learning mention120

the seamless integration of data and mathematical physics models, even in partially under-121

stood, uncertain and high-dimensional contexts.122

A sketch of a cylindrical shell is reported in Figure 1, where R denotes the radius of cur-123

vature, a and b are the dimensions along the axial and the circumferential directions, re-124

spectively, and t is the thickness. An orthogonal curvilinear coordinate system is taken in125

correspondence of the midsurface, with x, y and z axis running as illustrated in the sketch.126

The vectors en, et and er are directed along the shell edges’ normal, tangential and radial127

directions, respectively.

Figure 1: Shell geometry and reference system.

128

5



The equation expressing the shell static/dynamic equilibrium are [31]:129 

Nxx,x +Nxy,y + β1qx + β2
(
−I0ü+ I1ẅ,x

)
= 0

Nxy,x +Nyy,y + β1qy + β2
(
−I0v̈ + I1ẅ,y

)
= 0

Mxx,xx + 2Mxy,xy +Myy,yy +Nyy/R+ β1qz + β2

[
−I0ẅ + I2

(
ẅ,xx + ẅ,yy

)
− I1

(
ü,x + v̈,y

)]
+

+β3

(
Nxxw,xx + 2Nxyw,xy +Nyyw,yy

)
= 0

(1)130

where a comma followed by an index denotes partial differentiation with respect to that131

index, while dot defines the time derivative. Use is made of the Boolean flags βi [32, 33],132

whose values lead to different interpretations of Eq. (1). Denoting with δik the Kronecker’s133

delta, static equilibrium equations are obtained by taking βi = δi1; the dynamic equilibrium134

with no external loads (qi = 0) is expressed by the equations obtained with βi = δi2; buckling135

equations are available by setting βi = δi3, where N ij are the pre-buckling resultants and136

all the other terms have to be understood as variations with respect to the pre-buckling137

equilibrium configuration.138

The terms Nij and Mij are the force and moment resultants, defined as:139

Nij =

∫ t/2

−t/2
σij dz and Mij =

∫ t/2

−t/2
σijz dz i, j = x, y (2)140

where σij are the components of the stress tensor.141

The mass properties are specified by integrating the density ρ along the thickness as:142

Ii =

∫ t/2

−t/2
ziρdz i = 0, 1, 2 (3)143

The force and moment resultants appearing in Eq. (1) can be related to the middle surface144

displacement components by means of the strain-displacement relation and the material145

constitutive law.146

In the context of Donnell thin shell theory, the relation between strains and displacements147

is expressed as:148 
ϵxx

ϵyy

γxy

 =


u,x

v,y − w/R

u,y + v,x

+ z


−w,xx

−w,yy

−2w,xy

 = ϵ0 + zk (4)149

6



where ϵxx, ϵyy and γxy are the in-plane components of the strain tensor, while u, v and w are150

the three midplane displacement components along the directions x, y and z, respectively.151

The constitutive law reads:152 N

M

 =

A(x, y) B(x, y)

B(x, y) D(x, y)

ϵ0

k

 (5)153

where N = {Nxx Nyy Nxy}T and M = {Mxx Myy Mxy}T are the vectors collecting154

the force and moment resultants, whereas A, D and B are the membrane, bending and155

membrane-bending coupling stiffness matrices, respectively, available from Classical Lami-156

nation Theory [34]. The constitutive law does not depend on the planar coordinates (x, y)157

in the case of isotropic or composite materials with straight fibers. On the contrary, this158

dependence arises in the case of variable-stiffness configurations, where fiber orientation θ159

is represented via Lagrange polynomials as [28]:160

θ (x, y) =
M−1∑
m=0

N−1∑
n=0

Tmn

∏
n̸=i

(x− xi)

(xn − xi)
·
∏
m ̸=j

(
y − yj

)(
ym − yj

) (6)161

where θ is interpolated starting from assigned values in a M × N grid of points whose162

coordinates are (xr, ys), with r = {i, n} and s = {j,m}. The coefficients of the Lagrangian163

polynomials Tmn are uniquely determined by imposing θ (xn, ym) = Tmn at each reference164

point. Hence, the lamination sequence is defined through a matrix T ∈ RM×N , as shown165

in Figure 2.

Figure 2: Fiber path definition via Lagrange polynomials.

166

7



The equilibrium conditions reported in Eq. (1) can be expressed in terms of middle surface167

displacement components upon substitution of Eqs. (4) and (5) in Eq. (1), resulting in:168

R :=
(
K− β2ω

2M+ β3λG
)
u+ β1q = 0 in Ω (7)169

where R is the vector of the residual functions, K, M and G are matrices of differential170

operators as defined in the Appendix; the scalar ω defines the vibration frequency, while171

λ is the buckling multiplier; the vectors u = {u v w}T and q = {qx qy qz}T collect the172

displacements and surface loads, respectively.173

The combination of Eq. (7) along with the approximation of the displacement functions via174

neural networks is the first step to build the PINN. In other words, Eq. (7) provides the175

information regarding the mathematical model to be accounted for by the neural network.176

The whole definition of the problem is completed by specifying the boundary conditions.177

Referring to Figure 1 and denoting the boundary with ∂Ω, the conditions are:178

B =



un − ûn = 0

ut − ût = 0

wn − ŵn = 0

wn,n − ŵn,n = 0

or Nnn − N̂nn = 0

or Nnt − N̂nt = 0

or Vn − V̂n = 0

or Mnn − M̂nn = 0

in ∂Ω (8)179

where the caret defines any prescribed quantity, either in terms of forces or displacements,180

and:181 

un = nxu+ nyv

ut = nxv − nyu

wn = w

wn,n = nxw,x + nyw,y

and



Nnn = n2
xNxx + n2

yNyy + 2nxnyNxy

Nnt = nxny

(
Nyy −Nxx

)
+
(
n2
x − n2

y

)
Nxy

Vn = nxVx + nyVy

Mnn = n2
xMxx + n2

yMyy + 2nxnyMxy

(9)182

where Vx = Mxx,x +2Mxy,y and Vy = Myy +2Mxy,x are the Kirchhoff shear forces, nx and183

ny the components of the unitary vector en normal to the boundary ∂Ω.184

The set of equations (7) and (8) can be used for analyzing single-domain structures. A fur-185

ther extension is needed when assemblies of plate and shell elements are of concern. Specif-186

ically, the mathematical model is rephrased to account for the equilibrium and boundary187

8



conditions of each single element and to consider the natural and essential conditions at the188

interfaces between elements. The whole set of conditions expressing the differential problem189

is then:190 R(p) = 0 in Ω(p)

B(p) = 0 in ∂Ω(p)
for p = 1...P191

I(q)
con = 0

I(q)
equ = 0

in ∂Ω
(q)
int for q = 1...Q (10)192

193

where P is the total number of elements composing the structure, while Q is the number of194

interfaces between elements. The last two sets of equations above specify the compatibility195

of displacements and the equilibrium conditions at the interfaces. The operators I(q)
con and196

I(q)
equ are defined as follows:197

I(q)
con =



u
(i)
n + u

(j)
n cosα(i)(j) − w

(j)
n sinα(i)(j) = 0

u
(i)
t + u

(j)
t = 0

w
(i)
n − w

(j)
n cosα(i)(j) − u

(j)
n sinα(i)(j) = 0

w
(i)
n,n + w

(j)
n,n = 0

for j = 1...J, j ̸= i198

I(q)
equ =



N
(i)
nn −

∑J
j ̸=i

(
N

(j)
nn cosα(i)(j) − V

(j)
n sinα(i)(j)

)
= 0

N
(i)
nt −

∑J
j ̸=iN

(j)
nt = 0

V
(i)
n +

∑J
j ̸=i

(
V

(j)
n cosα(i)(j) +N

(j)
nn sinα(i)(j)

)
= 0

M
(i)
nn −

∑J
j ̸=iM

(j)
nn = 0

(11)199

200

where J is the number of elements joining each other at ∂Ω
(q)
int , and α(i)(j) denotes the201

relative orientation between the interface elements i and j. The convention for defining the202

positive sense of the rotations is illustrated in Figure 3.203

3 Solution via Physics-Informed Neural Networks204

The system of PDEs defined by Eq. (10) represents the mathematical model of the struc-205

ture. Unfortunately, analytical solutions can be hardly found unless specific and simplifying206

9



Figure 3: Adjacent plate/shell elements: convention for the relative rotation.

assumptions are introduced. Semi-analytical and numerical solution strategies are, in most207

cases, the only viable approach. Galerkin [31] and its modified version [35] are well-known208

examples of solution strategies belonging to the first class, while numerical strong-form solu-209

tions have been proposed in the literature using methods such as the Differential Quadrature210

Method (DQM) [36] and its generalized version (GQM) [37].211

An alternative and still relatively unexplored strategy relies on methods based on Artifi-212

cial Neural Networks (ANNs), see e.g [38, 39, 40, 41, 11, 42]. The advantages of adopting213

ANNs as ansatz of the solution are manifold. Firstly, the solution approximated by ANNs214

will inevitably inherit their generalization properties, which are known to be universal [43].215

Secondly, the absence of a dependency on a computational mesh makes the handling of216

complex geometries straightforward. Indeed, only a set of training points, provided they217

are appropriately sampled, is required for the definition of the computational domain.218

In the following section, Physics-Informed Neural Networks (PINNs) [11], which can be219

viewed as an ANN-based method for solving PDEs, are introduced for the solution of the220

differential problem presented earlier. Firstly, preliminary information regarding ANNs is221

presented. The underlying concept of PINNs is then illustrated along with relevant aspects222

regarding their implementation and training. With this purpose in mind, two different223

learning strategies are proposed. The first one, Gradient-based Learning (GBL), is classi-224

cally employed in ML; the second, Extreme Learning Machine (ELM), is a relatively new225

strategy offering huge potential to guarantee faster training yet accurate solutions.226

10



3.1 Preliminaries227

Artificial Neural Networks (ANNs) are mathematical models composed by simple compu-228

tational units, called neurons, which are interconnected each other in a layer-like structure229

[44], as depicted in Figure 4. In feedforward ANNs, information flows in one direction, i.e.

Figure 4: Neural Network: architecture, layers and neurons.

230

from the input layer to the output one. In this data stream, the input vector x undergoes a231

series of transformation, including multiplication by weighting factors, summation to given232

biases and generic nonlinear operators defined by the activation function of the neurons.233

Referring to an ANN with an arbitrary number of hidden layers L, the output vector u due234

to the input x can be defined as follows:235

u = Ch(L)
236

h(0) = x237

h(l) = σ(l)
(
W(l)h(l−1) + b(l)

)
for l = 1, 2, ..., L (12)238

239

where σ(l), b(l) and h(l) are the activation function, the vector of biases and the vector240

of outputs of the generic hidden layer l, respectively; the matrix W(l) defines the weights241

11



connecting the l-th hidden layer with the previous one, while C collects all the output242

weights, i.e. the ones between hidden layer L and the output one.243

The internal parameters of the neural network Θ are represented by the set of all weights244

and biases, i.e. Θ = {W(l), b(l), C, } (for l = 1, ..., L). Their tuning is conducted through245

a learning procedure wherein pairs of labeled data {xi,u
∗
i } are submitted to the network.246

Aim of the training is allowing the network to emulate these data and generalize to inputs247

not available during the training phase. In this regard, the training process can be seen248

as the solution of an optimization problem consisting in the minimization of a loss or cost249

function. This objective function is typically in the form of the mean squared error:250

Lu =

Nu∑
i=1

|ui − u∗
i |2

2Nu
(13)251

where | · | is the Euclidean norm, Nu is the total number of available labeled data, u∗
i is252

the target value for the i-th input data xi, while ui is the corresponding prediction of the253

ANN.254

Labeled samples are, in general, defined through numerical simulations and/or experiments,255

so data generation is usually a costly operation. Referring to the class of problems presented256

here, the available data can be in the form of displacements or deformation measurements257

from a limited number of points, such as in the case of strain gauges providing local defor-258

mations is few spots of the structure.259

Due to the inherent cost of data acquisition, ANNs are typically trained in a small data260

regime. This consideration explains why the occurrence of overfitting problems is a tangible261

risk, which is even more true if the available dataset is also affected by some degree of noise.262

Under these circumstances, the resulting ANN may have poor generalization performances,263

causing the corresponding solution to violate the underlying physics of the problem.264

In this context, PINNs represent a new class of ANNs that can be trained to inherently sat-265

isfy some known physical laws of the problem at hand [11] or a given mathematical model,266

thus enriching the information available from the training dataset. Collocation points are267

introduced for this scope.268

Referring to the set of PDEs introduced in the previous section, and considering a single-269

12



domain structure, the equations can be rephrased in more convenient way as:270 R (u,x) = 0 x ∈ Ω

B (u,x) = 0 x ∈ ∂Ω
(14)271

It is now useful to provide an interpretation of Eq. (14) under the perspective of the272

PINN approach; specifically, the components of the vector u = {u v w}T are the physical273

quantities to be learnt by the neural network, while the components of x = {x y}T are the274

input parameters, as depicted in Figure 4.275

The training process of PINNs is performed via definition of a physics-based loss function,276

where the information content of available data, defined in Eq. (13), is enriched with the277

underlying mathematical model sampled in correspondence of the collocation points:278

L = Lu + Lc (15)279

where the contribution associated with the physics/mathematical model Lc reads:280

Lc =

Nf∑
m=1

|Rm − 0|2

2Nf
+

Nb∑
n=1

|Bn − 0|2

2Nb
(16)281

where Nf and Nb are the number of collocation points inside the domain Ω and at the282

boundaries ∂Ω, respectively, while Rm = R (um,xm) and Bn = B (un,xn) are the vector283

of residuals. The differential nature of Lc implies the need for evaluating the derivatives of284

the network’s output with respect to its inputs. Algorithmic Differentiation is employed for285

this scope [4].286

The distinctive trait of PINNs is represented by the additional loss contribution Lc. This287

term provides a beneficial regularization effect on the training process by penalizing solu-288

tions not respectful of the specified physical laws or mathematical model. As a consequence,289

the training process becomes more effective: essentially, the neural network is restricted to290

seek a solution within the class of the physically admissible ones. This feature also means291

that the quality of the solution is drastically improved, even in those cases where the labeled292

data are scarce and noisy.293

Depending on the contributions retained in Eq. (15), different types of neural network are294

obtained according to the nomenclature presented in Table 1.295

13



Table 1: Neural Network nomenclature.

Neural Network Loss function

Black-box L = Lu

White-box L = Lc

Gray-box L = Lu + Lc

In particular, black-box ANNs are characterized by a training process that relies upon la-296

beled data only. These networks have been traditionally adopted for the construction of297

data-driven models of complex physical phenomena in absence of any laws or equations298

describing the process under analysis, see e.g. [9]. White-box ANNs are trained exclusively299

with collocation points, whose scope is enforcing the underlying governing equations at spe-300

cific locations of the domain. These networks can be seen as numerical solvers for partial301

differential equations [38], like the FEM or meshfree methods. Gray-box ANNs combine a302

learning process based on labeled data and collocation points, and represent a hybrid con-303

figuration of the two types of networks presented above. This architecture allows to fully304

exploit the available information for the problem at hand, i.e. raw data coming from local305

measurements – used only by black-box ANNs – and physical laws – upon which white-box306

ANNs fully rely.307

3.2 Training process308

The internal parameters of the neural networkΘ are learned by minimizing the cost function309

defined in Eq. (15). The approach developed in this paper relies upon the use of Extreme310

Learning Machine. For completeness, a gradient-based approach, as commonly done for311

PINN-based approaches, is developed as well and used for comparison purposes. The two312

strategies are presented here below.313

3.2.1 Gradient-Based Learning314

Gradient-Based Learning (GBL) algorithms are optimization techniques commonly adopted315

for training ANNs [45]. An iterative process is performed, where all internal parameters are316

14



recursively updated after evaluating the loss function L and its gradient ∇L. A sketch of317

this process is presented in Figure 5, where all the steps of the procedure are presented: (I)318

training data acquisition, (II) evaluation of the loss function through forward pass of the319

network and forward propagation of derivatives, (III) check of the tolerance as a stopping320

criterion, (IV) evaluation of the gradient of the loss function ∇L through back propagation321

of the derivatives, and (V) updating of the internal parameters.

Figure 5: Gradient-Based Learning: workflow.

322

In the present work, the Adaptive Moment Estimation (Adam) [46] is employed as the323

updating rule for the training process of the networks. After a preliminary comparison324

between the different GBL algorithms, Adam proved to guarantee an excellent tradeoff325

between convergence performance and robustness. According to this training algorithm the326

internal parameters are iteratively updated as follows:327

m(t) = β1m(t−1) + (1− β1)∇L(Θ(t))

ν(t) = β2ν(t−1) + (1− β2)∇2L(Θ(t))

m̂(t) =
m(t)

1− βt
1

, ν̂(t) =
ν(t)

1− βt
2

Θ(t+1) = θ(t) −
η√

ν̂(t) + ϵ
m̂(t)

(17)

where (t) represents the current iterative step. Based on preliminary studies, in this work328

the adjustable hyperparameters β1, β2 and ϵ are taken as 0.9, 0.999 and 10−8, respectively,329

with a learning rate of η = 0.001.330

GBL algorithms are considered the state-of-the-art techniques for training ANNs. However,331

the learning process can be lengthy and time-consuming for many reasons. Firstly, the high332

15



non-convexity of the minimization problem may cause the training process to stall in local333

minima and/or saddle points. To overcome this issue, repeated training procedures are gen-334

erally needed, with optimization runs to be performed by considering different initial points335

Θ(0). In addition, the hyperparameters – parameters to be set before the training process,336

such as the network architecture, tolerance values and learning rate – generally require a337

preliminary tuning via trial and error processes. It follows that several runs are needed to338

find the optimum set up for the network and its learning algorithm in order to maximize339

the learning performance. A final aspect regards the number of internal parameters to be340

learnt, which can be very large in the case of ANNs with deep architectures.341

For the reasons above, a learning algorithm called Extreme Learning Machine (ELM) is342

proposed as an alternative to GBL training.343

3.2.2 Extreme Learning Machine344

Extreme Learning Machine is a fast learning algorithm for training single hidden layer345

feedforward neural networks [23]. The main differences with GBL relies upon the limited346

set of internal parameters adjustable by the learning algorithm. The remaining ones are347

chosen randomly. Hence, the training process is carried out in a single step through the348

solution of a least-square problem. This approach allows the iterative process described by349

Figure 5 to be avoided, resulting in a drastic decrease of the time for training. In many350

cases, the time is several orders of magnitude smaller than for GBL-based algorithms.351

On the contrary, the main limitation of ELM is the constraint on the network architecture,352

which is restricted to be in the form of a single hidden layer configuration. It follows that353

deep ANNs, which are inherently associated with a higher level of abstraction, cannot be354

used in this framework. It is worth noting that the limitation on the network depth does not355

determine a reduction on the representation capability of the network. Indeed, the universal356

approximation theorem ensures that ”multilayer feedforward networks with as few as one357

hidden layer using arbitrary squashing functions are capable of approximating any Borel358

measurable function from one finite dimensional space to another to any desired degree of359

accuracy, provided sufficiently many hidden units are available” [43].360

By considering a single hidden layer architecture with a generic number of hidden neurons361

16



Nn, the output of the network is defined as:362

u = Cσ (Wx+ b) (18)363

where σ is the activation function adopted in the hidden layer, W ∈ RNn×2 and b ∈ RNn×1
364

collect the input weights and biases, while C = [c(u) c(v) c(w)]T ∈ R3×Nn is the matrix365

of output weights. In ELM only these parameters are trainable, while the other ones are366

chosen randomly and are kept fixed throughout the learning process.367

In the presence of labeled points {xi,u
∗
i }, the tuning process of the output weights is carried368

out so that the network predicts as accurately as possible the Nu available data. Using the369

network approximation of Eq. (18), this condition is expressed as:370 
ui = C1kσ (Wk1xi +Wk2yi + bk) = u∗i

vi = C2kσ (Wk1xi +Wk2yi + bk) = v∗i for i = 1, ..., Nu

wi = C3kσ (Wk1xi +Wk2yi + bk) = w∗
i

(19)371

where summation is implied over repeated indices.372

The conditions of Eq. (19) correspond to solving three independent linear algebraic prob-373

lems, one for each displacement component, in the form of:374

Hc(u) = t(u) Hc(v) = t(v) Hc(w) = t(w) (20)375

whereH ∈ RNu×Nn is the hidden layer matrix, whose generic element hik = σ (Wk1xi +Wk2yi + bk)376

represents the output of the k-th hidden neuron due to the i-th input data, c(u), c(v) and377

c(w) ∈ RNn×1 are the row vectors of the output weight matrix C, while t(u), t(v) and378

t(w) ∈ RNu×1 are the vectors collecting the target values u∗i , v
∗
i and w∗

i , respectively.379

In typical Machine Learning applications, the number of hidden neurons is taken smaller380

or equal to the number of training data, i.e. Nn ≤ Nu. Therefore, the solutions of Eq. (20)381

can be found in a least-square sense through pseudoinversion of the coefficient matrix H,382

i.e.:383

c(s) = H†t(s) for s = {u, v, w} (21)384

where H† ∈ RNn×Nu is the Moore-Penrose generalized inverse of H.385

Considering a PINN where the training dataset is integrated with a number of collocation386

17



points, the output weights are trained to satisfy also Eq. (14) along with Eq. (19). Observing387

that the system of PDEs decribed by Eq. (14) is fully coupled in the three displacement388

components, the set of algebraic equations is then obtained in the form of:389

Lc = t (22)390

where c = {c(u) c(v) c(w)}T ∈ R3Nn×1 is a global vector of unknowns collecting all the391

output weights of the network, while L = [Lu Lc]
T

∈ R3(Nu+Nf+Nb)×3Nn and t = {tu tc}
T

∈392

R3(Nu+Nf+Nb)×1 are the coefficient matrix and vector of targets, respectively, and are as-393

sembled by substituting the network approximation of Eq. (18) in the conditions given by394

Eqs. (14) and (19).395

The data-driven part of the system of Eq. (22) is defined as:396

Lu =


hik 0ik 0ik

0ik hik 0ik

0ik 0ik hik

 and tu =


u∗i

v∗i

w∗
i

 for
i = 1, ..., Nu

k = 1, ..., Nn

(23)397

where Lu ∈ R3Nu×3Nn is a block diagonal matrix obtained from the hidden layer matrix398

evaluated at the points where labeled data are available, while tu ∈ R3Nu×1 collects all the399

corresponding target values.400

The physics-driven part of Eq. (22) is given by:401

Lc =
(
K− β2ω

2M+ β3λG
)

and tc = −β1f (24)402

where K, M, G ∈ R3(Nf+Nb)×3Nn and f ∈ R3(Nf+Nb)×1, numerically interpreted as the403

stiffness, mass and geometric stiffness matrices and vector of external loads, respectively,404

are assembled as:405

K =

K(hmk)

B̃(hnk)

 M =

M(hmk)

0nk


G =

G(hmk)

0nk

 f =

q(xm)

g(xn)

 with {m,n, k} = 1, ..., {Nf , Nb, Nn}

(25)406

with g(x) specifying nonhomogenous boundary conditions such that B(u,x) = B̃(u,x)− g(x).407

The training process of PINNs with ELM is carried out as shown in Figure 6, where the408

18



Figure 6: Extreme Learning Machine: workflow.

dependency over the parameter βi is illustrated.409

Specifically, the output weights are found by computing the pseudoinverse of the coefficient410

matrix L in the case of a static problem (βi = δi1), i.e.:411

For βi = δi1 : Lc = t ⇒ c = L†t (26)412

where Moore-Penrose generalized inverse L† is computed via Singular Value Decomposition413

(SVD).414

In the other cases (βi = δi2 and βi = δi3), a generalized eigenvalue problem is obtained,415

where only collocation points are considered. It follows that Eq. (22) reduces to:416

Lcc = tc (27)417

As the linear algebraic system defined for training is, in general, rectangular, the use of a418

preconditioner P is required to transform the problem into a form that is more suitable for419

the numerical solution. The preconditioning matrix is based on the pseudoinverse of the420

stiffness matrix, i.e. P = K†, which premultiplies Eq. (27) leading to:421

For βi = δi2 :

For βi = δi3 :

Kc = ω2Mc

Kc = −λGc

⇒

⇒

(K†K)c = ω2(K†M)c

(K†K)c = −λ(K†G)c
(28)422

where K† can be interpreted as a transformation matrix projecting the rectangular problem423

defined by Eq. (27) from the space R3(Nf+Nb)×3Nn to the space R3Nn×3Nn .424

The rightmost equations of Eq. (28) are solved as a standard generalized eigenvalue prob-425

lem via Schur decomposition. The eigenvalues correspond to the natural frequencies and426

buckling multipliers, and eigenvectors are the mode shapes defined by the trained output427

weights.428

19



4 Parameter identification via Physics-Informed Neural Net-429

works and Extreme Learning Machine430

The application of PINNs for parameter discovery of PDEs has been discussed in previous431

efforts in the literature. For instance, PINNs have been applied for learning unknown432

model parameters of the Navier–Stokes and Korteweg–de Vries equations in Ref. [11]. An433

application of a similar framework to the parameter identification in solid mechanic problems434

is found in Ref. [13]. In the above mentioned works, the inverse problem with PINNs is435

discussed in the context of GBL approaches; on the contrary, this work addresses the same436

problem by referring to ELM.437

When dealing with the inverse problem, one is interested in identifying a set of unknown438

parameters Λ of a mathematical model starting from a set of observed data {xi,u
∗
i }. The439

model is then expressed as:440 R (Λ,u,x) = 0 x ∈ Ω

B (Λ,u,x) = 0 x ∈ ∂Ω
(29)

The inverse problem is solved by training a PINN, where the set of parameters to be learnt441

includes now the output weights of the network C as well as the model parameters to be442

identified Λ. It follows that the global vector of unknowns is defined as:443

c = {c(u) c(v) c(w) Λ}T ∈ R(3Nn+NΛ)×1 (30)

where NΛ is the number of unknown model parameters. The resulting least-square problem444

Lc = t is now nonlinear inasmuch L = L(Λ), as seen from Eq. (29).445

The solution is sought using an iterative least-square approach [24], where the vector of446

unknowns is updated according to:447

c(t+1) = c(t) +∆c (31)

with ∆c defined from the solution of the linear least-square problem:448

J(c(t))∆c = r(c(t)) (32)

where r = Lc − t and J = ∂r
∂c are the vector of residuals and the Jacobian matrix, re-449

spectively. Starting from an initial guess c(0), the residual and the Jacobian are evaluated450

20



at each iteration, the latter by making use of automatic differentiation. The incremental451

vector ∆c is then obtained by solution of Eq. (32) as ∆c = J†r.452

The convergence of the procedure is checked by referring to two criteria: the first one refers453

to the current loss function, i.e. L(t) < tol; the second one relies upon the difference be-454

tween the loss function at two consecutive iterations, i.e. |L(t)−L(t−1)| < tol. The iterative455

process is terminated when one of the two criteria is met.456

5 Results457

In this section, the proposed PINNs-based framework is applied for the solution and iden-458

tification of different problems in linear elasticity involving plate- and shell-like structures.459

The section is organized as follows: in the first part, a validation is presented against ref-460

erence solutions to demonstrate the effectiveness of PINNs to solve PDEs and to check the461

correct implementation of the method; in the second part, a series of parametric studies462

is presented to gather insight into the hyperparameters regulating the learning process of463

PINNs; the last part is devoted to the application of the method to relatively complex prob-464

lems, such as those arising from the analysis of real-life engineering structures. Examples465

are presented involving general geometries, arbitrary boundary conditions and interactions466

between plate and shell subdomains.467

5.1 Validation468

A preliminary validation is conducted by considering the analysis of symmetrically layered469

specially orthotropic plates, subjected to simply-supported boundary conditions. Thus, the470

structure under investigation has a simple geometry and is believed of interest inasmuch471

exact solutions are available for this case. The governing equation for this problem reads472

[31]:473

R =D11w,xxxx + 2 (D12 + 2D66)w,xxyy +D22w,yyyy + β1nz + β2

[
I0ẅ − I2

(
ẅ,xx + ẅ,yy

)]
+474

+ β3

(
Nxxw,xx + 2Nxyw,xy +Nyyw,yy

)
= 0 in Ω (33)475476

21



which can be understood as a special case of Eq. (1). The simply-supported boundary477

conditions are:478

B =

wn = 0

Mnn = 0
in ∂Ω (34)479

480

The exact solutions for bending, free vibration and buckling are summarized in the Ap-481

pendix.482

For validation purposes, a square plate is considered with nondimensional thickness h/a = 1/500.483

The material elastic coefficients are E11/E22 = 16.67, G12/E22 = 0.56, ν12 = 0.32, while the484

layup is [90/0]s.485

A single hidden layer architecture with 100 hidden neurons is considered. The learning al-486

gorithm is the ELM and the hyperbolic tangent is adopted as activation function in all the487

hidden units. The input weights and biases are chosen randomly from a uniform Gaussian488

distribution in the range (W,b) ∈ [−1, 1]. The set of training data is constituted by a489

uniform grid of Nc = 15 × 15 collocation points, expressing the requirements of Eqs. (33)490

and (34). Therefore, the PINN is used here as a white-box. A total of 400 testing points,491

distributed randomly in the domain, are used for assessing the accuracy of the predicted492

solution. All data points are normalized according to the transformation ξ = 2x/a and493

η = 2y/b, with x ∈
[
−a/2, a/2

]
and y ∈

[
−b/2, b/2

]
. Two performance parameters are494

used for verifying the quality of the results, i.e. the L2-norm of the error distribution for495

field quantities (displacements and stress distributions), and the relative error percentage496

E% for scalar ones (e.g. natural frequencies, buckling multipliers, local displacements).497

These two metrics are defined as:498

L2 [Φ] =

√√√√ 400∑
k=1

(
Φk − Φref

k

Φref
max

)2

and E% [ϕ] =

∣∣∣∣∣ϕ− ϕref

ϕref

∣∣∣∣∣× 100 (35)499

where Φ and ϕ are two generic field and scalar quantities predicted by the network, respec-500

tively, while Φref and ϕref are the corresponding reference solutions.501

The solution for the bending problem is illustrated in Figure 7, where the normalized de-502

flection shape w = w/wref
max is reported along with the error distribution |w − wref |/wref

max.503

Similar plots are reported for the slope w,x and bending moment resultant Mxx. The com-504

parison against the exact solution (see Appendix, Eq. (58)) reveals the excellent agreement505

22



between the present solution and the analytical one.

Figure 7: Results and errors against exact solution: bending problem.

506

Looking at the deflection field w, the maximum error is achieved at the edges, where the507

displacement gradients are the highest. The same pattern is observed for the rotation and508

the bending moment. This behaviour is explained by observing that the deflection w is the509

only quantity directly learned by the network. As a consequence, the errors are amplified510

when postprocessing by taking the derivative of w.511

A summary of the L2-norm and the percent errors is provided in Table 2, where the excel-512

lent agreement between predicted results and reference solutions is further demonstrated.

Table 2: L2-norms and percent error of the solution predicted by PINN – bending analysis.

L2 E%

Bending

w 0.0072 0.0103

w,x 0.0307 0.0093

Mxx 0.0759 0.0070

513

Concerning the free vibration and buckling problems, the first three eigenmodes are pre-514

23



sented in Figure 8 along with the corresponding error distributions.

(a) (b)

Figure 8: First three modes and error against exact solution for: (a) free vibration problem,

(b) buckling problem.

515

Even in this case, the discrepancies between the predicted solutions and the exact ones are516

very small, both in terms of mode patterns, i.e. L2 [wmn], as well as in terms of frequencies517

and critical loads, i.e. E% [ωmn] and E% [λmn], see Table 3.518

Regarding the training time, few fractions of seconds were required for completing the519

training process for the three problems above. In this regard, standard GBL approaches520

would require much larger times – of the order of minutes, see [16] – for solving analogous521

problems. Hence, the effectiveness of the ELM-based approach can be exploited to perform522

parametric studies, which are useful for understanding the main features of PINNs, as well523

as finding the network architecture for optimizing the training process. These aspects are524

presented in the following section, where parametric studies are presented on the network525

hyperparameters.526

24



Table 3: L2-norms and percent error of the solution predicted by PINN – free vibration and

buckling analysis.

L2 E%

Free vibration

1st mode 0.0081 0.0063

2nd mode 0.0664 0.0191

3rd mode 0.4069 0.0215

Buckling

1st mode 0.0055 0.0039

2nd mode 0.0222 0.0015

3rd mode 0.4755 0.3865

5.2 Parametric study on hyperparameters527

The choice of the hyperparameters is a crucial aspect in the network set up, although it528

can be a non-trivial task and trial and error procedures are often necessary. The study529

conducted next refers to the same test case presented in the previous section. Starting from530

the same baseline network architecture presented earlier, the hyperparameters are modified,531

and their influence on the network predictions and learning performance is illustrated.532

533

Number of neurons and collocation points534

In ELM, the number of neurons Nn and collocation points Nc define the size of the least-535

square problem – number of columns and rows of the matrix of coefficients, respectively536

– to be solved for finding the output weights of the network, see Eq. (22). The influence537

of these two hyperparameters is investigated here for the case of bending, free vibration538

and buckling problems. With this purpose, the contour plots of the L2-norm of the error539

distributions in logarithmic scale are reported for the deflected shape (static analysis) and540

the eigenmodes (free vibrations and buckling analysis) in Figure 9. The number of neurons541

and collocation points are taken in the range Nn ∈ [50, 200] and Nc ∈ [36, 900], respectively.542

543

For the bending problem, a progressive reduction of the error can be noted for an increasing544

25



(a) (b) (c)

Figure 9: Influence of number of neurons Nn and collocation points Nc on log[L2] for: (a)

static deflection, (b) first vibration mode, (c) first buckling mode.

number of neurons in Figure 9(a); on the contrary, the number of collocation points has a545

slight influence on the solution once a certain threshold, approximatelyNc = 100, is reached.546

Even for free vibration and buckling problems, the solution is not particularly sensitive to547

the number of collocations points, as revealed by Figures 9(b) and 9(c). As opposed to the548

static case, the solution improves if the number of neurons is increased up to the dashed549

lines of Figures 9(b) and 9(c); then, the solution is seen to worsen if this number is further550

increased. This behavior stems from the poor conditioning of the matrices appearing in551

Eq. (28), which are typically not full-rank due to the random selection of the input weights552

and biases, as well as for the presence of rows of zeros, see Eq. (25). The ill-conditioning553

becomes more severe when the number of neurons is increased, as seen in Figure 10, where554

the condition number k(·) = |(·)||(·)−1| of the stiffness matrix K is reported in logarithmic555

scale for different combinations of Nn and Nc.556

Therefore, it is concluded that the number of neurons has to be bounded when dealing with557

eigenvalue problems to prevent numerical issues. On the contrary, the linear static solution558

displays much more robustness, which is ascribed to the pseudoinversion algorithm based559

on a SVD approach.560

561

Convergence of the solution562

The number of computational units Nn can be interpreted as the number of shape functions563

used by the white-box neural network to approximate the solution of the PDEs in Eqs. (33)564

26



Figure 10: Condition number of the stiffness matrix for different number of neurons Nn and

collocation points Nc.

and (34), i.e.:565

w (ξ, η) =

Nn∑
k=1

ckhk (ξ, η) with hk (ξ, η) = σ (Wk1ξ +Wk2η + bk) (36)

where hk (ξ, η) is the shape function associated with the k-th neuron in the hidden layer,566

σ is the activation function, bk is the internal bias, Wk1 and Wk2 are the input weights567

connecting the neuron with the inputs (ξ, η), while ck is the output weight acting as the568

unknown amplitude of the shape function. Therefore, it is possible to study the conver-569

gence of the PINN solution by quantifying the error obtained using different numbers of570

neurons. In particular, the errors with respect to the exact solutions are evaluated for the571

bending deflection and its derivatives, vibration frequencies and critical loads, as presented572

in Figure 11.573

As seen, the convergence is not uniform, but is characterized by a certain degree of oscilla-574

tion, both for static and eigenvalue analyses. It is interesting to observe that the derivatives575

may sometimes be locally better approximated than the unknown function itself, see Fig-576

ure 11(a). In addition, lower frequencies and buckling multipliers can in some cases be577

affected by a larger error with respect to higher order ones, see Figures 11(b) to 11(c).578

579

Distribution of collocation points580

Another important aspect in the application of PINNs regards how training points are dis-581

tributed within the computational domain.582

The results of Figure 12 illustrate a convergence study for increasing number of neurons583

27



(a) (b) (c)

Figure 11: Convergence study for: (a) bending, (b) free vibration, (c) buckling problems.

and considering three different distributions of collocation points, i.e. random, uniform584

and Chebyshev distributions. The study is presented for static, free vibration and buckling585

problems. The L2-norm of the errors is referred to the static deflection in the first case, and586

the first eigenmodes in the second and third cases.

(a) (b) (c)

Figure 12: Effect of collocation point distributions on the L2-norm of the error for (a) static

deflection, (b) first vibration mode, (c) first buckling mode.

587

For the bending problem, see Figure 12(a), one can see that random distributions lead588

to overall better results with respect to the ones obtained with organized grids. At the589

same time, random distributions are associated with largest sensitivity to any change in the590

28



network architecture, as revealed by increasingly pronounced oscillations. These same con-591

siderations hold true for free vibration and buckling problems, as depicted in Figures 12(b)592

and 12(c). However, a detrimental effect is observed on the solution, irrespective of the593

distribution considered, when the neurons are increased beyond a certain value. Poor con-594

ditioning of the matrices occurs especially for random distributions, while numerical issues595

are milder in the case of organized grids. This behaviour is further clarified by the plots of596

Figure 13, where the condition number and the rank of the stiffness matrix K are reported597

for increasing number of neurons. As seen, the adoption of Chebyshev or uniform grids598

tends to mitigate the conditioning issues, leading to a solution that is stable even for large599

numbers of neurons.600

601

Figure 13: Effect of collocation point distributions on the condition number and rank of

the stiffness matrix.

602

Activation function and initialization of input weights and biases603

The activation function and the initialization of the input weights and biases affect the604

expression of the shape functions, as revealed by Eq. (36). An investigation over their605

role is then conducted by considering two activation functions typically used in neural606

networks: hyperbolic tangent, σ = tanh(z), and sigmoid logistic function, σ = ez

1+ez ; a607

total of 100 different random initializations of internal weights and biases in the range608

(Wk1,Wk2, bk) ∈ [−1, 1] are considered.609

The distribution of the errors is presented in Figure 14 for the first vibration and buckling610

29



eigenmodes, as the effect of the choice of activation functions and random initializations is611

more pronounced for these types of analysis.

(a) (b)

Figure 14: Probability distribution of the L2-norm of the errors for different activation

functions: (a) first vibration mode, (b) first buckling mode.

612

From Figure 14 it can be seen that the the hyperbolic tangent guarantees the smallest aver-613

age values of the L2-norm of the errors. With this activation function, the solution can be614

represented very accurately with error norms L2 of the order of 10−3− 10−2, irrespective of615

the initialization adopted. On the other hand, a larger variability in results is observed for616

the sigmoid, which is not capable of capturing the exact solution for some initializations.617

The motivations of this behavior are ascribable to numerical issues affecting the eigenvalue618

solver. The distribution of condition numbers are reported in Figure 15 for the different619

activation functions. It is clear that worst conditioning is observed for the sigmoid function620

compared to the hyperbolic tangent one.621

From the parametric studies above, it is concluded that the hyperbolic tangent guarantees,622

for the problems at hand, smaller errors and less sensitivity to the parameter’s initialization.623

For this reason, this activation function is retained in the following studies.624

5.3 Static analysis of a cylindrical panel with cutout625

Goal of this section is presenting the potential of PINNs as a mean for solving elasticity626

problems characterized by more complex configurations. In addition, insights are provided627

30



Figure 15: Probability distribution of the condition number of the stiffness matrix consid-

ering different activation functions.

regarding the features of the method for different network configurations. Referring to the628

nomenclature of Table 1, black-, white- and gray-box neural networks are adopted and com-629

pared each other.630

The structure under investigation is an isotropic cylindrical shell with a circular cutout at631

its center, a sketch of which is presented in Figure 16.

Figure 16: Cylindrical panel with cutout: geometry and loading conditions.

632

The planar dimensions are 200 × 100 mm2, the long side being aligned with the axial di-633

rection, and the thickness is t = 1 mm. The radius of curvature is R = 250 mm, while the634

circular cutout has radius 25 mm. The elastic properties of the material are E = 70 GPa635

and ν = 0.3. The shell is simply-supported and is loaded with two in-plane uniform tensile636

loads N̂xx = 100 N/mm acting along the short edges. Due to the double symmetry of the637

31



problem, only one quarter of the structure is analyzed. The FE model of the structure is638

realized using Abaqus S4R shell elements; the mesh is presented in Figure 17.

Figure 17: Cylindrical panel with cutout: Finite Element model.

639

FE simulations are conducted with the twofold aim of obtaining reference solutions for val-640

idation purposes, as well as for generating the training dataset to be used in the context of641

black- and gray-box approaches.642

Four different neural networks, hereinafter referred to as NET1, NET2, NET3 and NET4,643

are considered for solving the problem. Based on the parametric studies presented earlier,644

the following setup of hyperparameters will be adopted for the remaining part of this work,645

unless otherwise specified: uniform distributions are used for collocation points and the646

hyperbolic tangent is adopted as the activation function for the hidden units. The four647

networks are trained with different strategies, while sharing the same shallow architecture648

with two inputs, x and y, one hidden layer and three outputs, u, v and w. An overview649

of the distribution and type of training data used for the different networks is provided in650

Figure 18 and discussed here below.651

652

NET1653

The first neural network, NET1, is trained in a completely data-driven manner, i.e. no654

information is provided on the physics of the problem. For the example at hand, data are655

generated via FE analysis. Displacements are available from the FE model in correspon-656

dence of the points reported in Figure 18(a), and represent the available dataset.657

The network has Nn = 400 hidden neurons and the training process is carried out using658

a GBL approach. A total of Nu = 947 labeled samples {xi,u
∗
i } are considered, where659

32



Figure 18: Cylindrical panel with cutout: training data distribution for (a) NET1, (b)

NET2, (c) NET3, (d) NET4.

xi = {xi, yi} and u∗
i = {u∗i , v∗i , w∗

i }. The resulting loss function is defined as:660

LNET1 =

Nu∑
i=1

|ui − u∗
i |2

2Nu
(37)

where ui = {ui, vi, wi} represents the output prediction of the network for the input data xi.661

662

NET2663

The second neural network NET2 has the same architecture of NET1, but is trained using664

a full physics-informed approach. So, it is denoted as a white-box network. The training665

process is carried out using ELM with a total of Nc = 900 collocation data distributed as666

per Figure 18(b).667

The loss function is defined as:668

LNET2 =

Nf∑
m=1

|Rm|2

2Nf
+

Nb∑
n=1

|Bn|2

2Nb
(38)

where R is the residual function expressing the equilibrium unbalance in the domain, while669

B refers to the boundaries; the summatories in Eq. (38) are taken over the collocation points670

inside the domain and along its border, denoted as Nf and Nb, respectively.671

672

33



NET3673

The third neural relies upon a gray-box approach, where labeled samples are integrated674

with the mathematical model of the structure. In this regards, NET3 displays the same675

architecture of NET2, but the set of training data is enriched by additional Nu = 17 labeled676

points distributed as shown in Figure 18(c). Hence, the resulting loss function is composed677

of two parts, expressing the physics-informed and data-driven parts:678

LNET3 =

Nf∑
m=1

|Rm|2

2Nf
+

Nb∑
n=1

|Bn|2

2Nb
+

Nu∑
i=1

|ui − u∗
i |2

2Nu
(39)

The hybrid approach of NET3 provides an interesting example of the potential offered by679

PINNs, where the network combines both available information of the solution and physics680

knowledge coming from mathematical models.681

682

NET4683

Similarly to NET2, the fourth network configuration falls in the class of white-box ANNs.684

NET4 is proposed as a viable alternative for improving the representation capabilities of685

NET2 without increasing the number of neurons and, in turn, the training time for weight686

tuning.687

The approach implemented in NET4 consists in distributing the available neurons in multi-688

ple subnetworks, each one responsible for approximating the solution in different subportions689

of the domain.690

The two subnetworks composing NET4 are characterized by the same architecture of NET2,691

but with reduced number of neurons, i.e. N
(1)
n = 300 and N

(2)
n = 100. Additional collo-692

cations point are introduced at the interface between the two subdomains, as shown in693

Figure 18(d).694

The loss function is defined as:695

LNET4 =

N
(1)
f∑

m=1

|R(1)
m |2

2N
(1)
f

+

N
(1)
b∑

n=1

|B(1)
n |2

2N
(1)
b

+

N
(2)
f∑

m=1

|R(2)
m |2

2N
(2)
f

+

N
(2)
b∑

n=1

|B(2)
n |2

2N
(2)
b

+

Nint∑
j=1

|Ij |2

2Nint
(40)

where Nint is the number of the interface collocation points and I is the residual referred696

to the interface conditions between the subdomains, which is defined as I = [Icon Iequ]
T
,697

34



where:698

Icon =



u(1) − u(2) = 0

v(1) − v(2) = 0

w(1) − w(2) = 0

w
(1)
,x − w

(2)
,x = 0

and Iequ =



N
(1)
xx −N

(2)
xx = 0

N
(1)
xy −N

(2)
xy = 0

V
(1)
x − V

(2)
x = 0

M
(1)
xx −M

(2)
xx = 0

in ∂Ωint (41)

699

Comparison between different architectures700

The results are summarized in Figures 19 to 21, where the contours are presented for the701

static deflection, the membrane resultant Nxx and the bending moment per unit length702

Mxx, respectively. In addition, an overview of the errors is provided in Table 4 in terms of703

L2-norms of the errors.

Figure 19: Cylindrical panel with cutout: static deflection: (a) FE, (b) NET1, (c) NET2,

(d) NET3, (e) NET4.

704

The solutions obtained with NET1 are shown in Figures 19(b)-21(b). These solutions re-705

quired approximately 40000 GBL iterations leading to a final loss function of the order of706

LNET1 = 10−4 .707

The comparison against FE solutions reveals excellent agreement in terms of static deflec-708

tion, while noticeable discrepancies can be noted for the membrane and bending resultants.709

The L2 errors, available in Table 4, are of the order of 10−1 for the displacements, but710

the magnitude increases for the stress-related quantities Nxx and Mxx. This response is711

motivated by the full data-driven strategy used for training NET1. Indeed, NET1, due to712

its black-box nature, learns blindly the labeled data. The displacement field is predicted713

35



Figure 20: Cylindrical panel with cutout: distribution of the internal force resultant Nxx:

(a) FE, (b) NET1, (c) NET2, (d) NET3, (e) NET4.

Figure 21: Cylindrical panel with cutout: distribution of the bending moment Mxx: (a)

FE, (b) NET1, (c) NET2, (d) NET3, (e) NET4.

correctly, but there is clearly no guarantee that derivative-related quantities, such as de-714

formations and stresses, are also captured appropriately. While improvements could be715

achieved by increasing the amount of labeled data, this approach would be impractical, as716

data availability is often scarce.717

The solution predicted by NET2 is depicted in Figures 19(c)-21(c). As seen from the718

contours, NET2 provides an accurate estimation of the membrane response, but a poor ap-719

proximation for the bending part of the solution. The magnitude of the errors is available720

in Table 4, where bending-related quantities, w and Mxx, are seen to be the ones exhibiting721

the largest values.722

These results are explained by the limited representation capabilities of NET2. Indeed,723

this network architecture has a single hidden layer restricted to Nn = 400 neurons. As a724

36



Table 4: Comparison of different network architectures and training algorithms

(tNET2=0.9 s).

Nn N L2 t/tNET2

Nu Nc u v w Nxx Mxx

Architecture

NET1 (GBL) 400 965 0 0.1162 0.1691 0.7287 8.596 3.9646 639.5128

NET2 (ELM) 400 0 900 1.9963 6.1111 11.6284 0.7905 10.3400 1.0000

NET3 (ELM) 400 17 900 0.0689 0.6059 0.2153 0.4780 1.5347 1.0714

NET4 (ELM) 300+100 0 937 0.7145 1.3325 2.6796 0.3503 2.3969 0.9721

consequence, the network tends to minimize the error of the residual associated with the725

dominant part of the response, which is the membrane one, while reducing its effectiveness726

in minimizing the flexural one.727

A significant improvement is noted for NET3, whose outcomes are presented in Figures 19(d)-728

21(d). In this case, the contours are very close to the ones displayed by the FE analysis729

both for the membrane and bending responses. The reduced magnitude of the predicted730

displacement and stress fields are clearly noted by inspection of Table 4.731

NET3 is an example of grey-box ANN, thus a comparison against the black- and white-box732

counterparts, NET1 and NET2, is of particular interest. The first three rows of Table 4733

can be analyzed for this scope. Specifically, a drastic reduction of the errors can be seen734

when passing from NET1 to NET3, despite the same number of neurons is considered. The735

mathematical model embedded into NET3 allows fewer sampled data Nu to obtain accu-736

rate results. By reversing the perspective, the comparison against NET2 reveals that the737

white-box approach can be greatly improved providing as few as 17 labeled points, as done738

in NET3. The synergy between model information and sampled data is clearly established739

by these results.740

The predictions due to NET4 are available in Figures 19(e)-21(e). This network architec-741

ture aims at improving the solution’s quality of NET2 by dividing the domain into smaller742

regions. The errors in Table 4 reveal noticeable improvements with respect to the single-743

domain counterpart, i.e. NET2, demonstrating the improvements due to a split of the744

37



domain into smaller regions. It is worth highlighting that these improvements are obtained745

using the same number of neurons Nn. The approach of NET4 offers a potential as a mean746

for solving elasticity problems, where the domain can be inherently understood as an as-747

sembly of subportions. This aspect is further investigated in the next section.748

A final consideration regards the time for training required by the four networks presented749

earlier. In particular, the overall learning time is reported in the last column of Table 4,750

where the computational time is normalized with respect to the time tNET2, which is the751

time to train NET2. The results clearly highlight the speedup due to ELM with respect to752

the GBL method. The three ELM-based networks, NET2 to NET4, display similar train-753

ing times, with slight differences ascribable to the dimension and sparsity patterns of the754

coefficient matrix L, as illustrated in Figure 22. In particular, the subdomain approach of755

NET4 is responsible for a larger degree of sparsity, which is indeed associated with a faster756

solution of the least-square problem.

Figure 22: Distribution of the coefficient matrix L for different networks architectures.

757

5.4 Free vibrations of a stiffened panel758

As shown in the previous section, the adoption of multiple subnetworks provides an effective759

mean for improving the representation capabilities of the network. To further demonstrate760

the potential of this strategy, the analysis of a stiffened panel, a configuration commonly761

38



used in aerospace load-bearing components, is presented here.762

The structure is characterized by planar dimensions of 100 × 100 mm2, radius of curvature763

R = 500 mm and a single blade stiffener with height h=10 mm. Three subdomain are764

considered for representing the two portions of skin and the stringer. A sketch of the765

structure is presented in Figure 23, where the local reference systems are reported as well.

Figure 23: Stiffened panel geometry and local reference systems.

766

The structure is made of composite material, whose mechanical properties are E11 = 150767

GPa, E22 = 9 GPa, G12 = 5 GPa, ν12 = 0.32 and ρ = 1500 kg/m3. The skin has variable768

stiffness layup
[
90 +T(1)/T(1)

]
s
in the subdomain x(1) ∈

[
−a/2, a/2

]
, y(1) ∈

[
−b/4, a/4

]
,769

and
[
90 +T(3)/T(3)

]
s
in the subdomain x(3) ∈

[
−a/2, a/2

]
, y(3) ∈

[
−b/4, a/4

]
, where:770

T(1) =

10
0

 and T(3) =

 0

10

 (42)

The stringer is layered with a straight-fiber, cross-ply layup [0/90]s. The ply thickness is771

equal to 1.25 mm for all the laminates composing the structure.772

Owing to the three-subdomain representation, three networks are considered for the stringer773

domain and the two skin portions. The three networks share the same shallow architecture774

with 2, 120 and 3 neurons in the input, hidden, and output layers, respectively. The775

learning algorithm adopted is ELM due to its superior performance in terms of time, as776

demonstrated in the previous section. Training is performed pursuing a white-box approach,777

where a total of Nc = 1200 collocation points uniformly distributed in the computational778

domain are considered. The governing equations for the three subdomains are expressed by779

39



Eq. (7), the boundary conditions are summarized in Figure 24, while the interface conditions780

become:781

Icon =



u(1) − u(3) = 0, u(1) − u(2) = 0

v(1) − v(3) = 0, v(1) + w(2) = 0

w(1) − w(3) = 0, w(1) − v(2) = 0

w
(1)
,y − w

(3)
,y = 0, w

(1)
,y − w

(2)
,y = 0

,Iequ =



N
(1)
yy + V

(2)
y −N

(3)
yy = 0

N
(1)
xy −N

(2)
xy −N

(3)
xy = 0

V
(1)
y −N

(2)
yy − V

(3)
y = 0

M
(1)
yy −M

(2)
yy −M

(3)
yy = 0

in ∂Ωint

(43)

The resulting algebraic problem to be solved for training the PINN is in the form of a782

rectangular generalized eigenvalue problem, Kc = ω2Mc, where ω represents the natural783

frequency, and the matrices K and M are obtained via substitution of the network approx-784

imation into the governing equations, boundary and interface conditions. The workflow for785

training, consisting of a two-step procedure, is presented in Figure 6. Firstly, the pseudoin-786

verse of the stiffness matrix is computed, then the resulting eigenvalue problem is solved.

Figure 24: Stiffened panel - Boundary conditions: (a) out-of-plane, (b) in-plane.

787

The first 10 natural frequencies are reported in Table 5 along with the ones predicted using788

the FE method. Good agreement is obtained for the frequencies, with maximum percent789

errors below 1.4%.790

By inspection of Table 5, one can note the non–monotone convergence of the PINN solutions,791

consistently with the findings of the previous sections. The modal shapes are presented in792

Figures 25 and 26. They include local skin modes – mode 4, 5, 7, 9 –, stringer modes –793

modes 8 and 10 – and coupled skin/stringer modes – modes 1, 2, 3, 6. All of them are794

predicted with an excellent degree of accuracy, with PINNs and FE results displaying sim-795

40



Table 5: First ten natural frequencies (Hz) predicted by PINN and FEM.

Modes

1 2 3 4 5 6 7 8 9 10

PINN 1014.8 1387.0 1880.0 2380.4 2447.5 2486.2 2661.6 2865.9 2932.5 3073.8

FEM 1000.6 1371.7 1861.3 2385.0 2450.7 2452.6 2653.8 2875.2 2936.3 3077.4

E% -1.4174 -1.1133 -1.0066 0.1930 0.1304 -1.3695 -0.2927 0.3242 0.1300 0.1192

ilar patterns. Further evidence is provided by the contour plot of the logarithmic error of796

Figure 27 with maximum values of the order of 10−1.

Figure 25: First 10 modal shapes of a stiffened composite VS shell predicted by PINN.

Figure 26: First 10 modal shapes of a stiffened composite VS shell predicted by FEM.

797

As observed by the contours, larger errors are obtained for smaller halfwave lengths, as in798

the case of modes 6, 7 and 9. On the contrary, patterns with larger halfwave lengths are799

better approximated – see the single-halfwave configurations of modes 1 and 8 – and the800

solution experiences smaller errors, as low as 10−3 − 10−2.801

41



Figure 27: Error distribution for the first 10 modal shapes of a stiffened composite VS shell

predicted by PINN.

5.5 Model parameter identification from a static response802

In this final section, PINNs and ELM are applied for solving an inverse problem consisting in803

the identification of a variable stiffness plate layup to meet a known target static response.804

The plate’s geometry is defined by the nondimensional parameters a/b = 1 and a/h = 250,805

while its elastic properties are the ones reported in Section 5.1. A sinusoidally distributed806

pressure is considered, while the edges of the plate are fully clamped.807

The stacking sequence to be identified consists of a four-ply, symmetric, variable-stiffness808

layup
[
T(1) /T(2)

]
s
where the matrices defining the layup are:809

T(1) =
[
+28.51,+44.17,+33.34

]
and T(2) =

[
−32.13,−45.86,−29.82

]
(44)

According to Eq. (44), the fibers are allowed to vary along the x direction with a parabolic810

distribution defined on the basis of Eq. (6).811

The normalized static response of the plate {xi,u
∗
i } is available in Nu = 2500 points,812

randomly distributed across the domain. These labeled data were generated via finite813

element analysis.814

The identification process is performed using a single-hidden layer PINN with 1000 hidden815

neurons. Training is carried out by considering the loss function as per Eq. (15), where a816

uniform grid of Nc = 20 × 20 collocation points is used along with the Nu labeled points.817

The available physics-based information, which is imposed at collocation points, consists818

of the governing equations of Eq. (29) and the fiber path given by Eq. (6). Therefore, the819

unknown model parameters are:820

Λ =
[
T
(1)
11 , T

(1)
12 , T

(1)
13 , T

(2)
11 , T

(2)
12 , T

(2)
13

]T
(45)

42



where T
(p)
mn are the interpolating angles at the ply p. The training process is initialized by821

assigning random values to all the network biases and weights in the range [−1, 1]. The822

initial values for the unknown angles are taken as Λ(0) = [30, 45, 30,−30,−45,−30]T. These823

values can be understood as the angles defining the nominal layup, which are clearly differ-824

ent from the actual ones due to the manufacturing process.825

The results of the identification after 13 iterations are displayed in Figure 28 in terms of826

normalized loss function L(t)/L(0) and relative percent error E%

[
T
(p)
mn

]
, where L(0) is the827

value of the loss function at iteration 0.

(a) (b) (c)

Figure 28: Identification process and evolution of: (a) loss function, (b)-(c) relative error

percentage of the identified parameters throughout the learning process.

828

From Figure 28(a), one can see the uniform decrease of the loss function throughout the829

iterative process. At convergence, the final value of the loss function is L=4.4 ×10−3. The830

corresponding static response is also reported in Figure 28(a) along with the labeled data831

used for the identification.832

By inspection of Figures 28(b) and 28(c), one can observe the superior convergence proper-833

ties of the angles at the plate center, i.e. T
(p)
12 , with respect to the ones at the edges, i.e. T

(p)
11834

and T
(p)
13 . Furthermore, the convergence rate is seen to be dependent on the ply position in835

the stack: the second ply (Ply 2), which is closer to the midsurface, tends to exhibit slower836

convergence owing to its smaller contribution to the laminate bending stiffness than Ply837

1. These results are further highlighted in Table 6, where the relative percent errors are838

43



reported for the interpolation angles obtained at the end of the process.

Table 6: Identified parameters and corresponding percent errors at the end of the learning

process.

Ply 1 Ply 2

T
(1)
11 T

(1)
12 T

(1)
13 T

(2)
11 T

(2)
12 T

(2)
13

Exact +28.5100 +44.1700 +33.3400 -32.1300 -45.8600 -29.8200

Identified +28.4554 +44.1662 +33.2669 -32.4715 -45.8543 -30.2576

E% 0.1916 0.0085 0.2192 1.0628 0.0125 1.4674

839

As seen, the percent errors obtained for the central angles T
(p)
12 are two orders of magnitude840

smaller with respect to angles at the edges. In addition, the errors associated with Ply 1841

are one order of magnitude smaller than the errors for Ply 2.842

6 Conclusions843

This work presented a framework based on Physics-Informed Neural Network (PINN) for844

solving plate and shell problems in linear elasticity, as well as for performing parameter845

identification of mathematical models. The approach combines the features of PINNs with846

a procedure relying upon Extreme Learning Machine (ELM) to achieve improved training847

speed.848

Parametric studies are conducted to address the effects of different network configurations849

and hyperparameters. It is shown that accurate solutions can be achieved for static, free850

vibration and buckling problems using relatively few collocation points for training. The851

number of neurons must be large enough to guarantee reduced errors, but has to be bounded852

to prevent ill-conditioning issues that may affect the solving matrices. The analysis of853

different grid distributions reveals that random grids may sometimes provide smaller errors,854

but organized grids tend to be more robust for a wider range of network configurations.855

Overall, a certain degree of tuning is necessary for defining the network architecture and856

its parameters. However, the method displays good robustness, and wide class of problems857

can be analyzed with no need to perform trial-and-errors procedures at any time.858

44



As demonstrated, white-, black- or gray-box approaches can be considered, meaning that the859

framework can be used as a PDE solver, as a function approximator starting from available860

data, or a combination of both. The results illustrate the potential of this latter strategy,861

where labeled data and underlying governing equations are successfully combined to perform862

data-driven solution and data-driven identification of differential problems. Within the863

proposed PINN/ELM approach, a domain decomposition is proposed as an effective way to864

maximize the network performance. This can be done by reducing the number of neurons865

where the solution is more regular, and by increasing it where more complex responses are866

expected. In addition, the subdomain approach is naturally extended to consider structures867

composed by multiple shell and plate elements, such as in the case of stiffened panels.868

Overall, the ELM training offers drastic reduction of the training time with respect to869

GBL-based ones. The time for the analysis is reduced and comparable with typical FE870

solution procedures. In addition, no mesh needs to be generated, so the models are created871

on the fly.872

The extension to static nonlinear analysis and higher-order structural theories is the873

subject of future investigations.874

Acknowledgements875

The authors would like to thank Ministero dell’Istruzione, dell’Università della Ricerca for876

funding this research under PRIN 2017 program.877

References878

[1] S.S. Rao. The Finite Element Method in Engineering. Butterworth-heinemann,879

Burlington, MA, USA, 2017.880

[2] G.R. Liu and Y.T. Gu. An Introduction to Meshfree Methods and Their Programming.881

Springer, Dordrecht, The Netherlands, 2005.882

[3] Y. LeCun, Y. Bengio, and G. Hilton. Deep learning. Nature, 521(7553):436–444, 2015.883

[4] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind. Automatic differenti-884

45



ation in machine learning: a survey. Journal of Machine Learning Research, 18:1–43,885

2018.886

[5] M. Petrolo and E. Carrera. Selection of element-wise shell kinematics using neural887

networks. Computers & Structures, 244:106425, 2021.888

[6] T. Yamaguchi and H. Okuda. Zooming method for FEA using a neural network.889

Computers & Structures, 247:106480, 2021.890

[7] X. Liu, F. Tao, and W. Yu. A neural network enhanced system for learning nonlin-891

ear constitutive law and failure initialization criterion of composites using indirectly892

measurable data. Composite Structures, 252:112658, 2020.893

[8] H. Jiang, Z. Nie, R. Yeo, A.B. Farimani, and L.B. Kara. StreeGAN: a generative deep894

learning model for two-dimensional stress distribution prediction. Journal of Applied895

Mechanics, 88(5):051005, 2021.896

[9] C. Bisagni and L. Lanzi. Post-buckling optimisation of composite stiffened panels using897

neural networks. Composite Structures, 58(2):237–247, 2002.898

[10] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating physics-based899

modeling with machine learning: a survey. arXiv Preprint, 2003.04919, 2020.900

[11] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A901

deep learning framework for solving forward and inverse problems involving nonlinear902

partial differential equations. Journal of Computational Physics, 378:686–707, 2019.903

[12] D. Zhang, L. Lu, L. Guo, and G.E. Karniadakis. Quantifying total uncertainty in904

physics-informed neural networks for solving forward and inverse stochastic problems.905

Journal of Computational Physics, 397:108850, 2019.906

[13] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes. A deep learning frame-907

work for solution and discovery in solid mechanics. arXiv preprint, arXiv:2003.02751,908

2020.909

46



[14] L. Borkowski, C. Sorini, and A. Chattopadhyay. Recurrent neural network-based multi-910

axial plasticity model with regularization for physics-informed constraints. Computers911

& Structures, 258(1):106678, 2022.912

[15] E. Kharazmi, Z. Zhang, and G.E. Karniadakis. Variational physics-informed neural913

networks for solving partial differential equations. arXiv Preprint, 1912.00873, 2019.914

[16] W. Li, M.Z. Bazant, and J. Zhu. A physics-guided neural network framework for915

elastic plates: comparison of governing equations-based and energy-based approaches.916

Computer Methods in Applied Mechanics and Engineering, 383:113933, 2021.917

[17] A.D. Jagtap, K. Kawaguchi, and G.E. Karniadakis. Adaptive activation functions ac-918

celerate convergence in deep and physics-informed neural networks. Journal of Com-919

putational Physics, 404:109136, 2020.920

[18] C. Anitescu, E. Atroshchenko, N. Alajlan, and T. Rabczuk. Artificial neural network921

methods for the solution of second order boundary value problems. Computers, Mate-922

rials and Continua, 59(1):345–359, 2019.923

[19] A.D. Jagtap and G.E. Karniadakis. Extended physics-informed neural networks924

(XPINNs): a generalized space-time domain decomposition based deep learning frame-925

work for nonlinear partial differential equations. Communications in Computational926

Physics, 28(5):2002–2041, 2020.927

[20] V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (PIELM) -928

a rapid method for the numerical solution of partial differential equations. Neurocom-929

puting, 391:96–118, 2020.930

[21] S. Goswami, C. Anitescu, S. Chakraborty, and T. Rabczuk. Transfer learning enhanced931

physics informed neural network for phase-field modeling of fracture. Theoretical and932

Applied Fracture Mechanics, 106:102447, 2020.933

[22] S. Chakraborty. Transfer learning based multi-fidelity physics informed deep neural934

network. Journal of Computational Physics, 426:109942, 2021.935

[23] G.B. Huang, Q.Y. Zhu, and C.K. Siew. Extreme learning machine: theory and appli-936

cations. Neurocomputing, 70(1–3):489–501, 2006.937

47



[24] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, and D. Mortari. Extreme938

theory of functional connections: a fast physics-informed neural network method for939

solving ordinary and partial differential equations. Neurocomputing, 457:334–356, 2021.940

[25] H. Kraus. Thin Elastic Shells. John Wiley & Sons, 1967.941

[26] Z. Gürdal and R. Olmedo. Composite laminates with spatially varying fiber orienta-942

tions: variable stiffness panel concept. In 33rdAIAA/ASME/ASCE/AHS/ASC Struc-943

tures, Structural Dynamics and Material Conference, Dallas, TX, April 13–15 1992.944

[27] Z. Gürdal and R. Olmedo. In-plane response of laminates with spatially varying fiber945

orientations-variable stiffness concept. AIAA Journal, 31(4):751–758, 1993.946

[28] Z. Wu, P.M. Weaver, G. Raju, and B.C. Kim. Buckling analysis and optimisation of947

variable angle tow composite plates. Thin-Walled Structures, 60:163–172, 2012.948

[29] P. Ribeiro, H. Akhavan, A. Teter, and J. Warmiński. A review on the mechanical949

behaviour of curvilinear fibre composite laminated panels. Journal of Composite Ma-950

terials, 48(22):2761–2777, 2013.951

[30] A. Pagani and A.R. Sanchez-Majano. Influence of fiber misalignments on buckling952

performance of variable stiffness composites using layerwise models and random fields.953

Mechanics of Advanced Materials and Structures, pages 1–16, 2020.954

[31] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Anal-955

ysis. CRC Press, Boca Raton, 2004.956

[32] K.M. Liew and C.M. Wang. pb-2 Rayleigh-Ritz method for general plate analysis.957

Engineering Structures, 15(1):55–60, 1993.958

[33] R. Vescovini, V. Oliveri, D. Pizzi, L. Dozio, and P.M. Weaver. A semi-analytical959

approach for the analysis of variable-stiffness panels with curvilinear stiffeners. Inter-960

national Journal of Solids and Structures, 2019.961

[34] R.M. Jones. Mechanics of Composite Materials. CRC Press, 1998.962

[35] G.J. Simitses and J. Giri. Buckling of rotationally restrained orthotropic plates under963

uniaxial compression. Journal of Composite Materials, 11(3):345–364, 1977.964

48



[36] C.W. Bert and M. Malik. Differential quadrature method in computational mechanics:965

A review. Applied Mechanics Reviews, 49(1):1–28, 1996.966

[37] C. Shu. Differential Quadrature and its Application in Engineering. Springer Science967

& Business Media, 2012.968

[38] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary969

and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987—970

1000, 1998.971

[39] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial972

differential equations. Journal of Computational Physics, 375:1339–1364, 2018.973

[40] E. Weinan and B. Yu. The deep Ritz method: a deep learning-based numerical algo-974

rithm for solving variational problems. Communications in Mathematics and Statistics,975

6(1):1–12, 2018.976

[41] J. Berg and K.Nyström. A unified deep artificial neural network approach to partial977

differential equations in complex geometries. Neurocomputing, 317:28–41, 2018.978

[42] V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (PIELM) –979

a rapid method for the numerical solution of partial differential equations. Neurocom-980

puting, 391:96–118, 2020.981

[43] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-982

versal approximators. neural networks. Neural Networks, 2(5):359–366, 1989.983

[44] S.S. Haykin. Neural Networks and Learning Machines. Pearson, Upper Saddle River,984

NJ, USA, 2009.985

[45] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint986

arXiv:1609.04747, 2016.987

[46] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint988

arXiv:1412.6980, 2014.989

49



7 Appendix990

Differential operators991

The matrix of partial differential operators K (·) is defined as follows:992

K (·) =


κ1 (·) κ2 (·) κ3 (·)

κ4 (·) κ5 (·) κ6 (·)

κ7 (·) κ8 (·) κ9 (·)

 (46)993

where:994

κ1 (·) =A11 (·),xx + 2A16 (·),xy +A66 (·),yy +

+
(
A11,x +A16,y

)
(·),x +

(
A16,x +A66,y

)
(·),y

(47)995

996

κ2 (·) =A16 (·),xx + (A12 +A66) (·),xy +A26 (·),yy +

+
(
A16,x +A66,y

)
(·),x +

(
A12,x +A26,y

)
(·),y

(48)997

998

κ3 (·) =−B11 (·),xxx − 3B16 (·),xxy − (B12 + 2B66) (·),xyy −B26 (·),yyy +

−
(
B11,x +B16,y

)
(·),xx − 2

(
B16,x +B66,y

)
(·),xy −

(
B12,x +B26,y

)
(·),yy +

− 1

R

(
A12 (·)x +A26 (·)y +A12,x (·) +A26,y (·)

) (49)999

1000

κ4 (·) =A16 (·),xx + (A12 +A66) (·),xy +A26 (·),yy +

+
(
A16,x +A12,y

)
(·),x +

(
A66,x +A26,y

)
(·),y

(50)1001

1002

κ5 (·) =A66 (·),xx + 2A26 (·),xy +A22 (·),yy +

+
(
A66,x +A26,y

)
(·),x +

(
A26,x +A22,y

)
(·),y

(51)1003

1004

κ6 (·) =−B16 (·),xxx − (B12 + 2B66) (·),xxy − 3B26 (·),xyy −B22 (·),yyy +

−
(
B16,x +B12,y

)
(·),xx − 2

(
B66,x +B26,y

)
(·),xy −

(
B26,x +B22,y

)
(·),yy +

− 1

R

(
A26 (·),x +A22 (·),y +A26,x (·) +A22,y (·)

) (52)1005

50



1006

κ7 (·) =B11 (·),xxx + 3B16 (·),xxy + (B12 + 2B66) (·),xyy +B26 (·),yyy +

+ 2
(
B11,x +B16,y

)
(·),xx + 2

(
2B16,x +B66,y +B12,y

)
(·),xy + 2

(
B66,x +B26,y

)
(·),yy +

+
(
B11,xx + 2B16,xy +B12,yy

)
(·),x +

(
B16,xx + 2B66,xy +B26,yy

)
(·),y

(53)

1007

1008

κ8 (·) =B16 (·),xxx + (B12 + 2B66) (·),xxy + 3B26 (·),xyy +B22 (·),yyy +

+ 2
(
B16,x +B66,y

)
(·),xx + 2

(
B12,x + 2B26,y +B66,x

)
(·),xy + 2

(
B26,x +B22,y

)
(·),yy +

+
(
B16,xx + 2B66,xy +B26,yy

)
(·),x +

(
B12,xx + 2B26,xy +B22,yy

)
(·),y

(54)

1009

1010

κ9 (·) =−D11 (·),xxxx − 4D16 (·),xxxy − 2 (D12 − 2D66) (·),xxyy + 4D26 (·),xyyy −D22 (·),yyyy +

− 2
(
D11,x +D16,y

)
(·),xxx − 2

(
3D16,x + 2D66,y +D12,y

)
(·),xxy − 2

(
D12,x + 3D26,y + 2D66,x

)
(·),xyy +

− 2
(
D26,x +D22,y

)
(·),yyy −

(
D11,xx + 2D16,xy +D12,yy

)
(·),xx − 2

(
D16,xx + 2D66,xy +D26,yy

)
(·),xy +

−
(
D12,xx + 2D26,xy +D22,yy

)
(·),yy −

1

R

(
B12 (·),xx + 2B26 (·),xy +B22 (·),yy

)
+
[
2
(
B12,x +B26,y

)
(·),x + 2

(
B26,x +B22,y

)
(·),y +

(
B12,xx + 2B26,xy +B22,yy

)
(·)
]

(55)

1011

The matrix of partial differential operators M (·) is defined as follows:1012

M (·) =


I0 (·) 0 (·) −I1 (·),x
0 (·) I0 (·) −I1 (·),y

I1 (·),x I1 (·),y I0(·)− I2

(
(·),xx + (·),yy

)
 (56)1013

The matrix of partial differential operators G (·) is defined as follows:1014

G (·) =


0 (·) 0 (·) 0 (·)

0 (·) 0 (·) 0 (·)

0 (·) 0 (·) N̄xx (·),xx + 2N̄xy (·),xy + N̄yy (·),yy

 (57)1015

51



Navier solutions1016

Deflected shape due to sinusoidal transverse pressure qz = q̂z sin
(
πx
a

)
sin
(πy

b

)
:1017

wbend,ext =
q̂zb

4

π4
(
D11r4 + 2 (D12 + 2D66) r4 +D22

) sin(πx

a

)
sin

(
πy

b

)
(58)1018

Natural frequencies:1019

ωext
mn =

√
π4

Ĩ0b4

(
D11m4r4 + 2 (D12 + 2D66)m2n2r2 +D22n4

)
(59)1020

Buckling multiplier for uniform biaxial compression, i.e. Nxx = Nyy and Nxy = 0:1021

λext
mn =

D11α
4 + 2 (D12 + 2D66)α

2β2 +D22β
4(

α2 + β2
) (60)1022

where r = b/a is the aspect ratio of the plate, Ĩ0 = I0+ I2
[
α2 + β2

]
, α = mπ/a, β = nπ/b,1023

while m and n are the number of haft-waves in the x and y direction, respectively.1024

52


	FronteRivista
	YANCA_OA_01-22senzafront
	Introduction
	Formulation
	Solution via Physics-Informed Neural Networks
	Preliminaries
	Training process
	Gradient-Based Learning
	Extreme Learning Machine


	Parameter identification via Physics-Informed Neural Networks and Extreme Learning Machine
	Results
	Validation
	Parametric study on hyperparameters
	Static analysis of a cylindrical panel with cutout
	Free vibrations of a stiffened panel
	Model parameter identification from a static response

	Conclusions
	Appendix


