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Abstract: Microelectromechanical systems (MEMS) are often affected in their operational environ-
ment by different physical phenomena, each one possibly occurring at different length and time
scales. Data-driven formulations can then be helpful to deal with such complexity in their modeling.
By referring to a single-axis Lorentz force micro-magnetometer, characterized by a current flowing
inside slender mechanical parts so that the system can be driven into resonance, it has been shown
that the sensitivity to the magnetic field may become largely enhanced through proper (topology)
optimization strategies. In our previous work, a reduced-order physical model for the movable
structure was developed; such a model-based approach did not account for all the stochastic effects
leading to the measured scattering in the experimental data. A new formulation is here proposed,
resting on a two-scale deep learning model designed as follows: at the material level, a deep neural
network is used a priori to learn the scattering in the mechanical properties of polysilicon induced by
its morphology; at the device level, a further deep neural network is used to account for the effects on
the response induced by etch defects, learning on-the-fly relevant geometric features of the movable
parts. Some preliminary results are here reported, and the capabilities of the learning models at the
two length scales are discussed.

Keywords: microelectromechanical systems (MEMS); Lorentz force micro-magnetometer; polysilicon;
deep learning; neural network; stochastic effects

1. Introduction

In recent years, the development of affordable and highly specialized hardware,
designed to optimize large data computations via parallel processing [1,2] has propelled the
widespread use of data-driven algorithms, such as machine learning (ML). This paradigm
is revolutionizing the approach to the research activity in numerous areas, including the
field of materials science [3–5].

The most popular types of ML algorithms are the artificial neural networks (ANNs).
In their simplest modern form, feedforward neural networks (FFNNs) [6,7] are obtained
by assembling a number of layers of interconnected perceptrons [8]. This architecture is
typically referred to as the multilayer perceptron (MLP). By stacking a large enough number
of layers, we enter into the realm of deep learning (DL), a subfield of ML that leverages
the use of many levels of non-linear information processing and abstraction to produce
complex learning tasks from unstructured input information [9]. In this context, a popular
subtype of ANNs are the convolutional neural networks (CNNs). CNNs are well suited
for input data featuring spatial correlation [10]; CNNs are able to learn position and scale
invariant structures in the data. This aspect makes CNNs particularly efficient for tasks that
rely upon auto-correlated and sequent data analysis, such as image recognition in computer
vision, time series forecasting, or speech recognition in natural language processing. In the
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field of materials science, a significant number of CNN applications can be found in areas,
such as material texture recognition [11–14] and structure to property mapping [15–19].

In this work, we propose a ML approach based in the implementation of an assemble of
ANN architectures, to produce an accurate mapping between the structure of a polysilicon
microelectromechanical system (MEMS) device and its effective response. We consider the
Lorentz force MEMS magnetometer introduced in [20,21], and propose a new formulation
resting on a two-scale deep learning model designed as follows: at the material level,
a deep neural network is used a priori to learn the scattering in the mechanical properties of
polysilicon induced by its morphology; at the device level, a further deep neural network is
used to account for the effects on the response induced by etch defects, learning on-the-fly
relevant geometric features of the movable parts. Hence, material- and geometry-related
uncertainty sources, whose effects have been formerly studied and observed to intensify
with the reduction in the size [22–27], are accounted for in this formulation. In concrete
terms, the response is characterized in terms of the maximum oscillation amplitude of the
resonant structure, a significant design parameter due to its direct relation with relevant
figures of merit of the entire device, such as the responsivity and resolution [28]. The
ground-truth data; required for the training, validation and testing of the proposed data-
driven model, are obtained via the reduced-order model derived in [20,21].

The remainder of this work is organized as follows. The model of the polysilicon
Lorentz force MEMS magnetometer and the intrinsic uncertainty sources at the microscale,
are discussed in Section 2. Section 3 provides the methodology adopted for the implemen-
tation of the neural network-based model. Results are reported and analyzed in Section 4.
Finally, concluding remarks and insights for future research work are collected in Section 5.

2. Model of the Polysilicon MEMS and Intrinsic Uncertainties
2.1. Oscillation Amplitude of the Lorentz Force MEMS Magnetometer

Within the various approaches to magnetic sensing [29], Lorentz force MEMS sensors
operate by detecting effects of the Lorentz force, acting on a current-carrying conductor
immersed into the magnetic field. The device is able to sense a magnetic field aligned
with the out-of-plane direction z, see Figure 1, through the measurement of the in-plane
motion of the beam. In the sketch, g is the gap between the two surfaces of parallel-plate
capacitors (for sensing purposes), h is the in-plane width, and L the overall length of the
flexible beam. The out-of-plane thickness is denoted by b, so that the area of the rectangular
cross section is given by A = bh, and the moment of inertia is I = (bh3)/12. The beam is
made of a polycrystalline silicon film with columnar structure, and the elastic properties
governing its in-plane vibrations are assumed to be obtained through homogenization over
a statistical volume element (SVE) of the polysilicon film.
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Figure 1. (a) SEM picture of the resonant structure of the MEMS magnetometer [20]; (b) Scheme of
the slender beam of length L. Parallel plates are connected to the mid-span of the beam for capacitive
sensing [21].

During the operation, the mechanical structure is driven into resonance in order to
obtain the maximum output signal. Larger vibration amplitudes are linked to higher
responsivity and, therefore, better resolution. Neglecting a sequence of derivation steps
(interested readers can find them in [20,21]), the maximum amplitude of the oscillations at
the mid-span cross-section, νmax, is obtained as the solution of the following equation:
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Terms in Equation (1) represent the effective mass (m), air damping (d), linear and cubic
stiffnesses (K1 and K3), amplitude of the oscillating external Lorentz force (F0), frequency
of the forcing term (ω), and natural frequency of the beam (ω1). The dynamics of this
system is governed by weakly coupled thermo-electro-magneto-mechanical multi-physics,
noticeable when writing explicit expressions for each of the previous terms. Nonetheless,
the key aspect to highlight is that, since the solution for νmax depends on K1 and K3 which,
in turn, depend on the flexural (EI) and axial (EA) rigidities of the beam, uncertainties in
the values of the homogenized Young’s modulus, E and in-plane width, h (induced by
defects such as over-etch, O), produce a scattering in the expected value of νmax.

2.2. Sources of Uncertainty in Polysilicon MEMS

Successful incorporation of MEMS-based products to market, hinges on the ability to
engineer these components to have sufficient reliability for the intended applications [30].
Therefore, efforts to characterize the small-scale and scale-specific properties of materials
are significantly driven by the need to predict the performance of MEMS and other mi-
croscale devices [31]. Manufacturing processes of MEMS are typically subjected to limited
repeatability, impeding to obtain deterministic nominal geometries and material properties,
which are instead characterized by a scattering around these values [32].

For the particular case of polysilicon-based MEMS, two main sources of uncertainty
have been observed to intensify with the miniaturization of the devices [22–27]. The first
source is related to the limits of the production process, i.e., when the size of the MEMS is in
the same order of magnitude of the tolerances established by the microfabrication process.
The second source is instead associated with the intrinsic heterogeneity of the material,
i.e., when the size of the MEMS is in the same order of magnitude of the characteristic
length of heterogeneities present in the material (for example the grain size in the case of
polycrystalline materials). Since both sources of uncertainty are governed by variables that
are stochastic in nature, statistical approaches need to be adopted to quantify their impact
on the final properties. In practice, the effects of the first uncertainty type can be accounted
for in terms of a defect parameter called over-etch depth O, while those associated with
the second uncertainty type can be accounted in terms of the scattering observed in the
apparent elastic properties (e.g., the homogenized Young’s modulus E).

By following the procedure proposed in [22], it is possible to characterize the scattering
of the homogenized in-plane Young’s modulus for SVEs of polysilicon films featuring
different sizes, i.e., h = {2, 5} µm. Size-dependent statistics have been found to be well fitted
by lognormal distributions and the relevant parameters are reported in Table 1.

Table 1. Statistical indicators characterizing E for different SVE sizes, obtained with uniform strain
boundary conditions.

SVE Size µ [GPa] σ [GPa]

2 µm × 2 µm 150.1 5.5
5 µm × 5 µm 149.3 2.4

On the other hand, geometry related uncertainties can be handled in accordance with
former studies [23,25], wherein the over-etch depth O was sampled out of a microfabrication-
tailored normal distribution featuring a zero mean µ and a standard deviation σ = 0.05 µm.
Therefore, assuming O to be homogeneously distributed, it changes the in-plane film width
according to h − 2O (h represents only a target size); accordingly, the cross-sectional area A
of the beam is affected linearly by O, whereas the moment of inertia I is affected cubically.
The gap at the capacitors is also modified as g + 2O, where g again represents a target size.
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3. Methodology
3.1. Representation of the Resonant Structure

The resonant structure is considered as a concatenation of squared SVEs. These SEM-
like subdomains are digitally generated via the regularized Voronoi tessellation procedure,
such as described in [22]. These input images are characterized by two different target
in-plane widths, h = 2 µm and 5 µm.

Given the symmetry displayed by the elastic properties as a function of the orientation
in a silicon (1 0 0) wafer, see [33], the Young’s modulus of the monocrystalline domains
remains invariant under a series of similarity transformations. This particularity motivated
a data augmentation (D.A.) procedure wherein, for each original or parent SVE, seven
new instances are generated, all linked to the same ground-truth value of the parent. The
resonant structure is then regarded as a random concatenation (in space and frequency) of
a parent SVE and its corresponding instances. Figure 2 illustrates these aspects.

Comput. Sci. Math. Forum 2022, 1, FOR PEER REVIEW 4 
 

 

On the other hand, geometry related uncertainties can be handled in accordance with 

former studies [23,25], wherein the over-etch depth O was sampled out of a microfabrica-

tion-tailored normal distribution featuring a zero mean μ and a standard deviation σ = 

0.05 μm. Therefore, assuming O to be homogeneously distributed, it changes the in-plane 

film width according to h − 2O (h represents only a target size); accordingly, the cross-

sectional area A of the beam is affected linearly by O, whereas the moment of inertia I is 

affected cubically. The gap at the capacitors is also modified as g + 2O, where g again 

represents a target size.  

3. Methodology 

3.1. Representation of the Resonant Structure 

The resonant structure is considered as a concatenation of squared SVEs. These SEM-

like subdomains are digitally generated via the regularized Voronoi tessellation proce-

dure, such as described in [22]. These input images are characterized by two different 

target in-plane widths, h = 2 μm and 5 μm.  

Given the symmetry displayed by the elastic properties as a function of the orienta-

tion in a silicon (1 0 0) wafer, see [33], the Young’s modulus of the monocrystalline do-

mains remains invariant under a series of similarity transformations. This particularity 

motivated a data augmentation (D.A.) procedure wherein, for each original or parent SVE, 

seven new instances are generated, all linked to the same ground-truth value of the parent. 

The resonant structure is then regarded as a random concatenation (in space and fre-

quency) of a parent SVE and its corresponding instances. Figure 2 illustrates these aspects. 

 

Figure 2. Example of parent SVE with h = 2 μm, its instances, and the resonant structure. 

The specific similarity transformations used for the D.A. procedure were: three coun-

terclockwise 90° rotations, and four mirror transformations (horizontal, vertical, and 

about the two diagonals). Moreover, the pixel values ranging from [0, 255] encode the in-

plane lattice orientation angle displayed by each monocrystalline domain. 

3.2. The Neural Network-Based Model 

Starting with a general description of the neural network-based model, Figure 3 il-

lustrates the overall model topology. Two stages can be distinguished in the proposed 

two-scale deep learning approach. At the material level (first stage), the digitally gener-

ated 128 × 128 pixels SVE images are fed to the ResNet-based model, developed in our 

former work [34], which is leveraged to provide the estimation of the homogenized in-

plane Young’s modulus, 𝐸̂̅. At the device level (second stage), the model takes the same 

SVE image (which is regarded as characteristic of the microstructure of the resonant struc-

ture), the estimated 𝐸̂̅ and an associated over-etch value, O (sampled from the relevant 

probability distribution described in Section 2.2). Differently from the first stage, the sec-

ond stage handles multiple and mixed data type inputs. After training, the second stage 

Figure 2. Example of parent SVE with h = 2 µm, its instances, and the resonant structure.

The specific similarity transformations used for the D.A. procedure were: three coun-
terclockwise 90◦ rotations, and four mirror transformations (horizontal, vertical, and about
the two diagonals). Moreover, the pixel values ranging from [0, 255] encode the in-plane
lattice orientation angle displayed by each monocrystalline domain.

3.2. The Neural Network-Based Model

Starting with a general description of the neural network-based model, Figure 3
illustrates the overall model topology. Two stages can be distinguished in the proposed
two-scale deep learning approach. At the material level (first stage), the digitally generated
128 × 128 pixels SVE images are fed to the ResNet-based model, developed in our former
work [34], which is leveraged to provide the estimation of the homogenized in-plane
Young’s modulus, Ê. At the device level (second stage), the model takes the same SVE
image (which is regarded as characteristic of the microstructure of the resonant structure),
the estimated Ê and an associated over-etch value, O (sampled from the relevant probability
distribution described in Section 2.2). Differently from the first stage, the second stage
handles multiple and mixed data type inputs. After training, the second stage learns to
map from this input information to the maximum oscillation amplitude νmax, dealt with as
the target variable of the entire model.
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Figure 3. Topology for the proposed data-driven model.

A detailed description of each of the components is presented hereafter. First, the
ResNet-based regression leverages the use of residual learning [35] for a feature learning
stage. Local and translational invariant low-level features, such as colors, edges, and
shapes of the grains, are extracted in the initial convolutional layers. These features are then
combined through further convolution operations in deeper layers, to achieve complex
levels of abstraction and obtain high-level features, from which the model is ultimately able
to produce the estimation of the homogenized in-plane Young’s modulus Ê. More details
about the training, validation, and testing process of this model can be found in [34].

Figure 4 shows, in detail, the architectures used to learn the mapping at the device
level. The single-neuron output layer of the CNN branch, and the single-neuron output
layer of the MLP1 branch, are fully connected to the eight-neuron input layer of the MLP2.
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Figure 4. Architectures of the model used for the mapping at the device level.

The backbone of the CNN architecture employs a consecutive application of Convo-
lution, ReLU activation, Batch Normalization, and Max-Pool operations. After the last
Max-Pool layer, a flatten operation enables the connection of the feature extractor to a set
of fully connected layers featuring a 16-node hidden layer and a 1-node output layer. For
regularization purposes, dropout was applied to the 16-node hidden layer with a dropout
rate of p = 0.5.

The MLP1 is composed of a sequence of fully connected layers. The specific sequence
features an 8-node hidden layer followed by a 4-node and a 1-node output layer. As in
the case of the CNN, only the output neuron was activated by a linear activation function
while the rest of the units use ReLU activations. An identical configuration was chosen
for MLP2.

Regarding the selection of hyperparameters, the total number of epochs was set to 1000,
the patience (early stopping) to 100, the mini-batch size to 10, the learning rate α to 1 · 10−3,
the optimizer to Adam and the loss function to MSE. Furthermore, the implementation
was completed, making use of Keras API. Regarding the hardware, a GeForce GTX 1050 Ti
GPU was used.
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Concerning the data splitting, training, validation, and test sets were considered.
Table 2 summarizes the information related to the number of samples and the statistics
associated with the ground-truth values characterizing each set.

Table 2. Data splitting information.

Size SVEs Mean νmax [µm] Standard Deviation νmax [µm]

Training 2 µm × 2 µm 1898 0.028 0.004
5 µm × 5 µm 800 0.01 0.002

Validation
2 µm × 2 µm 400 0.028 0.004
5 µm × 5 µm 200 0.01 0.002

Test
2 µm × 2 µm 198 0.028 0.004
5 µm × 5 µm 99 0.01 0.002

4. Results

We focus now on the results obtained with the second stage of the model, as related
to the mapping of the maximum amplitude of oscillations performed at the device level.
During the training, a minimum validation loss of 4.07 × 10−8 µm2 was attained after
328 epochs. After this epoch, no considerable improvement was observed on the validation
set over the next 100 epochs (set as the patience parameter), inducing the early stopping.

The parity plots in Figure 5 summarize the performance of the trained model over the
training, validation, and test sets. These plots show the correlation between the predicted
values of νmax obtained after the training of the model, and the corresponding ground-
truth data provided by the reduced-order analytical model of the Lorentz force MEMS
magnetometer (see Section 2.1). In black and grey, we can observe the mapping of the data
associated with the 2 × 2 µm2 and the 5 × 5 µm2 SVEs, respectively. In light and dark green
we have included the corresponding identity mapping, which represents the ideal behavior
we could expect from the model.
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Figure 5. Parity plots for the model at the device level: (a) Training set; (b) Validation set; (c) Test set.

As anticipated from the low loss values attained during the training, a very good
agreement between predicted and ground-truth data is observed for all the sets and within
each, for the two different in-plane widths handled for the SVE samples. To quantify this
agreement, the coefficients of determination R2 are reported in the plots: R2 values are all
close to 1, indicating a good performance. Moreover, as it could have been foreseen from the
imbalance of the datasets, a slightly better result is observed for the smaller SVE samples.

In this work, the validation set has been employed, as conventionally, with the purpose
of tuning the hyperparameters of the model during training. In order to assess the ability
of the model to adapt to new, previously unseen data, drawn from the same distribution as
the one used to train and tune the model, the performance over the test set can be analyzed.
As can be observed in the parity plot, the predictions reproduce almost exactly the identity
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map. In terms of R2 values, the results are comparable to the performance obtained on the
training set, which is a clear indication of the good generalization capability of the model.

5. Conclusions

A data-driven framework has been proposed and effectively implemented for model-
ing the response of a Lorentz force MEMS magnetometer. By enabling as input information,
a digitally generated representative image of the microstructure together with a charac-
teristic value for the over-etch O, the trained model has been able to produce accurate
predictions of the maximum oscillation amplitude of the resonant structure. Moreover, the
neural network-based model has been able to generalize satisfactorily over unseen samples
drawn from the same distribution of the training data.

Future research activities will be oriented to incorporate the complete representation
of the microstructure of the resonant structure, avoiding the introduced approximation
of it as a random concatenation of an individual SVE and its instances obtained via D.A.
An additional homogenization procedure is, therefore, foreseen, to upscale the Young’s
modulus from the scale of the SVE to the scale of the resonant structure.

The implementation of an additional neural network is also envisioned, to achieve au-
tomatic defect detection, enabling O to be directly extracted from defect-informed digitally
generated images of the microstructure.

Author Contributions: Conceptualization, J.P.Q.-M. and S.M.; methodology, J.P.Q.-M. and S.M.;
software, J.P.Q.-M. and S.M.; validation, J.P.Q.-M. and S.M.; formal analysis, J.P.Q.-M. and S.M.;
investigation, J.P.Q.-M. and S.M.; resources, J.P.Q.-M. and S.M.; data curation, J.P.Q.-M. and S.M.;
writing—original draft preparation, J.P.Q.-M. and S.M.; writing—review and editing, J.P.Q.-M. and
S.M.; visualization, J.P.Q.-M. and S.M.; supervision, J.P.Q.-M. and S.M.; project administration,
J.P.Q.-M. and S.M.; funding acquisition, J.P.Q.-M. and S.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: JPQM acknowledges the financial support by Universidad de Costa Rica, to
pursue postgraduate studies abroad.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing. Proc. IEEE 2008, 96, 879–899.

[CrossRef]
2. Nickolls, J.; Dally, W.J. The GPU Computing Era. IEEE Micro 2010, 30, 56–69. [CrossRef]
3. Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state

materials science. NPJ Comput. Mater. 2019, 5, 83. [CrossRef]
4. Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci.

2019, 6, 1900808. [CrossRef] [PubMed]
5. Bock, F.E.; Aydin, R.C.; Cyron, C.J.; Huber, N.; Kalidindi, S.R.; Klusemann, B. A Review of the Application of Machine Learning

and Data Mining Approaches in Continuum Materials Mechanics. Front. Mater. 2019, 6, 110. [CrossRef]
6. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998.
7. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 1st ed.; Pearson Education Limited: Kuala Lumpur, Malaysia,

2016.
8. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev. 1958,

65, 386–408. [CrossRef] [PubMed]
9. Deng, L. Deep Learning: Methods and Applications. FNT Signal Processing 2014, 7, 197–387. [CrossRef]
10. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]

http://doi.org/10.1109/JPROC.2008.917757
http://doi.org/10.1109/MM.2010.41
http://doi.org/10.1038/s41524-019-0221-0
http://doi.org/10.1002/advs.201900808
http://www.ncbi.nlm.nih.gov/pubmed/31728276
http://doi.org/10.3389/fmats.2019.00110
http://doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://doi.org/10.1561/2000000039
http://doi.org/10.1016/j.neunet.2014.09.003


Comput. Sci. Math. Forum 2022, 2, 12 8 of 8

11. Cang, R.; Ren, M.Y. Deep Network-Based Feature Extraction and Reconstruction of Complex Material Microstructures. In
Proceedings of the 42nd Design Automation Conference, Charlotte, NC, USA, 21–24 August 2016; American Society of Mechanical
Engineers: New York, NY, USA, 2016. [CrossRef]

12. Lubbers, N.; Lookman, T.; Barros, K. Inferring low-dimensional microstructure representations using convolutional neural
networks. Phys. Rev. E 2017, 96, 052111. [CrossRef]

13. Napoletano, P.; Piccoli, F.; Schettini, R. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity. Sensors 2018,
18, 209. [CrossRef]

14. Hwang, H.; Oh, J.; Lee, K.-H.; Cha, J.-H.; Choi, E.; Yoon, Y.; Hwang, J.-H. Synergistic approach to quantifying information on
a crack-based network in loess/water material composites using deep learning and network science. Comp. Mat. Sci. 2019,
166, 240–250. [CrossRef]

15. Yang, Z.; Yabansu, Y.C.; Al-Bahrani, R.; Liao, W.; Choudhary, A.N.; Kalidindi, S.R.; Agrawal, A. Deep learning approaches for
mining structure-property linkages in high contrast composites from simulation datasets. Comp. Mat. Sci. 2018, 151, 278–287.
[CrossRef]

16. Cecen, A.; Dai, H.; Yabansu, Y.C.; Kalidindi, S.R.; Song, L. Material structure-property linkages using three-dimensional
convolutional neural networks. Acta Materialia. 2018, 146, 76–84. [CrossRef]

17. Cang, R.; Li, H.; Yao, H.; Jiao, Y.; Ren, Y. Improving direct physical properties prediction of heterogeneous materials from imaging
data via convolutional neural network and a morphology-aware generative model. Comp. Mat. Sci. 2018, 150, 212–221. [CrossRef]

18. Frankel, A.L.; Jones, R.E.; Alleman, C.; Templeton, J.A. Predicting the mechanical response of oligocrystals with deep learning.
Comp. Mat. Sci. 2019, 169, 109099. [CrossRef]

19. Abueidda, D.W.; Almasri, M.; Ammourah, R.; Ravaioli, U.; Jasiuk, I.M.; Sobh, N.A. Prediction and optimization of mechanical
properties of composites using convolutional neural networks. Comp. Struct. 2019, 227, 111264. [CrossRef]

20. Bagherinia, M.; Bruggi, M.; Corigliano, A.; Mariani, S.; Lasalandra, E. Geometry optimization of a Lorentz force, resonating
MEMS magnetometer. Micro. Rel. 2014, 54, 1192–1199. [CrossRef]

21. Bagherinia, M.; Mariani, S. Stochastic Effects on the Dynamics of the Resonant Structure of a Lorentz Force MEMS Magnetometer.
Actuators 2019, 8, 36. [CrossRef]

22. Mariani, S.; Martini, R.; Ghisi, A.; Corigliano, A.; Beghi, M. Overall elastic properties of polysilicon films: A statistical investigation
of the effects of polycrystal morphology. Int. J. Mult. Comp. Eng. 2011, 9, 327–346. [CrossRef]

23. Mirzazadeh, R.; Mariani, S. Uncertainty Quantification of Microstructure-Governed Properties of Polysilicon MEMS.
Micromachines 2017, 8, 248. [CrossRef]

24. Mariani, S.; Ghisi, A.; Mirzazadeh, R.; Azam, S.E. On-Chip Testing: A Miniaturized Lab to Assess Sub-Micron Uncertainties in
Polysilicon MEMS. Micro Nanosyst. 2018, 10, 84–93. [CrossRef]

25. Mirzazadeh, R.; Eftekhar Azam, S.; Mariani, S. Mechanical Characterization of Polysilicon MEMS: A Hybrid TMCMC/POD-
Kriging Approach. Sensors 2018, 18, 1243. [CrossRef] [PubMed]

26. Ghisi, A.; Mariani, S. Effect of Imperfections Due to Material Heterogeneity on the Offset of Polysilicon MEMS Structures. Sensors
2019, 19, 3256. [CrossRef] [PubMed]

27. Dassi, L.; Merola, M.; Riva, E.; Santalucia, A.; Venturelli, A.; Ghisi, A.; Mariani, S. A Stochastic Model to Describe the Scattering in
the Response of Polysilicon MEMS. Eng. Proc. 2021, 2, 95. [CrossRef]

28. Herrera-May, A.; Soler-Balcazar, J.; Vázquez-Leal, H.; Martínez-Castillo, J.; Vigueras-Zuñiga, M.; Aguilera-Cortés, L. Recent
Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges. Sensors
2016, 16, 1359. [CrossRef] [PubMed]

29. Lenz, J.; Edelstein, S. Magnetic sensors and their applications. IEEE Sens. J. 2006, 6, 631–649. [CrossRef]
30. Hartzell, A.; Silva, M.; Shea, H. MEMs Reliability, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
31. Hemker, K.J.; Sharpe, W.N., Jr. Microscale Characterization of Mechanical Properties. Annu. Rev. Mater. Res. 2007, 37, 93–126.

[CrossRef]
32. Uhl, T.; Martowicz, A.; Codreanu, I.; Klepka, A. Analysis of uncertainties in MEMS and their influence on dynamic properties.

Arch. Mech. 2009, 61, 349–370.
33. Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Micro. Syst. 2010, 19, 229–238. [CrossRef]
34. Quesada-Molina, J.P.; Rosafalco, L.; Mariani, S. Mechanical Characterization of Polysilicon MEMS Devices: A Stochastic, Deep

Learning-based Approach. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics
Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; IEEE: Piscataway,
NJ, USA, 2020. [CrossRef]

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016.
[CrossRef]

http://doi.org/10.1115/detc2016-59404
http://doi.org/10.1103/PhysRevE.96.052111
http://doi.org/10.3390/s18010209
http://doi.org/10.1016/j.commatsci.2019.04.014
http://doi.org/10.1016/j.commatsci.2018.05.014
http://doi.org/10.1016/j.actamat.2017.11.053
http://doi.org/10.1016/j.commatsci.2018.03.074
http://doi.org/10.1016/j.commatsci.2019.109099
http://doi.org/10.1016/j.compstruct.2019.111264
http://doi.org/10.1016/j.microrel.2014.02.020
http://doi.org/10.3390/act8020036
http://doi.org/10.1615/IntJMultCompEng.v9.i3.50
http://doi.org/10.3390/mi8080248
http://doi.org/10.2174/1876402911666181204122855
http://doi.org/10.3390/s18041243
http://www.ncbi.nlm.nih.gov/pubmed/29673228
http://doi.org/10.3390/s19153256
http://www.ncbi.nlm.nih.gov/pubmed/31344872
http://doi.org/10.3390/engproc2020002095
http://doi.org/10.3390/s16091359
http://www.ncbi.nlm.nih.gov/pubmed/27563912
http://doi.org/10.1109/JSEN.2006.874493
http://doi.org/10.1007/978-1-4419-6018-4
http://doi.org/10.1146/annurev.matsci.36.062705.134551
http://doi.org/10.1109/JMEMS.2009.2039697
http://doi.org/10.1109/eurosime48426.2020.9152690
http://doi.org/10.1109/cvpr.2016.90

	Introduction 
	Model of the Polysilicon MEMS and Intrinsic Uncertainties 
	Oscillation Amplitude of the Lorentz Force MEMS Magnetometer 
	Sources of Uncertainty in Polysilicon MEMS 

	Methodology 
	Representation of the Resonant Structure 
	The Neural Network-Based Model 

	Results 
	Conclusions 
	References

