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DAMAGE-DRIVEN FRACTURE WITH LOW-ORDER POTENTIALS:
ASYMPTOTIC BEHAVIOR, EXISTENCE AND APPLICATIONS

Marco Caroccia1 and Nicolas Van Goethem1,∗

Abstract. We study the Γ-convergence of damage to fracture energy functionals in the presence of low-
order nonlinear potentials that allows us to model physical phenomena such as fluid-driven fracturing,
plastic slip, and the satisfaction of kinematical constraints such as crack non-interpenetration. Existence
results are also addressed.
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1. Introduction

In linearized elasticity, the simplest model of damage-driven brittle fracture assumes that a scalar 0 ≤ v ≤ 1
multiplies the elasticity tensor, that is thus weakened in the damage region. At the same time, following Griffith–
Bourdin–Francfort–Marigo approach [9, 28, 29], a certain amount of energy is dissipated in the damage region,
and one seeks the minimum of the total energy consisting of the sum of the elastic stored energy and the
dissipation terms. Specifically, in [1] the following damage-dependent energy functional was considered1:

Jε(u, v) :=
∫

Ω

vAe(u) · e(u)dx+
1
ε

∫
Ω

ψ(v)dx, (1.1)

with ψ(v) = k in the damage region ω ⊂ Ω, zero elsewhere, k a material-dependent damage coefficient, v ≥ αε
with α > 0, and where ε represent the thickness of the damaged region, also related to the mesh size. Here A
stands for one half the constant isotropic elasticity tensor. The numerical simulations done in [1] have shown
that model consistency under mesh refinement strongly depended on the ratio k/ε. Indeed equation (1.1) was
used for numerical purposes as a phase-field approximation of Griffith-like energies for crack, though, without
studying any rigorous convergence result as ε → 0. The aim of this work is to study this convergence for a
generalized model including low-order potentials.
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The so-called Griffith energy reads

JG(u) :=
∫

Ω

Ae(u) · e(u)dx+ kHn−1(Ju). (1.2)

In anti-plane elasticity, though, that is, with A one half the identity tensor, e(u) replaced by ∇u where u
is the vertical component of the displacement field, it is well-known that (1.2) is approximated in the sense of
Γ-convergence by the Ambrosio–Tortorelli functional

ATε(u, v) :=
∫

Ω

(
(v + ηε)|∇u|2 +

(1− v)2

ε
+ ε|∇v|2

)
dx, (1.3)

where it is crucial for the residual damage to be of order ηε = o(ε). A general case study in function of this
parameter ηε with Γ-convergence results in the anti-plane case was carried out in [31] as based on Ambrosio–
Tortorelli approximation, whereas an approximation of the type (1.1) had been considered for the scalar case,
slightly earlier by the same authors in [23]. In real elasticity, that is, for the vectorial u and its symmetric
gradient e(u) (as well as in n-dimensions), the first significant Γ-convergence convergence result is found in [26],
with an Ambrosio–Tortorelli-like approximation. Recently, existence results for the original Griffith’s functional
have been provided in 2D passing by Korn-type inequalities in GSBD space [18, 30] (see also [16, 17]). In
[14, 15] the authors manage to get rid of any artificial integrability condition on the displacement field by
carefully approximating the singularities, and prove some existence results by Γ-convergence with the topology
of measures.

In the present paper, with the topology of L1, we are concerned with approximations as based on functionals
of the type (1.1). Indeed, it is closer to the numerical method chosen for simulation of damage-driven fracture,
in particular as far as topological sensitivity analysis is performed, already in [1] and more recently in [35]. In
particular, we stick to a simple first-order damage energy, i.e., without gradients of v in the energy functional
(see [7] for other gradient-free approximations in other contexts). Note however, that the gradient constraint is
found in the admissibility class, which from a technical viewpoint has the same effect. The first aim of this work
was to justify from a mathematical perspective a simple model of fracking based on damage and fluid-driven
fracture and the topological derivative concept [36]. In that work, numerical simulations were performed, based
on the minimization of an energy functional of the type

Fε(u, v) := Jε(u, v)− p
∫

Ω

ψ(v)div udx, (1.4)

that models a crack filled with a fluid with an imposed hydrostatic pressure p which is quasi-statically increased
in order to trigger a crack opening. As a generalization of this problem, our main goal in this paper is to study
the asymptotic behaviour, in ε, of general functionals with low-order potential of the form

Fε(u, v) := Jε(u, v) +
∫

Ω

F (x, e(u), v)dx, (1.5)

where F need not to be positive. In particular, fracking is recovered for F = −pψ(v)trace(e(u)), but it happens
that other interesting cases can be studied as for instance (i) hydraulic fracture in porous media, (ii) plastic
slip, (iii) non-interpenetration or Tresca-type conditions, just to cite some applications that we have chosen.
Our main result is the Γ-convergence of Fε(u, v) to the limit cohesive functional

Φ(u) :=
∫

Ω

Ae(u) · e(u)dx+ bHn−1(Ju)

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z))dHn−1(z)

+
∫

Ω

F (x, u, 1) +
∫
Ju

F∞(z, [u]� ν)dHn−1(z),
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for some appropriate coefficients a and b related to the choice of the damage potential ψ and with F∞ denoting
the recession function of the convex potential, i.e., coding the asymptotic behaviour of F as |e(u)| → ∞.
Compactness and an original approach to existence results are also proposed in Section 5 (to be precise, the
so-called existence of weak type), as well as some general results given in the Appendix A. Let us remark that
a specific such low-order potential together with a treatment of the Dirichlet boundary condition were also
considered in the anti-plane case in [6], with the additional condition that F ≥ 0, a restriction that we wanted
to avoid in the present work. Let us emphasize that in this work, in contrast with the aforementioned results,
we address and solve the complete problem that consists in avoiding any L∞-bound on the displacement field.

Moreover, our aim is also to be entirely self-contained, in order for these computations and techniques be
available for the mathematical/mechanical communities in the clearest way possible. Therefore, some known
results are recalled and proven in our Appendix A. Precise bibliography is always provided when cross-references
applies, while otherwise our arguments and proof strategy are originals. Specific references for this topic are
[23,31] while general and fundamental results are found in [2–4,8, 10,13,22,27,34].

2. Notations and preliminaries

We denote by Mn×n
sym the set of all symmetric matrices with real coefficient. Given an open bounded set Ω

with Lipschitz boundary we say that a function u ∈ L1(Ω; Rn) is a function of bounded deformation if there
exists a matrix-valued Radon measure ((Eu)ij)ni,j=1 such that for all i, j = 1, . . . , n it holds

〈(Eu)i,j , ϕ〉 = −1
2

∫
Ω

(
ui
∂ϕ

∂xj
+ uj

∂ϕ

∂xi

)
dx.

for all ϕ ∈ C∞c (Ω; Rn).
Notice that, if uk ∈ BD(Ω) and uk → u in L1, then Euk ⇀

∗ Eu. The space of such functions is endowed
with the norm

‖u‖BD := ‖u‖L1(Ω) + |Eu|(Ω)

where, for any given Radon measure µ, |µ| stands for its total variation. For any sequence {uk}k∈N bounded in
this norm, up to a subsequence, it holds uk → u in L1. Analogously to the behavior of the function of Bounded
Variation we can identify three distinct part of the matrix valued measure Eu: the absolutely continuous part,
the jump part (supported on Ju, an (n−1)-rectifiable set) and a Cantor part. Namely, for a generic u ∈ BD(Ω),
we can write

Eu = e(u)Ln + [u]� νuHn−1xJu + Ecu

where νu(x) is any unitary vector field orthogonal to Ju, [u] = u+−u− the jump of u with u± the approximate
limit of u as we approach Ju and

[u]� νu :=
[u]⊗ νu + νu ⊗ [u]

2
·

Note that in general symbol � stands for the symmetric sum. Finally we define the space SBD2(Ω; Rn) as
follows:

SBD2(Ω; Rn) := {u ∈ BD(Ω; Rn) | Ecu = 0, e(u) ∈ L2(Ω;Mn×n
sym ), Hn−1(Ju) < +∞}.

2.1. Settings of the problem

We consider a fourth order tensor A : Mn×n
sym →Mn×n

sym such that there exist a constant κ for which

κ−1|M |2 ≤ AM ·M ≤ κ|M |2

where M · L := tr(MLT ) is the standard scalar product inducing the Frobenius norm which, for a generic
M ∈Mn×n

sym , is here denoted by |M |.
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Having fixed α > 0 we define

Vε := {v ∈W 1,∞(Ω) | εα < v ≤ 1, |∇v| ≤ 1/ε}.

With these notation we define the sequence of energy functionals Fε : L1(Ω; Rn)× L1(Ω; [0, 1])→ R+ to be

Fε(u, v) :=



∫
Ω

vAe(u) · e(u)+
1
ε

∫
Ω

ψ(v)dx

+
∫

Ω

F (x, e(u), v)dx
if (u, v) ∈ H1(Ω; Rn)× Vε

+∞ otherwise

(2.1)

where ψ is any strictly decreasing (and thus we will often use that ψ(0) > 0), convex function such that ψ(1) = 0
and F is a generic potential subject to the following hypothesis.

Assumption 2.1 (On the potential F ). The function F : Rn × Mn×n
sym × [0, 1] → R satisfies the following

properties:
(1) F (·,M, 0) is Lipschitz continuous uniformly in M ∈Mn×n

sym ;
(2) F (x, ·, 0) and F (x, ·, 1) are convex for all x ∈ Ω;
(3) −σ|M | ≤ F (x,M, v) ≤ `|M |, for all (x,M, v) ∈ Rn ×Mn×n

sym × [0, 1] where ` > 0 can be any real constant
and

0 < σ < max
λ∈(0,1)

{
2
√
αψ(λ)

√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

}
< 2

√
αψ(0)
κ

; (2.2)

(4) having set

ωF (s; 1) := sup
{
|F (x,M, s)− F (x,M, 1)|

|M |
: (x,M) ∈ Rn ×Mn×n

sym

}
,

ωF (s; 0) := sup
{
|F (x,M, s)− F (x,M, 0)|

|M |
: (x,M) ∈ Rn ×Mn×n

sym

}
,

then
lim
s→1

ωF (s; 1) = lim
s→0

ωF (s; 0) = 0.

Remark 2.2. In particular, F can be taken as negative as we want by simply taking αψ(0) large enough.

Remark 2.3. We remark that, for any fixed x, since f(M) = F (x,M, 0) is convex and satisfies f(M) ≤ `|M |,
then f is a Lipschitz function with constant `. Indeed, consider a convex function f : Rn → R (with n > 1) such
that f(x) ≤ `|x| and notice that, for any v ∈ Sn−1, g(t) := f(x+ tv) is still convex and meets the requirement
g(t) ≤ `|x + tv|. In particular limt→+∞

g(t)−g(0)
t ≤ ` and since the map t 7→ g(t)−g(0)

t is increasing we get
g(t)−g(0)

t ≤ ` for all t ∈ R, leading to g′(0) ≤ ` and thus to

∇f(x) · v ≤ ` for all v ∈ Sn−1 ⇒ |∇f(x)| ≤ `.

We are interested in the asymptotic behavior (as ε → 0) of the sequence of energies (2.1). In particular the
first aim of this paper is to show that the family of functional Fε, under the Assumptions in 2.1, is Γ-converging
to the energy

Φ(u) :=
∫

Ω

Ae(u) · e(u)dx+
∫

Ω

F (x, u, 1)dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju) +
∫
Ju

F∞(z, [u]� ν) dHn−1(z)
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defined for u ∈ SBD2(Ω; Rn) and extended to +∞ otherwise. Here we have set, for the sake of shortness,

a = 2
√
αψ(0), b = 2

∫ 1

0

ψ(t) dt

and

F∞(z,M) := lim
t→+∞

F (z, tM, 0)− F (z, 0, 0)
t

for z ∈ Ju and M ∈Mn×n
sym

(see Prop. A.1 to see why F∞ is well defined for potential F satisfying Assum. 2.1).

Remark 2.4. Notice that the role of the condition α > 0 is linked, at least in the present analysis, to the
possibility for F to be negative. The approach here proposed seems to work also if we replace the condition
vε ≥ αε with the condition vε ≥ ηε for an ηε such that ηε/ε→ 0, provided F ≥ 0.

2.2. Main Theorems

Setting, F : L1(Ω; Rn)× L1(Ω; [0, 1])→ R+ to be

F(u, v) :=


Φ(u), if u ∈ SBD2(Ω)

and v = 1 Ln-a.e. in Ω,

+∞ otherwise

(2.3)

we are able to provide the following Γ-convergence result:

Theorem 2.5. Provided the notations and the assumptions introduced in Section 2.1 we have

Γ- lim
ε→0

Fε = F

on the space H1(Ω; Rn)×Vε ⊂ SBD2(Ω)×L1(Ω) with respect to the convergence induced by the L1 topology. In
particular, the following assertions hold true:

(a) For any (uε, vε) ∈ H1(Ω; Rn)× Vε such that uε → u, vε → v in L1 we have

lim inf
ε→0

Fε(uε, vε) ≥ F(u, v);

(b) Let {εj}j∈N be a vanishing sequence. Then for any u ∈ SBD2(Ω) there exists a subsequence {εjk}k∈N ⊂
{εj}j∈N and (uk, vk) ∈ H1(Ω; Rn)× Vεjk such that

uk → u, vk → 1 in L2, and lim
k→+∞

Fεjk (uk, vk) = F(u, 1).

Let us remark that, assertion (b) allows us to recover the energy of any u ∈ SBD2(Ω), which consist of an
important improvement of the results in [26], where only u ∈ SBD2(Ω) ∩ L∞(Ω; Rn) can be recovered. This
improvement is mostly due to the recent refinement [21] of the approximation theorem for GSBD function
contained in [31]. Such a theorem yields a more precise information about the lack of energy on the jump set
between the function u and its (more regular) approximants (see Property (d) of Thm. 4.6 below). Thank to
this recent result, our solution is sharp, since the complete problem is addressed, i.e., without the L∞-bound,
as found in most results about this problem.
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Moreover, we prove that the sequences with bounded energy are compact with respect to the L1 topology.
Namely the following theorem holds true:

Theorem 2.6. With the notations and the assumptions introduced in Section 2.1, if (uε, vε) ∈ H1(Ω; Rn)× Vε
are sequences such that

sup
ε
{‖uε‖L1 + Fε(uε, vε)} < +∞ (2.4)

there exists two subsequences {(uεk , vεk)}k∈N ⊂ {(uε, vε)}ε>0 and u ∈ SBD2(Ω) such that

uεk → u, vεk → 1 in L1

and Euεk ⇀
∗ Eu. Moreover, for any λ ∈ (0, 1) it holds

e(uk)1{vεk≥λ} ⇀ e(u) in L2(Ω;Mn×n
sym ).

The Proof of Theorem 2.5 is obtained by separately proving statement (a) (in Sect. 3, Thm. 3.1) and statement
(b) (in Sect. 4, Thm. 4.9 ). The compactness Theorem is proven in Section 5.1 and it is basically a consequence
of Propositions 3.2 and 3.3 in Section 3. For the existence of minimizers with prescribed Dirichlet boundary
condition we send the reader to Section 5.2 where, under specific additional hypothesis on the potential F , on
the boundary data and on the domain, the relaxed problem over Ω is treated. We finally provide some examples
of applications in Section 6.

3. Liminf inequality

This section is entirely devoted to the proof of the following theorem:

Theorem 3.1. Given (uε, vε) ∈ H1(Ω; Rn)× Vε such that uε → u in L1 and vε → v a.e. it holds

lim inf
ε→0

Fε(uε, vε) ≥ F(u, v).

To achieve the proof we will analyze separately what happens on the energy restricted on the sequence of
sets Ωλε = {vε ≥ λ} and Ω \ Ωλε . We start by first gaining some information on the sequences with bounded
energy. To do that we will exploit the hypothesis on the nonlinear potential F . Let us denote by

Wε(u, v) :=


∫

Ω

(
vAe(u) · e(u) +

ψ(v)
ε

)
dx if (u, v) ∈ H1(Ω; Rn)× Vε

+∞ otherwise

(3.1)

and let us observe that
Fε(u, v) =Wε(u, v) +

∫
Ω

F (x, e(u), v) dx.

We underline that any bounds of the type

sup
ε>0
{Wε(uε, vε)} < +∞

leads, as we will discuss below, to an information on the convergence of uε, vε. We now show how to
derive such kind of control starting from the boundedness of Fε. In the sequel we adopt the notations
Wε(u, v;A),Fε(u, v;A),F(u, v;A) meaning the usual energies localized to the set A.

Proposition 3.2. Under the hypothesis stated in Section 2.1 on A, ψ and F , there exists a constant C depending
on α,A, |Ω|, ψ and σ only such that

Wε(u, v;A) < C(Fε(u, v;A) + 1) (3.2)

for all (u, v) ∈ H1(Ω; Rn)× Vε and for all open sets A ⊆ Ω.
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Proof. The key point is the estimate∫
A

F (x, e(u), v) dx ≥ −σ
∫
A

|e(u)|dx. (3.3)

Set
Ωλ = {v ≤ λ}

and notice that ∫
A

|e(u)|dx =
∫
A\Ωλ

|e(u)|dx+
∫
A∩Ωλ

|e(u)|dx

and that ∫
A\Ωλ

|e(u)|dx ≤
√
|A|

(∫
A\Ωλ

|e(u)|2 dx

)1/2

≤
√
|A|
λ

(∫
A\Ωλ

v|e(u)|2 dx

)1/2

≤
√
κ

√
|A|
λ

√
Wε(u, v;A). (3.4)

On the other hand,∫
A∩Ωλ

|e(u)|dx =
√
κ

2
√
αψ(λ)

∫
A∩Ωλ

2
√
κ−1ψ(λ)

√
αε

ε
|e(u)|dx

≤
√
κ

2
√
αψ(λ)

(∫
A∩Ωλ

αεκ−1|e(u)|2 dx+
∫
A∩Ωλ

ψ(λ)
ε

dx
)

≤
√
κ

2
√
αψ(λ)

(∫
A∩Ωλ

vAe(u) · e(u) dx+
∫
A∩Ωλ

ψ(v)
ε

dx
)

≤
√
κ

2
√
αψ(λ)

Wε(u, v;A). (3.5)

In particular, by combining (3.3)–(3.5) we obtain, for any (u, v) ∈ H1(Ω; Rn)× Vε∫
A

F (x, e(u), v) dx ≥ −σ
√
κ

α

[√
α|Ω|
λ

√
Wε(u, v;A) +

1
2
√
ψ(λ)

Wε(u, v;A)

]

≥ −σ
√
κ

α
(1 +Wε(u, v;A))

[√
α|Ω|
λ

+
1

2
√
ψ(λ)

]

= −σ(1 +Wε(u, v;A))

[√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

2
√
αψ(λ)

]
, (3.6)

where we have used the fact that
√
Wε(u, v;A) and Wε(u, v;A) are each always bounded by (1 +Wε(u, v;A)).

Moreover, inequality (3.6) holds for any λ ∈ (0, 1) and hence it holds for the minimum among λ which means
that ∫

A

F (x, e(u), v) dx ≥ −σ(1 +Wε(u, v;A)) min
λ∈(0,1)

{√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

2
√
αψ(λ)

}
·
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Notice that Assumption (1) in 2.1 requires that

σ < max
λ∈(0,1)

{
2
√
αψ(λ)

√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

}
=

(
min
λ∈(0,1)

{√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

2
√
αψ(λ)

})−1

·

In particular for some δ > 0 depending on α,A, |Ω|, ψ and σ only we have

σ min
λ∈(0,1)

{√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

2
√
αψ(λ)

}
≤ (1− δ)

leading to ∫
A

F (x, e(u), v) dx ≥ −(1− δ)(1 +Wε(u, v;A)). (3.7)

By exploiting (3.7) we reach

Fε(u, v;A) =Wε(u, v;A) +
∫
A

F (x, e(u), v) dx

≥ Wε(u, v;A)− (1− δ)Wε(u, v;A)− (1− δ) ≥ δWε(u, v;A)− 1

which, by setting C = δ−1, achieves the proof. �

Let us now analyze the behaviour of the part of the energy that lives on the set {vε ≥ λ}. We set up some
notation that will be repeatedly used in this subsection. Given a sequence {vε}ε>0 ⊆ Vε and a fixed λ ∈ (0, 1)
we define

Ωλε = {vε ≤ λ}.

We also set

I1
ε (λ) :=

∫
Ω\Ωλε

vεAe(uε) · e(uε) dx,

I2
ε (λ) :=

∫
Ω\Ωλε

ψ(vε)
ε

dx,

I3
ε (λ) :=

∫
Ωλε

(
vεAe(uε) · e(uε) +

ψ(vε)
ε

)
dx.

Then
Fε(uε, vε; Ωλε ) = I3

ε (λ) +
∫

Ωλε

F (x, e(uε), vε)dx

is the part of the energy that will provide the jump terms in the limit, as Proposition 3.4 will show. Let us first
treat the bulk part Fε(uε, vε)−Fε(uε, vε; Ωλε ) = I1

ε (λ) + I2
ε (λ) +

∫
Ω\Ωλε

F (x, e(uε), vε).

Proposition 3.3. Let (uε, vε) ∈ H1(Ω; Rn)× Vε be such that

uε → u, vε → v in L1

and with
sup
ε>0
{Fε(uε, vε)} < +∞. (3.8)

Then

sup
ε>0

{∫
Ω

|e(uε)|dx
}
< +∞. (3.9)
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Moreover u ∈ SBD2(Ω; Rn), v = 1 a.e. in Ω and for any λ > 0 it holds

sup
ε>0

{∫
Ω\Ωλε

|e(uε)|2 dx,

}
< +∞, (3.10)

lim inf
ε→0

∫
Ω\Ωλε

[
vεAe(uε) · e(uε) +

ψ(vε)
ε

+ F (x, e(uε), vε)
]

dx

≥
∫

Ω

[Ae(u) · e(u) + F (x, e(u), 1))] dx+ 2(h(1)− h(λ))Hn−1(Ju)
(3.11)

where

h(t) :=
∫ t

0

ψ(τ) dτ.

Proof. Thanks to Proposition 3.2, the bound (3.8) implies

sup
ε>0
{Wε(uε, vε)} < +∞. (3.12)

In particular ∫
Ω

ψ(vε) dx→ 0

which implies ψ(v) = 0 a.e. in Ω and thus v = 1 a.e. in Ω. Moreover, fix λ ∈ (0, 1) and notice that

I1
ε (λ) =

∫
Ω\Ωλε

vAe(u) · e(u) dx ≥ λκ−1

∫
Ω\Ωλε

|e(u)|2 dx (3.13)

and

I3
ε (λ) =

∫
Ωλε

(
vAe(u) · e(u) +

ψ(vε)
ε

)
dx ≥

∫
Ωλε

(
κ−1αε|e(u)|2 +

ψ(vε)
ε

)
dx

≥ 2
√
α
√
κ−1

∫
Ωλε

|e(u)|
√
ψ(vε) dx ≥

√
κ−1αψ(λ)

∫
Ωλε

|e(u)|dx. (3.14)

Inequality (3.13) implies (3.10), while (3.14), after a further application of Cauchy–Schwarz inequality in
(3.13), yields (3.9), that in turn establishes the weak compactness in BD. Such a compactness in the weak
topology of BD, together with uε → u in L1, implies u ∈ BD(Ω). The remaining part of the proof is obtained as
a slight variation of the original arguments of [26] extended in such a way as to take into account the nonlinear
potential part.

Step one: proof that u ∈ SBD2(Ω). We start from the fact that

sup
ε>0
{I1
ε (λ) + I2

ε (λ) + I3
ε (λ)} = sup

ε>0
{Wε(uε, vε)} < +∞ for every λ ∈ (0, 1)

which implies a uniform bound in ε on each Iiε for i = 1, 2, 3. Thanks to the co-area formula and to the property
of vε ∈ Vε (in particular to |∇vε| < 1/ε) we obtain, by recalling the definition of h

I2
ε (λ) =

∫
Ω\Ωλε

ψ(vε)
ε

dx ≥
∫

Ω\Ωλε
|∇vε|ψ(vε) dx =

∫
Ω\Ωλε

|∇h(vε)|dx

=
∫ h(1)

h(λ)

P ({h(vε) > t}; Ω) dt ≥ (h(1)− h(λ))P ({h(vε) > tε}; Ω),
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where in the last inequality we considered the mean value theorem to find tε ∈ (h(λ), h(1)). We now set

λε := h−1(tε) ∈ (λ, 1)

and observe that
P (Ω \ Ωλεε ; Ω) ≤ CI2

ε (λ),

yielding
sup
ε>0
{P (Ω \ Ωλεε ; Ω)} < +∞.

Consider uε := uε1Ω\Ωλεε and notice that, since vε → 1 (and thus |Ω \ Ωλεε | → |Ω|), we have uε → u in L1.
It is easy to see that, as a consequence of the chain rule [5], Theorem 3.96 (see [5], Example 3.97, uε is a BV
function with

Duε = 1Ω\Ωλεε ∇uεL
n + uε ⊗ νΩλεε

Hn−1x∂∗Ωλεε .

Moreover the above formula implies that Hn−1(Juε \ ∂∗Ωλεε ) = 0. Thus uε ∈ SBD(Ω; Rn)∩L2(Ω) (since also
|uε| ≤ |uε| ∈ L2). In particular

sup
ε>0
{Hn−1(Juε)} < +∞.

From (3.13) we also get that uε ∈ SBD2(Ω; Rn) ∩ L2(Ω) with

sup
ε>0

{∫
Ω

|e(uε)|2 dx+Hn−1(Juε)
}
< +∞. (3.15)

By applying Lemma 5.1 from [13] this gives us that u ∈ SBD2(Ω; Rn), since

e(uε) ⇀ e(u) weakly in L2(Ω;Mn×n
sim ). (3.16)

Hn−1(Ju) ≤ lim inf
ε→0

Hn−1(Juε). (3.17)

Step two: proof of (3.11). Remark that the sequence {λε}ε>0 defined above lies in the interval (λ, 1). In
particular Ω \ Ωλεε ⊆ Ω \ Ωλε and relation (3.16), due to the convexity of the map M 7→ AM ·M and to the
strong convergence of vε to 1 almost everywhere, means that (see for instance [10], Thm. 2.3.1)

lim inf
ε→0

∫
Ω\Ωλε

vεAe(uε) · e(uε) dx ≥ lim inf
ε→0

∫
Ω\Ωλεε

vεAe(uε) · e(uε) dx

= lim inf
ε→0

∫
Ω

vεAe(uε) · e(uε) dx

≥
∫

Ω

Ae(u) · e(u) dx. (3.18)

Moreover ∣∣∣∣∣
∫

Ω\Ωλε
F (x, e(uε), vε) dx−

∫
Ω\Ωλε

F (x, e(uε), 1) dx

∣∣∣∣∣ ≤
∫

Ω\Ωλε
ωF (vε; 1)|e(uε)|dx∣∣∣∣∣

∫
Ω\Ωλε

F (x, e(uε), 1) dx−
∫

Ω\Ωλεε
F (x, e(uε), 1) dx

∣∣∣∣∣ ≤
∫

Ωλεε \Ωλε
`|e(uε)|dx,

where we exploited item (3): |F (x,M, v)| ≤ `|M | of Assumption 2.1. The above quantities are vanishing (by
item (4) of Assumption 2.1 on F , thanks to the fact that |Ωλεε \ Ωλε | → 0 and thanks to (3.10)) and hence
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this fact, together with the convexity of the map M → F (x,M, 1), implies (using once again (3.16) and the
semicontinuity theorem [10], Thm. 2.3.1)

lim inf
ε→0

∫
Ω\Ωλε

F (x, e(uε), vε) dx = lim inf
ε→0

∫
Ω\Ωλεε

F (x, e(uε), 1) dx

≥
∫

Ω

F (x, e(u), 1) dx. (3.19)

To achieve the proof of (3.11) we need only to show that

lim inf
ε→0

∫
Ω\Ωλε

ψ(vε)
ε

dx ≥ 2(h(1)− h(λ))Hn−1(Ju).

In particular we use the fact that

lim inf
ε→0

P ({h(vε) ≥ t}; Ω) ≥ 2Hn−1(Ju) for all t ∈ (h(λ), h(1)) (3.20)

proved in [26] via a slicing argument as established also in Lemma 3.2.1 of [25]. Relation (3.20) implies imme-
diately that ∫

Ω\Ωλε

ψ(vε)
ε

dx ≥
∫ h(1)

h(λ)

P ({h(vε) ≥ t}; Ω) dt ≥ 2(h(1)− h(λ))Hn−1(Ju)

leading to

lim inf
ε→0

∫
Ω\Ωλε

ψ(vε)
ε

dx ≥ 2(h(1)− h(λ))Hn−1(Ju). (3.21)

By collecting (3.18), (3.19) and (3.21) we deduce (3.11). �

We now provide the liminf inequality for the (asymptotically equivalent) remaining part of the energy on
Ω\Ωλε . In order to do so, we will need to apply Proposition A.7, stated in the Appendix A, that is a well-known
approach (inspired by [11]) when dealing with local functionals. We will also use the blow-up technique originally
designed in [27].

Proposition 3.4. Let (uε, vε) ∈ H1(Ω; Rn)× Vε be such that

uε → u, vε → v in L1

and with
sup
ε>0
{Fε(uε, vε)} < +∞. (3.22)

Suppose also that, at a given z ∈ Ju such that

lim
r→0

|Eu|(Br(z))
ωn−1rn−1

= |[u](z)� ν(z)| (3.23)

we have

lim
r→0

lim inf
Fε(uε, vε;Br(z))

rn−1
< +∞,

then, for every λ ∈ (0, 1), it holds

lim
r→0

lim inf
ε→0

1
rn−1

∫
Br(z)∩Ωλε

[2
√
αψ(0)

√
Ae(uε) · e(uε) + F (x, e(uε), 0)] dx

≥ 2
√
αψ(0)

√
A[u](z)� ν(z) · [u](z)� ν(z) + F∞(z, [u](z)� ν(z), 0).

(3.24)
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Proof. Set G : Rn ×Mn×n
sym → R+ to be

G(x,M) = 2
√
α
√
ψ(0)
√

AM ·M + F (x,M, 0)

and notice, by the hypothesis on F , that G(x, ·) is a positive convex functions on Mn×n
sym for any x ∈ Ω. In

particular G satisfies the hypothesis of Proposition A.7 and thus

lim inf
ε→0

∫
Br(z)

G(x, e(uε)) dx ≥
∫
Br(z)

G(x, e(u)) dx+
∫
Ju∩Br(z)

G∞(y, [u]� ν) dHn−1(y) (3.25)

for any Br(z) ⊂ Ω. Let εk be the sequence achieving

lim inf
ε→0

∫
Ωλε

G(x, e(uε)) dx = lim
k→+∞

∫
Ωλεk

G(x, e(uεk)) dx

and define, for every measurable set A ⊆ Ω, the Radon measures:

µk(A) :=
∫
A∩Ωλεk

G(x, e(uεk)) dx,

ξk(A) :=
∫
A

G(x, e(uεk)) dx,

Notice that, due to the uniform bound on the energy Fε we have

sup
ε
{µk(Ω)} < +∞, sup

ε
{ξk(Ω)} < +∞,

and thus, up to a subsequence (not relabeled), we can find Radon measures µ, ξ such that

µk ⇀
∗ µ, ξk ⇀

∗ ξ.

Step one: We assert that the proof of (3.24) follows easily from the following fact:

lim
r→0

µ(Br(z))
rn−1

= lim
r→0

ξ(Br(z))
rn−1

· (3.26)

Indeed, by assuming the validity of (3.26) we conclude that, for L1-a.e. r > 0 it holds (because of (3.25))

ξ(Br(z))
rn−1

=
1

rn−1
lim

k→+∞
ξk(Br(z)) ≥

1
rn−1

∫
Ju∩Br(z)

G∞(y, [u]� ν) dHn−1(y),

implying

lim
r→0

µ(Br(z))
rn−1

= lim
r→0

ξ(Br(z))
rn−1

≥ G∞(z, [u](z)� ν(z))

for Hn−1-a.e. z ∈ Ju. This gives

µ(A) ≥
∫
Ju∩A

G∞(y, [u]� ν) dHn−1(y)

and since
G∞(y,M) = 2

√
αψ(0)

√
AM ·M + F∞(y,M)

we obtain, for A = Ω, relation (3.24).
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Step two: Let us focus on (3.26). It suffices to check that

lim
r→0

lim inf
k→+∞

1
rn−1

∫
Br(z)∩(Ω\Ωλεk )

G(x, e(uεk)) dx = 0.

Set τ = max{σ, `}. We claim that

lim
r→0

lim inf
k→+∞

Wεk(uεk , vεk ;Br(z))
rn−1

< +∞.

Indeed, by defining for a generic Borel set A ⊆ Ω, the measures

ζk(A) :=Wεk(uεk , vεk ;A)

and by exploiting the uniform bounds on Fε and Proposition 3.2 we have, up to a subsequence, ζk ⇀∗ ζ.
Moreover, due to (3.5)

Fεk(uεk , vεk ;A) =ζk(A) +
∫
A

F (x, e(uεk), vεk) dx.

and ∫
A

F (x, e(uεk , vεk) dx ≥ −σ

[∫
A\Ωλεk

|e(uεk)|dx+
∫
A∩Ωλεk

|e(uεk)|dx

]
and by repeating the computation in (3.4), (3.5) we achieve∫

A\Ωλεk

|e(uεk)|dx ≤
√
κ
|A|ζk(A)

λ
,

∫
A∩Ωλεk

|e(uεk)|dx ≤
√

κ

αψ(λ)
ζk(A).

In particular

lim
k→+∞

1
rn−1

√
|Br(z)|ζ(Br(z)) =

√
ωn
√
r

√
ζ(Br(z))
rn−1

and this yields, still following the computation giving (3.6), (3.7), for r small enough and for some δ > 0
depending on α,A, |Ω|, ψ and σ only

lim inf
k→+∞

1
rn−1

∫
Br(z)

F (x, e(uεk , vεk) dx ≥ −(1− δ)
(
ζ(Br(z))
rn−1

+ 1
)
.

Thus

lim
r→0

lim inf
k→+∞

Fεk(uεk , vεk ;Br(z)
rn−1

≥ −1 + C lim
r→+∞

ζ(Br(z))
rn−1

for a positive constant C. Thus, if

lim
r→0

lim inf
ε→0

Fε(uε, vε;Br(z))
rn−1

< +∞

then

lim
r→0

lim inf
k→+∞

Wεk(uεk , vεk ;Br(z))
rn−1

< +∞. (3.27)



1318 M. CAROCCIA AND N. VAN GOETHEM

Clearly, ∣∣∣∣∣
∫

(Ω\Ωλεk )∩Br(z)

G(x, e(uεk)) dx

∣∣∣∣∣ ≤
∫

(Ω\Ωλεk )∩Br(z)

(2
√
αψ(0)κ+ τ)|e(uεk)|dx

≤ (2
√
αψ(0)κ+ τ)

∫
(Ω\Ωλεk )∩Br(z)

|e(uεk)|dx

≤ C|Br(z)|1/2
(∫

Ω\Ωλεk∩Br(z)

|e(uεk)|2 dx

)1/2

.

Thus

1
rn−1

∣∣∣∣∣
∫

(Ω\Ωλεk )∩Br(z)

G(x, e(uεk)) dx

∣∣∣∣∣ ≤ Cr1/2

(
1

rn−1

∫
(Ω\Ωλε )∩Br(z)

|e(uεk)|2 dx

)1/2

≤ Cr1/2

λ1/2

(
1

rn−1

∫
Ω∩Br(z)

vεk |e(uεk)|2 dx

)1/2

≤ Cr1/2

λ1/2

(
1

rn−1

∫
Ω∩Br(z)

[
vεk |e(uεk)|2 +

ψ(vεk)
εk

]
dx

)1/2

=
Cr1/2

λ1/2

(
1

rn−1
Wεk(uεk , vεk ;Br(z))

)1/2

.

But now, thanks to (3.27), it holds

lim
r→0

lim inf
k→+∞

1
rn−1

∣∣∣∣∣
∫

(Ω\Ωλεk )∩Br(z)

G(x, e(uεk)) dx

∣∣∣∣∣ = 0,

yielding (3.26), thence completing the proof. �

We are now ready to proceed to the Proof of Theorem 3.1.

Proof of Theorem 3.1. Let (uε, vε) ∈ H1(Ω; Rn)× Vε with uε → u and vε → v in L1.

We can easily assume that supε{Fε(uε, vε)} < +∞ (otherwise there is nothing to prove). Let λ ∈ (0, 1) to be
chosen later and apply Proposition 3.3 to deduce that v = 1 Ln-a.e. in Ω, u ∈ SBD2(Ω) and to conclude that
(3.11) and (3.10) are in force. Thus

lim inf
ε→0

∫
Ω\Ωλε

[
vεAe(uε) · e(uε) +

ψ(vε)
ε

+ F (x, e(uε), vε)
]

dx

≥
∫

Ω

[Ae(u) · e(u) + F (x, e(u), 1)] dx+ 2(h(1)− h(λ))Hn−1(Ju).
(3.28)

By writing

Fε(uε, vε) ≥
∫

Ω\Ωλε

[
vεAe(uε) · e(uε) +

ψ(vε)
ε

+ F (x, e(uε), vε)
]

dx

+
∫

Ωλε

[
vεAe(uε) · e(uε) +

ψ(vε)
ε

+ F (x, e(uε), vε)
]

dx,
(3.29)
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it is readily seen that it suffices to focus on the second addendum in the right-hand side of (3.29), denoted as
Gε(uε, vε;λ), which by Cauchy–Schwarz inequality yields

Gε(uε, vε) ≥
∫

Ωλε

[
2
√
α
√

Ae(uε) · e(uε)
√
ψ(vε) + F (x, e(uε), vε)

]
dx.

Since ψ(s) → ψ(0) and ωF (s; 0) → 0 for s → 0, for some λδ we have that |
√
ψ(s) −

√
ψ(0)| + ωF (s; 0) ≤

δ for all s < λδ. Thus, for a suitably small λ, we have∣∣∣∣∣
∫

Ωλε

2
√
α
√

Ae(uε) · e(uε)(
√
ψ(vε)−

√
ψ(0)) dx

∣∣∣∣∣ ≤ 2δ
√
κα

∫
Ωλε

|e(uε)|dx

and ∣∣∣∣∣
∫

Ωλε

[F (x, e(uε), vε)− F (x, e(uε), 0)] dx

∣∣∣∣∣ ≤
∫

Ωλε

ωF (vε; 0)|e(uε)|dx ≤ δ
∫

Ωλε

|e(uε)|dx.

In particular, according to (3.9), we reach

lim
ε→0

∣∣∣∣∣
∫

Ωλε

[2
√
α
√

Ae(uε) · e(uε)(
√
ψ(vε)−

√
ψ(0)) dx

∣∣∣∣∣
+ lim
ε→0

∣∣∣∣∣
∫

Ωλε

F (x, e(uε), vε)− F (x, e(uε), 0)] dx

∣∣∣∣∣ ≤ δC
where C is a constant depending only on the sequence on the sequence uε. In particular, we have

lim inf
ε→0

Gε(uε, vε) ≥ −δC + lim inf
ε→0

∫
Ωλε

[
2
√
αψ(0)

√
Ae(uε) · e(uε) + F (x, e(uε), 0)

]
dx.

For Hn−1-a.e. z ∈ Ju we can guarantee that

lim
r→0

Eu(Br(z))
ωn−1rn−1

= |[u](z)� ν(z)|.

Moreover, if

lim
r→0

lim inf
ε→0

Fε(uε, vε;Br(z))
rn−1

= +∞

then the (n−1)-dimensional densities of the lim inf lower bound is +∞ and the lim inf inequality trivially holds.
Instead, for all the other point it must hold

lim
r→0

lim inf
ε→0

Fε(uε, vε;Br(z))
rn−1

< +∞.

Hence by applying Proposition 3.4, and in particular relation (3.24), we get

lim inf
ε→0

Gε(uε, vε) ≥ −δC +
∫
Ju

[
2
√
αψ(0)

√
A[u]� ν · [u]� ν + F∞(x, [u]� ν, 0)

]
dx. (3.30)

Summarizing, we have shown that for any δ > 0 there exists a λδ such that, if λ ≤ λδ, then (3.30) holds true.
Moreover (3.28) is in force for every λ ∈ (0, 1). Thus, for any δ > 0 it must holds

lim inf
ε→0

Fε(uε, vε) ≥ −δC + F(u, v),

that, by taking the limit as δ → 0, achieves the proof. �
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4. Limsup inequality

This section is entirely devoted to the construction of a recovery sequence. We first show how to recover the
energy on a special class of function Cl(Ω; Rn) and then we show, with a density argument, that each function
u ∈ SBD2(Ω; Rn) can be recovered. Let us define

Cl(Ω; Rn) :=



u ∈ SBV 2(Ω; Rn) ∩ L∞(Ω; Rn) ∩Wm,∞(Ω \ Ju; Rn),
for all m ∈ N

where Ju ∩ Ω is the finite union S of closed,
pairwise disjoint (n− 1)-dimensional simplexes

intersected with Ω and Hn−1((Ju ∩ Ω) \ Ju) = 0.


. (4.1)

4.1. Recovery sequence in Cl(Ω; Rn)

Consider u ∈ Cl(Ω; Rn) and fix once and for all a unitary vector field ν = νu which is normal Hn−1-a.e. to
K = Ju∩Ω. Notice that, since Ju is the finite union of closed and pairwise disjoint (n−1)-dimensional simplexes,
then the point where ν is not well-defined is a set of dimension at most n−2. The projection operator P : Ω→ K
is well defined almost everywhere around a small tubular neighborhood T ⊂ Ω of K and thus we can consider,
for points in T , the signed distance

dist(x,K) = (x− x) · ν(x), x = P (x).

We consider a normal extension of ν on T . We now introduce the recovery sequence. Set ϑ : Ju → R, a
function such that

ϑ ∈W 1,∞
0 (Ju; R,Hn−1), ϑ > 0 on Ju,

to be chosen later. We also require that ϑ(x) = 0 for all x ∈ K \ Ju. For any ε > 0 small enough, consider the
set defined as

Aϑε := {y + tν(y) | y ∈ Ju, t ∈ (−ϑ(y)ε, ϑ(y)ε)}.

Notice that up to choose ε small enough it is not restrictive to assume that Aϑε has finitely many disconnected
component well separated one from another, each of which is part of a tubular neighborhood of an (n − 1)-
dimensional hyperplane.

With the same carefulness explained in Remark 4.1 (or by suitably modify the construction provided by
Thm. 4.7, see [26], Rem. 3), it is not restrictive to assume also K = Ju ∩ Ω ⊂ Ω.

Having in mind this assumptions on the jump set, we define the following functions

vε(x) =


1 if x /∈ A(ϑ+1)ε(

1− αε
ε

)
|dist(x, Ju)| − ϑ(x) + (1 + ϑ(x))αε if x ∈ A(ϑ+1)ε \Aϑε

αε if x ∈ Aϑε

(4.2)

and

uε(x) =



u if x /∈ Aϑε(
u(x+ ϑ(x)εν)− u(x− ϑ(x)εν)

2ϑ(x)ε

)
dist(x, Ju)

+
u(x+ ϑ(x)εν) + u(x− ϑ(x)εν)

2

if x ∈ Aϑε
. (4.3)
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Figure 1. In grey is depicted the set Aϑε. Up to choose ε small enough we can always assume
that the pieces of the set Aϑε, on each branches of Ju, do not overlap. In order to alleviate the
notations we are neglecting this correction.

Remark 4.1 (On the regularity of (uε, vε)). When x approaches Ju \ Ju we have uε(x) = u(x) and thus we
can conclude uε ∈W 1,∞(Ω; Rn). On the other hand, we see that vε might present a jump on the lines

{y + tν | y ∈ Ju \ Ju, t ∈ (−ε, ε)}

where ϑ(y) = 0. To overcome this problem we can argue as follows. As a consequence of Corollary 3.11, Assertion
ii” [19] we can claim that the better regularity of the jump set of u ensures that Hn−2(Ju \ Ju) < +∞ and
thus, for every ε > 0 we can cover such a set with a finite number Nε of balls Bk(ε) of radius ε such that
limε→0Nεε

n−1 = 0.
Moreover, we can find a function ζε such that ζε = 1 outside Σε :=

⋃Nε
k=1Bk(2ε), |∇ζε| ≤ 1/ε, ζε = αε on

∪kBk(ε). In particular we can make use of the neighbourhood
⋃Nε
k=1Bk(3ε)\Σε to sew up ζε1Σε with vε(1−1Σε)

in an H1 way. Furthermore, the slope of the function constructed in this way can be controlled by 1/ε and hence
the gradient of the surgery, namely v̂ε, still has modulus less than 1/ε (up to the carefulness of Rem. 4.2) as
required by the constraint. In particular, by considering v̂ε in place of vε we can see that v̂ε ∈ Vε. In order to
alleviate the notations we will neglect this correction that, indeed, does not affect the energy asymptotically,
due to the fact that |

⋃Nε
k=1Bk(3ε)|/ε ≤ CNεεn−1 → 0.

Remark 4.2 (On the constraint |∇vε| ≤ 1/ε). Notice that

|∇vε| =
(1− αε)

ε

√
[1 + ε2|∇ϑ(x)|2] ≤ Cε/ε

where Cε ↘ 1. In particular we can correct our vε by dividing by the factor Cε > 1 so to ensure |∇vε| ≤ 1/ε
without essentially changing the structure of the recovery sequence. To ease the notations we also decided not
to take into account this small correction that is anyhow asymptotically negligible.

Up to these modifications we can thus pretend that uε ∈ W 1,∞(Ω; Rn), vε ∈ W 1,∞(Ω; [0, 1]) and uε → u,
vε → 1 in L1. For the sake of shortness, in the sequel when referring to a point x ∈ Aϑε we will adopt the slight
abuse of notation ϑ(x) by meaning ϑ(x) = ϑ(x) which is equivalent to consider the normal extension of ϑ to
Aϑε. We now proceed to the proof of the following proposition.
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Remark 4.3. Since we will make use of the following computations in the sequel, let us briefly clarify it in few
lines. We will often deal with integrals of the form∫

Aϑε

q(x) dx

that we will slice with the co-area formula with respect to the function g(x) = d(x, Ju) (notice that |∇g(x)| = 1)
yielding ∫

Aϑε

q(x) dx =
∫ ϑmaxε

−ϑmaxε

dt
∫
{d(y,Ju)=t}∩Aϑε

q(y) dHn−1(y)

=
∫ ϑmaxε

−ϑmaxε

dt
∫
D

q(z + tν(z)) dHn−1(z)

where
ϑmax = sup

x∈Ju
{ϑ(x)}, D = {z ∈ Ju | z + tν(z) ∈ Aϑε}.

The identity between characteristic functions

1[−ϑmaxε,ϑmaxε](t)1D(z) = 1Ju(z)1[−ϑ(z)ε,ϑ(z)ε](t)

is in force for any ε is small enough and thus an application of Fubini’s theorem yields∫
Aϑε

q(x) dx =
∫
Ju

∫ ϑ(z)ε

−ϑ(z)ε

q(z + tν(z)) dtdHn−1(z).

Proposition 4.4. If u ∈ Cl(Ω; Rn), there exists a function ϑ such that the sequences defined in (4.2) and (4.3)
are recovery sequence for the energy F . In particular

lim
ε→0
Fε(uε, vε) = F(u, 1).

Moreover ‖uε‖L∞ ≤ ‖u‖L∞ and uε → u in L2.

Proof. We choose ϑ at the very end. We just develop all the computation by assuming that

1
K
|[u](y)� ν(y)| ≤ ϑ(y) ≤ K|[u](y)� ν(y)| (4.4)

for a universal constant K so that

sup
y∈Ju

{
|[u](y)� ν(y)|

ϑ(y)

}
< +∞.

We first compute the gradient of uε for points x ∈ Aϑε.

∇uε(x) =
∇u(x+ εϑν)(∇P (x) + ε∇(ϑν)) +∇u(x− εϑν)(∇P (x)− ε∇(ϑν))

2

+
u(x+ ϑεν)⊗ ν − u(x− ϑεν)⊗ ν

2ϑε

+
∇u(x+ εϑν)(∇P (x) + ε∇(ϑν))−∇u(x− εϑν)(∇P (x)− ε∇(ϑν))

2ϑε
dist(x, Ju)

− u(x+ εϑν)⊗∇ϑ− u(x− εϑν)⊗∇ϑ
2ϑ2ε

dist(x, Ju)

= ∇u(x± ϑεν)(∇P (x)± ε∇(ϑν))
[

1
2
± dist(x, Ju)

2ϑε

]
− Sϑεu(x)⊗∇ϑ

2ϑ2ε
dist(x, Ju) +

Sϑεu(x)⊗ ν
2ϑε

, (4.5)
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where
Sϑεu(x) := u(x+ ϑεν)− u(x− ϑεν).

In order to give a more clear picture of the computations we are performing, we will argue on each separate
addendum of the energy Fε. In particular we divide the proof in three steps plus an additional fourth where
we choose the appropriate ϑ : Ju → R. Each addendum contains a principal part that has a nonzero limit as ε
approaches zero and a vanishing remainder Rε(uε, vε). For the sake of shortness in the sequel, we will always
denote with a small abuse, by Rε any term that is vanishing. In particular the term Rε can change from line
to line.

Step one: Limit of the absolutely continuous part of the gradient. Notice that∫
Ω

vεAe(uε) · e(uε) dx =
∫

Ω\A(ϑ+1)ε

Ae(u) · e(u) dx

+
∫
Aϑε

αεAe(uε) · e(uε) dx+Rε(uε, vε),

where

Rε(uε, vε) =
∫
A(ϑ+1)ε\Aϑε

vεAe(u) · e(u) dx,

which (since vε ≤ 1, u ∈W 1,∞ and ϑ ∈ L∞(Ju; R,Hn−1)) is clearly vanishing to 0. Moreover∣∣∣∣e(uε)(x)− Sϑεu(x)� ν(x)
2ϑε

∣∣∣∣ ≤ [1
2

+
dist(x, Ju)

2ϑε

]
|∇u(x± εϑν)| (‖∇P‖∞ + ε‖∇(ϑν)‖∞)

+ |Sϑεu(x)|‖∇ϑ‖∞
dist(x, Ju)

2ϑ2ε

≤ ‖∇u‖∞(‖∇P‖∞ + ε‖∇(ϑν)‖∞) +
‖u‖∞‖∇ϑ‖∞

2ϑ

≤ C
(

1 +
‖u‖∞
ϑ

)
where C is a constant depending on u and ϑ only (that in the sequel may vary from line to line). In particular∣∣∣∣Ae(uε) · e(uε)− 1

4ϑ2ε2
A(Sϑεu(x)� ν(x)) · Sϑεu(x)� ν(x)

∣∣∣∣
≤
∣∣∣∣Ae(uε) · [e(uε)− (Sϑεu(x)� ν(x))

2ϑε

]∣∣∣∣+
∣∣∣∣A (Sϑεu(x)� ν(x))

2ϑε
·
[
e(uε)−

(Sϑεu(x)� ν(x)
2ϑε

]∣∣∣∣
≤ C

(
1 +
‖u‖∞
ϑ

)
+ C

∣∣∣∣Sϑεu(x)� ν(x)
2ϑε

∣∣∣∣ (1 +
‖u‖∞
ϑ

)
·

Due to our assumption on u and ϑ (4.4) we know that∣∣∣∣Sϑεu(x)� ν(x)
2ϑε

∣∣∣∣ ≤ |[u]� ν|
ϑε

≤ C

ε

and thence we can conclude∣∣∣∣Ae(uε) · e(uε)− 1
4ϑ2ε2

A(Sϑεu(x)� ν(x)) · Sϑεu(x)� ν(x)
∣∣∣∣ ≤ C

ϑ
+
C

ϑε
≤ C

ϑε
·
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This means that∫
Aϑε

αε

∣∣∣∣Ae(uε) · e(uε)− 1
4ϑ2ε2

A(Sϑεu(x)� ν(x)) · Sϑεu(x)� ν(x)
∣∣∣∣ dx ≤ αεC

implying ∫
Aϑε

αεAe(uε) · e(uε) dx = α

∫
Aϑε

1
4ϑ(x)2ε

A(Sϑεu(x)� ν(x)) · Sϑεu(x)� ν(x) dx

+Rε(uε, vε).

By slicing the term as in Remark 4.3 we get

α

∫
Aϑε

1
4ϑ(x)2ε

A(Sϑεu(x)� ν(x)) · Sϑεu(x)� ν(x) dx

= α

∫
Ju

dHn−1(z)
∫ εϑ(z)

−εϑ(z)

1
4ϑ(z)2ε

A(Sϑεu(z)� ν(z)) · Sϑεu(z)� ν(z) dt

= α

∫
Ju

1
2ϑ(z)

A(Sϑεu(z)� ν(z)) · Sϑεu(z)� ν(z) dHn−1(z).

By virtue of Sϑεu(z)→ [u](z), we get

lim
ε→0

∫
Ω

vεAe(uε) · e(uε) dx =
∫

Ω

Ae(u) · e(u) dx

+ α

∫
Ju

A([u](z)� ν(z)) · ([u](z)� ν(z))
2ϑ(z)

dHn−1(z).
(4.6)

Step two: Limit of the fracture’s potential part. Notice that

1
ε

∫
Ω

ψ(vε) =
1
ε

∫
A(ϑ+1)ε\Aϑε

ψ(vε) dx+
ψ(αε)
ε

∫
Aϑε

dx

=
1
ε

∫
Ju

∫ (ϑ(z)+1)ε

ϑ(z)ε

ψ(vε(z + tν)) + ψ(vε(z − tν))) dtdHn−1(z)

+ 2ψ(αε)
∫
Ju

ϑ(z) dHn−1(z)

=
∫
Ju

∫ 1

0

ψ(vε(z + (tε+ εϑ(z))ν)) + ψ(vε(z − (tε+ εϑ(z))ν))) dtdHn−1(z)

+ 2ψ(αε)
∫
Ju

ϑ(z) dHn−1(z).

Since vε(z ± (tε+ εϑ(z))ν)→ t, we get

lim
ε→0

1
ε

∫
Ω

ψ(vε) dx = 2ψ(0)
∫
Ju

ϑ(z) dHn−1(z) + 2Hn−1(Ju)
∫ 1

0

ψ(t) dt. (4.7)

Step three: Limit of the lower order potential. We see that∫
Ω

F (x, e(uε), vε) dx =
∫

Ω\A(ϑ+1)ε

F (x, e(u), 1) dx+
∫
A(ϑ+1)ε\Aϑε

F (x, e(u), vε) dx

+
∫
Aϑε

F (x, e(uε), αε) dx

=
∫

Ω\A(ϑ+1)ε

F (x, e(u), 1) dx+
∫
Aϑε

F (x, e(uε), αε) dx+Rε(uε, vε).
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Once again the co-area formula leads to∫
Aϑε

F (x, e(uε), αε) dx =
∫
Ju

∫ ϑε

−ϑε
F (z + tν, e(uε)(z + tν), αε) dtdHn−1(z)

=
∫
Ju

ϑ(z)ε
∫ 1

0

F (z + tϑ(z)εν, e(uε)(z + tϑ(z)εν), αε) dtdHn−1(z)

+
∫
Ju

ϑ(z)ε
∫ 1

0

F (z − tϑ(z)εν, e(uε)(z − tϑ(z)εν), αε) dtdHn−1(z)

=
∫
Ju

(g+
ε (z) + g−ε (z)) dHn−1(z)

where

g+
ε (z) := ϑ(z)ε

∫ 1

0

F (z + tϑ(z)εν, e(uε)(z + tϑ(z)εν), αε) dt

g−ε (z) := ϑ(z)ε
∫ 1

0

F (z − tϑ(z)εν, e(uε)(z − tϑ(z)εν), αε) dt

Notice that, since F (·,M, 0) is Lipschitz continuous uniformly in M we can obtain

1
2
F∞(z, [u]� ν) = lim

ε→0
ϑ(z)ε

∫ 1

0

F

(
z + tϑ(z)εν,

[u]� ν
2ϑε

, 0
)

dt

and ∣∣∣∣g+
ε (z)−ϑ(z)ε

∫ 1

0

F

(
z + tϑ(z)εν,

[u]� ν
2ϑε

, 0
)

dt
∣∣∣∣

≤ ωF (αε; 0)ϑ(z)ε
∫ 1

0

|e(uε)(x+ tεϑν)|dt

+ σϑ(z)ε
∫ 1

0

∣∣∣∣e(uε)(z + tϑ(z)εν)− [u]� ν
2ϑε

∣∣∣∣ dt.

We underline that

e(uε)(z ± tεϑ(z)ν) =
1
4
∇u(∇P ± ε∇(ϑν))(z ± ϑεν) [1± t]

+
1
4

(∇P t ± ε∇(ϑν)t)∇ut(z ± ϑεν) [1± t]

− Sϑεu(z)�∇ϑ
2

t

ϑ(z)
+
Sεϑu(z)� ν

2ϑε
= Mε +

[u](z)� ν
2ϑ(z)ε

with

Mε :=
1
4
∇u(∇P ± ε∇(ϑν))(z ± ϑεν) [1± t] +

1
4

(∇P t ± ε∇(ϑν)t)∇ut(z ± ϑεν) [1± t]

− Sϑεu(z)�∇ϑ
2

t

ϑ(z)
+
Sεϑu(z)� ν − [u]� ν

2ϑε
·

Note also that ∣∣∣u(z ± tεϑ(z)ν)− u(z)±

εϑ(z)

∣∣∣ ≤ 1
2εϑ(z)

∫ tεϑ(z)

0

|∇u(z ± sν)ν|ds ≤ t

2
‖∇u‖∞
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that implies
|e(uε)(x+ tεϑν)|ϑε < C, ϑε|Mε| ≤ εC.

Hence

lim
ε→0

∣∣∣∣g+
ε (z)− ϑ(z)ε

∫ 1

0

F

(
z + tϑ(z)εν,

[u]� ν
2ϑε

, 0
)

dt
∣∣∣∣ = 0

and thence

lim
ε→0

∣∣∣∣g+
ε (z)− 1

2
F∞(z, [u]� ν)

∣∣∣∣ = 0.

In the same spirit, starting from g−ε (z) we conclude

lim
ε→0

∣∣∣∣g−ε (z)− 1
2
F∞(z, [u]� ν)

∣∣∣∣ = 0.

These, holding for every z ∈ Ju, lead to

lim
ε→0

∫
Aϑε

F (x, e(uε), αε) dx =
∫
Ju

F∞(z, [u]� ν) dHn−1(z).

In particular,

lim
ε→0

∫
Ω

F (x, e(uε), vε) dx =
∫

Ω

F (x, e(u), 1) dx+
∫
Ju

F∞(z, [u]� ν) dHn−1(z). (4.8)

Step four: Choice of ϑ. Collecting together steps one, two and three and in particular (4.6), (4.7) and (4.8) we
write

lim
ε→0
Fε(uε, vε) =

∫
Ω

Ae(u) · e(u) dx

+ α

∫
Ju

A([u](z)� ν(z)) · ([u](z)� ν(z))
2ϑ(z)

dHn−1(z)

+ 2ψ(0)
∫
Ju

ϑ(z) dHn−1(z) + 2
∫ 1

0

ψ(t) dtHn−1(Ju)

+
∫

Ω

F (x, e(u), 1) dx+
∫
Ju

F∞(z, [u]� ν) dHn−1(z).

Due to Schwarz inequality

A

2ϑ
+ 2ϑB ≥ 2

√
AB where “=” is attained iff ϑ =

√
A

2
√
B
,

by choosing ϑ̄(z) :=
√
α

2
√
ψ(0)

√
A([u](z)� ν(z)) · [u](z)� ν(z) we can guarantee that, for any other ϑ(z) satisfying

the hypothesis, it will hold

α

∫
Ju

A([u](z)� ν(z)) · ([u](z)� ν(z))
2ϑ(z)

dHn−1(z) + 2ψ(0)
∫
Ju

ϑ(z) dHn−1(z)

≥ 2
√
αψ(0)

∫
Ju

√
A([u](z)� ν(z)) · [u](z)� ν(z) dHn−1(z).

In particular, with this choice we reach the equality (minimum energy). Notice that all the hypothesis are
satisfied together with (4.4) due to the regularity of u ∈ Cl(Ω; Rn), in particular ϑ̄(z) ∈ W 1,∞(K; R,Hn−1) ∩
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L∞(K; R,Hn−1). Moreover, by definition it holds ϑ̄ > 0 on Ju and ϑ = 0 on K \Ju. Thus, this choice guarantees
that

lim
ε→0
Fε(uε, vε) =

∫
Ω

Ae(u) · e(u) dx

+ 2
√
αψ(0)

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Ju) +

∫
Ω

F (x, e(u), 1) dx

+
∫
Ju

F∞(z, [u]� ν) dHn−1(z).

Step five: L2 convergence and L∞ bound. By construction, it follows that ‖uε‖L∞ ≤ ‖u‖L∞ . We easily compute∫
Ω

|uε − u|2 dx =
∫
Aϑε

|uε − u|2 dx ≤ C|Aϑε|‖u‖2∞ → 0.

�

Remark 4.5. Notice that, from (4.5) it follows also that∫
Ω

|∇uε|dx ≤ C
[
|Ω|(‖∇u‖∞ + ‖u‖∞) +

∫
Aϑε

|Sϑεu(x̄)|
ϑε

dx
]
·

Moreover, since u is regular outside Ju we can also see that

|Sϑεu(x̄)| ≤ |u(x̄+ ϑεν)− u+(x̄)|+ |u(x̄− ϑεν)− u+(x̄)|+ |u+(x̄)− u−(x̄)|

and

|u(x̄+ ϑεν)− u+(x̄)| ≤
∫ εϑ(x̄)

0

|∇u(x)|dx ≤ ‖∇u‖∞εϑ.

Since ∫
Aϑε

|u+(x̄)− u−(x̄)|
ϑε

dx =
∫
Ju

dHn−1(y)
∫ ϑε

−ϑε

|u+(y)− u−(y)|
ϑε

dt

= 2
∫
Ju

|[u]|dHn−1(y) ≤ 2‖u‖∞Hn−1(Ju).

All this considered gives ∫
Ω

|∇uε|dx ≤ C, (4.9)

for a constant C that depends on u and Ω only. Along the same line we can also obtain∫
Aϑε

vε|∇uε|2 dx ≤ C
[
‖∇u‖2∞ + α

∫
Aϑε

ε
|u+(x̄)− u−(x̄)|2

ϑ2(x̄)ε2
dx
]

≤ C

[
‖∇u‖2∞ + α

∫
Ju

∫ ϑ(y)ε

−ϑ(y)ε

|u+(y)− u−(y)|2

ϑ2(y)ε
dx

]
≤ C,

for a constant C that depends on u and Ω only. In particular,∫
Ω

vε|∇uε|2 dx ≤ C, (4.10)

for a constant C that depends on u and Ω only.
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4.2. Recovery sequence for u ∈ SBD2(Ω)

We provide an approximation Theorem based on the following two theorems from [21] (which comes as a
refinement of [32]) and [20]. In particular note that condition d) in the following approximation result is a
consequence of a more general statement found in Theorem 1.1 from [21].

Theorem 4.6 ([32], Thm. 3.1, [21], Thm. 1.1). Let Ω be an open bounded set with Lipschitz boundary and let
u ∈ SBD2(Ω). Then there exists a sequence {uk}k∈N ⊂ SBV 2(Ω; Rn)∩L∞(Ω; Rn)∩W 1,∞(Ω\Sk; Rn) such that
each Juk is contained in the union Sk of a finite number of closed, connected pieces of C1-hypersurfaces and the
following properties hold

(a) ‖uk − u‖L2 → 0;
(b) ‖e(uk)− e(u)‖L2 → 0;
(c) Hn−1(Juk∆Ju) = 0;

(d)
∫
Juk∪Ju

|[uk]� νk − [u]� ν|dHn−1 → 0.

Moreover, if u ∈ L∞(Ω; Rn) it holds ‖uk‖L∞ ≤ ‖u‖L∞ .

Theorem 4.7 ([20], Thm. 3.1). Let Ω be an open bounded set with Lipschitz boundary and let u ∈
SBV 2(Ω; Rn) ∩ L∞(Ω; Rn). Then there exists a sequence of function {uk}k∈N ⊂ SBV (Ω; Rn) such that

(1) uk ∈Wm,∞(Ω \ Juk) for all m ∈ N and Hn−1((Juk ∩ Ω) \ Juk) = 0;
(2) The set Juk ∩ Ω is the finite union of closed and pairwise disjoint (n− 1)-simplexes intersected with Ω;
(3) ‖uk − u‖L2 → 0;
(4) ‖∇uk −∇u‖L2 → 0;

(5) lim sup
k→+∞

∫
A∩Juk

ϕ(x, u+
k , u

−
k , νk) dHn−1(x) ≤

∫
A∩Ju

ϕ(x, u+, u−, ν) dHn−1(x)

where property (5) holds for every open set A ⊂ Ω and every upper semicontinuous function ϕ : Ω×Rn ×Rn ×
Sn−1 → [0,+∞) such that

ϕ(x, a, b, ν) = ϕ(x, b, a,−ν) for all x, a, b, ν ∈ Ω× Rn × Rn × Sn−1; (4.11)
lim sup

(y,a′,b′,µ)→(x,a,b,ν)
y∈Ω

ϕ(y, a′, b′, µ) < +∞ for all x, a, b, ν ∈ ∂Ω× Rn × Rn × Sn−1. (4.12)

Moreover ‖uk‖L∞ ≤ ‖u‖L∞ .

About these results, other references of interest are [12–14], with special emphasis on the pioneer paper [13].
As a consequence we obtain the following result:

Proposition 4.8. For any function u ∈ SBD2(Ω) there exists a sequence uk ∈ Cl(Ω; Rn) such that uk → u in
L2 and

lim
k→+∞

F(uk, 1) = F(u, 1).

Moreover if u ∈ L∞(Ω; Rn) it holds ‖uk‖∞ ≤ ‖u‖∞.

Proof. We will apply Theorems 4.6 and 4.7 to improve the regularity of our sequence. We divide the proof in
two steps.
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Step one: Reduction to SBV 2. Let u ∈ SBD2(Ω). Then, by applying Theorem 4.6 we find a sequence of
functions {wk}k∈N ⊂ SBV 2(Ω) ∩ L∞(Ω) such that properties (a)–(d) of Theorem 4.6 hold. We have that

Fk(wk, 1) =
∫

Ω

Ae(wk) · e(wk) dx

+ 2
√
αψ(0)

∫
Juk

√
A([wk](z)� νk(z)) · ([wk](z)� νk(z)) dHn−1(z)

+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Jwk) +

∫
Ω

F (x, e(wk), 1) dx

+
∫
Jwk

F∞(z, [wk]� νk) dHn−1(z).

In particular, because of property (b) we can infer that Ae(wk) · e(wk) → Ae(u) · e(u) in L1 and that
F (x, e(wk), 1)→ F (x, e(u), 1) where we exploited the fact that F is a Lipschitz function (Rem. 2.3). In particular

lim
k→+∞

∫
Ω

Ae(wk) · e(wk) dx+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Jwk) +

∫
Ω

F (x, e(wk), 1) dx

=
∫

Ω

Ae(u) · e(u) dx+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Ju) +

∫
Ω

F (x, e(u), 1) dx. (4.13)

Because of property (d) of our sequence we also have∫
Jwk∪Ju

|[wk]� νk − [u]� ν|dHn−1(z)→ 0. (4.14)

The functions
√

AM ·M and F∞ are 1-homogeneous and convex and thus Lipschitz on Mn×n
sym (thanks to

Rem. 2.3). Then

|
√

A([wk](z)� νk(z)) · ([wk](z)� νk(z))−
√

A([u](z)� ν(z)) · ([u](z)� ν(z))|
+ |F∞(z, [wk]� νk)− F∞(z, [u]� ν)| ≤ C|[wk]� νk − [u]� ν|

that integrated over Jwk ∪ Ju and passed to the limit yields by (4.14)

lim
k→+∞

2
√
αψ(0)

∫
Jwk

√
A([wk](z)� νk(z)) · ([wk](z)� νk(z)) dHn−1(z)

+
∫
Jwk

F∞(z, [wk]� νk) dHn−1(z) =
∫
Ju

F∞(z, [u]� ν) dHn−1(z)

+ 2
√
αψ(0)

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z). (4.15)

By virtue of (4.13) and (4.15) we have produced a sequence wk such that wk → u in L2 and

lim
k→+∞

F(wk, 1) = F(u, 1). (4.16)

Step two: Regularization to Cl(Ω; Rn). For any w = wk produced in step one we can produce, by applying
Theorem 4.7, a sequence {uk}k∈N such that uk ∈ Cl(Ω; Rn) and satisfying (1)−(5) of Theorem 4.7. In particular
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uk → w in L2 and, thanks to property (4) and (5) we obtain

lim sup
k→+∞

∫
Ω

Ae(uk) · e(uk) dx

+ 2
√
αψ(0)

∫
Juk

√
A([uk](z)� νk(z)) · ([uk](z)� νk(z)) dHn−1(z)

+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Juk) +

∫
Ω

F (x, e(uk), 1) dx+
∫
Juk

F∞(z, [uk]� νk) dHn−1(z)

≤
∫

Ω

Ae(w) · e(w) dx+ 2
√
αψ(0)

∫
Jw

√
A([w](z)� ν(z)) · ([w](z)� ν(z)) dHn−1(z)

+ 2
(∫ 1

0

ψ(t) dt
)
Hn−1(Jw) +

∫
Ω

F (x, e(w), 1) dx+
∫
Jw

F∞(z, [w]� ν) dHn−1(z)

where we have exploited the fact that F is Lipschitz continuous (as in step one) and that the function

ϕ(z, a, b, ν) := 2
√
αψ(0)

√
A((a− b)� ν) · ((a− b)� ν) + F∞(z, (a− b)� ν)

is always positive (due to the Hypothesis 2.1 on F ) and satisfies assumptions (4.11), (4.12). By possibly passing
to the truncated ûk(x) = max{uk(x), ‖w‖∞} the above inequality is preserved together with the condition
‖ûk‖∞ ≤ ‖w‖∞(≤ ‖u‖∞ if u is L∞). By taking into account Theorem 3.1, it is deduced that

lim
k→+∞

F(ûk, 1) = F(w, 1). (4.17)

By combining (4.16), (4.17) with a diagonalization argument on ûk, wj we can produce the sought
sequence. �

We are thus in the position to state the lim sup upper bound and provide a recovery sequence for functions
u ∈ SBD2(Ω).

Theorem 4.9. Let {εj}j∈N be a vanishing sequence of real numbers. Then, for any u ∈ SBD2(Ω) there exists
a subsequence {εjk}k∈N ⊂ {εj}j∈N and a sequence of function (uk, vk) ∈ H1(Ω; Rn)× Vεjk such that

εjk → 0, ‖uk − u‖L2 → 0, ‖vk − 1‖L2 → 0

and
lim

κ→+∞
Fεjk (uk, vk) = F(u, 1).

Moreover, if u ∈ L∞(Ω; Rn), it holds that ‖uk‖∞ ≤ ‖u‖∞.

Proof. We prove that, for any k > 0 there exists an εjk and (uk, vk) ∈ H1(Ω; Rn)× Vεjk such that

‖vk − 1‖L1 + ‖uk − u‖L2 + |Fεjk (uk, vk)−F(u, 1)|+ εjk ≤
1
k
· (4.18)

This would complete the proof. According to Proposition 4.8, for any fixed k > 0 we can find w ∈ Cl(Ω; Rn)
(with eventually ‖w‖∞ ≤ ‖u‖∞ if u ∈ L∞(Ω; Rn)) such that

|F(w, 1)−F(u, 1)|+ ‖w − u‖L2 ≤ 1
2k
· (4.19)

The sequence (uε, vε) ∈ H1(Ω)× Vε as defined in (4.2), (4.3) (thanks to Prop. 4.4) provides

lim
ε→0
Fε(uε, vε) = F(w, 1),



DAMAGE-DRIVEN FRACTURE WITH LOW-ORDER POTENTIALS 1331

with w ∈ Cl(Ω; Rn), and satisfies ‖uε‖L∞ ≤ ‖w‖L∞(≤ ‖u‖L∞). In particular, we can find an ε0(k) such that

‖uε − w‖L2 + ‖vε − 1‖L2 + |Fε(uε, vε)−F(w, 1)| ≤ δ

4
for all ε < ε0.

We can select an εjk < ε0(k), since εj is vanishing, such that

‖uεjk − w‖L2 + ‖vεjk − 1‖L2 + |Fεjk (uεjk , vεjk )−F(w, 1)|+ εjk ≤
1
2k
· (4.20)

By combining (4.20) and (4.19) and by setting uk = uεjk , vk = vεjk we obtain (4.18). �

5. Compactness result and minimum problem

5.1. Compactness

This section is devoted to the Proof of Theorem 2.6.

Proof of Theorem 2.6. From Theorem II.2.4 of [33] we obtain L1-compactness from uniform BD-boundedness.
In particular notice that, if (uε, vε) ∈ H1(Ω; Rn) × Vε satisfies supε{‖uε‖L1 + Fε(uε, vε)} < +∞, then, thanks
to Proposition 3.2, we have supε{W(uε, vε)} < +∞. By then arguing as in the Proof of Proposition 3.3 we can
retrieve relations (3.13) and (3.14) that imply

sup
ε>0
{|Euε|(Ω)} = sup

ε>0

{∫
Ω

|e(uε)|dx
}
< +∞.

This, combined with the uniform L1 upper bound on uε gives a uniform bound on the BD norm leading to
L1 compactness of uε. Moreover supε{W(uε, vε)} ≥ 1

ε

∫
Ω
ψ(vε) dx implying that ψ(vε)→ 0 in measure and thus

vε → 1 in measure. Then there is a subsequence converging to 1 almost everywhere and due to the boundedness
of vε we have (up to a subsequence) vε → 1 in L1. In particular we have shown that, up to a subsequence
(not relabeled), it holds uε → u, vε → 1 in L1 and Euε ⇀

∗ Eu. By applying Proposition 3.3 we obtain
u ∈ SBD2(Ω). �

5.2. Statement of the minimum problem

We discuss the issue of existence of minimizers under Dirichlet boundary condition. We restrict ourselves to
smooth boundary data on an open bounded set having smooth boundary.

From now on the set Ω will be assumed to be an open bounded set with C2 boundary. Assume that A, F, ψ
are as in 2.1. On the potential F we require additionally that

– F (x, ·, v) is convex for all (x, v) ∈ Ω× [0, 1] (5.1)

– ρ = sup
{
|F (x, L, v)− F (y, L, v)|

|L||x− y|
| x, y ∈ Ω, L ∈Mn×n

sym , v ∈ [0, 1]
}
< +∞. (5.2)

and that, having fixed, for s, t ∈ (0, 1),

ωF (s; t) := sup
{
|F (x, L, s)− F (x, L, t)|

|L|
| (x, L) ∈ Ω×Mn×n

sym

}
it holds

lim
s→t

ωF (s; t) = 0 for all t ∈ (0, 1). (5.3)
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Consider the following infimum problems

γε := inf
{
Fε(u, v) | u = f, v = 1 on ∂Ω, (u, v) ∈ H1(Ω; Rn)× Vε

}
,

γ0 := inf
{
F(u, 1) +R(u, f) | u ∈ SBD2(Ω)

}
,

where

R(u, f) :=
∫
∂Ω

F∞(z, [u− f ]� ν) dHn−1(z) + bHn−1({x ∈ ∂Ω | u(x) 6= f(x)})

+ a

∫
∂Ω

√
A[u− f ]� ν · [u− f ]� ν dHn−1(z).

(5.4)

Notice that the additional term R(·, f) is the price that a function has to pay in order to detach from the
boundary datum f on ∂Ω. Then the following theorems holds true.

Theorem 5.1. If {(uε, vε)}ε>0 is such that uε = f, vε = 1 on ∂Ω with also

sup
ε>0
{Fε(uε, vε)} < +∞

then there exists at least an accumulation point of {(uε, vε)}ε>0. Moreover any accumulation point has the form
(u0, 1) with u0 ∈ SBD2(Ω).

Theorem 5.2. For every ε > 0 there exists minimizers (uε, vε) for γε. Moreover

lim
ε→0

γε = γ0 (5.5)

and any accumulation point of {(uε, vε)}ε>0 is of the form (u0, 1) with u0 a minimum for γ0.

This implies that, by combining Theorem 5.1 with Theorem 5.2, we can prove the following corollary.

Corollary 5.3. There exists at least a minimizer for the problem γ0.

The Proof of Theorem 5.2 follows by showing that the problem γε (Γ)-converges to the problem γ0. While
it is easy to show that lim inf γε ≥ γ0 in order to prove the lim sup inequality we have to exhibit a recovery
sequence with fixed boundary datum. Note that this approach to handle the boundary datum was proposed in
[6] in the anti-plane case, though without a complete proof. We also remark that such a framework (with the
penalization term R) has also been implemented in [14] to prove existence of a solution for the Griffith energy.

The arguments we used to address existence results should be considered as a title of example in order to
introduce and formalize an approach based on the extension of the domain Ω. For this reason, its generality is
restricted. In particular, for the sake of simplicity we restrict ourselves to smooth boundary data considered on
domain with smooth boundary. We are however confident that, with a refined analysis of the surgeries, one can
carry out a more general statement involving H1/2 boundary data defined on pieces of the boundary ∂Ω of a
Lipschitz domain.

We underline that the proof of existence for γ0 can also be achieved by applying the direct method. It is not
immediate, however, to see that the energy

u 7→ F(u, 1) +R(u, f)

is lower semi-continuous due to the additional term R. We here decided to treat the problem from a
Γ-convergence point of view in order to ensure also convergence of minimizers of the approximate problem.
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Figure 2. In red is depicted the region where tr (u) 6= f . After the normal extension we can
see that the region {tr (u) 6= f} has become just part of Jû. We then consider a recovery
sequence (ûε, v̂ε) defined as in (4.2) and (4.3). The grey part represents the region where the
damage variable v̂ε � 1. Finally, by composing uε, vε with the diffeomorphism Φε provided
by Proposition 5.4, we go back to our domain Ω by preserving the boundary condition. This
operation does not affect in a significant way the energy and we asymptotically recover the
sharp energy, which also accounts for R(u, f) (that comes exactly from those regions where
{tr (u) 6= f}).

5.3. Recovery sequence with prescribed boundary condition

We now proceed to show how to recover the energy of a function u ∈ Cl(Ω; Rn) by making use of function
uj ∈ H1(Ω; Rn) with smooth boundary data f ∈ C1(∂Ω; Rn). At the very end, by making use of Theorems 4.6
and 4.7 we show that we can recover the energy F(u, 1) +R(u, f) of any u ∈ SBD2(Ω).

We briefly sketch the proof for regular functions before moving to the technical part. As depicted in Figure 2
it might happen that tr (u) 6= f on ∂Ω. To handle also this situation, which represents the main challenge of
our proof, we first extend normally our u ∈ Cl(Ω; Rn) into a û defined on a slightly larger Ω̂ ⊃ Ω in a way that
does not destroy the regularity of u. In this way, any region on ∂Ω where tr (u) 6= f becomes the jump region
of û and it is well contained in the extended domain. Thus we can proceed to define the recovery sequence as in
(4.2) and (4.3). Such a recovery sequence coincides with u far enough from the jump set and this allows us to
deduce a strong control on the energy in the strip Ω̂\Ω. This normal extension further allows us to deduce that
along the level set Et = {d(x, ∂Ω) = t} (for suitable t) we have that uε

∣∣∣
Et

= f . Then, by applying a smooth

diffeomorphism, that we are able to control in terms of ε, we shrink back our extended domain onto Ω so that
Et 7→ ∂Ω and this guarantees that the whole boundary condition is satisfied.

We start with the following technical Lemma that will provide us the required family of diffeomorphisms.
Let us recall that we are denoting by P : (∂Ω)δ → ∂Ω the orthogonal projection onto ∂Ω well defined on any
tubular neighbourhood (∂Ω)δ of δ small enough. Moreover we are always considering the outer unit normal
νΩ : ∂Ω→ Sn−1 and we recall that, with the notation dist(x, ∂Ω), we are always meaning the signed distance

dist(x, ∂Ω) := (x− P (x)) · νΩ(P (x))

well defined on small tubular neighbourhoods around ∂Ω.

Lemma 5.4. Let Ω be an open bounded set with C2 boundary and consider (∂Ω)δ any fixed tubular neighbor-
hood of ∂Ω where the projection operator x 7→ P (x) ∈ ∂Ω is well defined. Let also (∂Ω)εL be another tubular
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Figure 3. We shrink the region (∂Ω)εL ∪ [(∂Ω)δ ∩ Ω] onto (∂Ω)δ ∩ Ω through Φε by gently
pushing the set along νΩ with a strength that decays in dist(x, ∂Ω) fast enough so that Φε(x) = x
on Ω \ (∂Ω)δ.

neighborhood where L > 0 is any real constant and set Ωε = Ω ∪ (∂Ω)εL. Then there exists a family of diffeo-
morphism {Φε : Ω→ Ωε}ε>0 such that

lim
ε→0

sup
x∈Ω
{|JΦε(x)|} = 1, (5.6)

lim
ε→0

sup
x∈Ωε

{|JΦ−1
ε (x)|} = 1, (5.7)

sup
x∈Ωε

{|∇Φ−1
ε (x)− Id |}+ sup

x∈Ω
{|∇Φε(x)− Id |} ≤ Cε (5.8)

where C depends on Ω, L and δ only. Moreover

P (Φε(x)) = P (Φ−1
ε (x)) = P (x) on (∂Ω)εL ∪ (∂Ω)δ,
Φε(x) = x on Ω \ (∂Ω)δ,

and Φ−1
ε (∂Ωε) = ∂Ω, Φε(∂Ω) = ∂Ωε.

Proof. Consider the diffeomorphism, depicted in Figure 3:

Φε(x) :=
{
x if x ∈ Ω \ (∂Ω)δ
x+ νΩ(P (x)) (δ+dist(x,∂Ω)

δ εL if x ∈ Ω ∩ (∂Ω)δ
(5.9)

with inverse

Φ−1
ε (x) :=

{
x if x ∈ Ωε \ (∂Ω)δ
x− νΩ(P (x)) (δ+dist(x,∂Ω))

δ+εL εL if x ∈ Ωε ∩ Ωδ.
(5.10)

It is straightforward that Φε(∂Ω) = ∂Ωε, Φ−1
ε (∂Ωε) = ∂Ω and Φε(x) = x on Ω \ (∂Ω)δ. Moreover

∇Φε(x) = Id +∇νΩ(P (x))
(δ + dist(x, ∂Ω))

δ
εL+ νΩ(P (x))⊗ νΩ(P (x))

εL

δ

in particular the desired convergences (5.6), (5.7) follow together with (5.8). �

Proposition 5.5. Let Ω be an open bounded set with C2 boundary and let f ∈ C1(∂Ω; Rn). For every u ∈
Cl(Ω; Rn) there exists a sequence (uε, vε) ∈ H1(Ω) × Vε such that (uε, vε) → (u, 1) in L2, uε = f, vε = 1 on
∂Ω, and

Fε(uε, vε)→ F(u, 1) +R(u, f) as ε→ 0.
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Proof. By virtue of Remark 4.1 we can always perform asympotically negligible modification so to assume that
Ju ∩Ω ⊂ Ω. In particular we can find a δ > 0 that depends only on Ω and u and such that (∂Ω)δ ∩ Ju = ∅. We
first define the extension û of u ∈ Cl(Ω; Rn) as

û :=
{
u(x) for x ∈ Ω
f(P (x)) for x ∈ (∂Ω)δ \ Ω. (5.11)

where P denotes the orthogonal projection onto ∂Ω which is well defined on (∂Ω)δ for δ small enough. Then,
having in mind Remarks 4.1 and 4.2, for any ε > 0 we define (ûε, v̂ε) ∈ H1(Ω ∪ (∂Ω)δ; Rn)× Vε as in (4.2) and
(4.3) with the ϑ provided in step four of the proof of Proposition 4.4 (clearly we mean Vε referred to the domain
Ω ∪ (∂Ω)δ which is here not explicitly denoted in order to enlighten the notation). Notice that

[û]Hn−1xJû = [u]Hn−1xJu + [tr (u)− f ]Hn−1x∂Ω.

According to the definition of ûε in (4.3), we can see that ûε(x) = û(x) for all x such that d(x, Jû) > L0ε
for an L0 depending on u only. In particular we can choose a suitable L > 0 so to guarantee that ûε(x) =
û(x) = f(P (x)), v̂ε(x) = 1 for all x ∈ [(∂Ω)δ \ (∂Ω)Lε] \Ω. We now apply our Lemma 5.4 to Ω with the tubular
neighborhoods (∂Ω)δ, (∂Ω)εL to produce a family of diffeomorphism {Φε : Ω→ Ω∪ (∂Ω)εL = Ωε}. By virtue of
the computations in Remark 4.5 and in particular due to (4.9) and (4.10) we can deduce also∫

Ωε

|∇ûε(x)|dx+
∫

Ωε

v̂ε|∇ûε|2 dx ≤ C, (5.12)

for a constant C > 0 that depends on Ω and u only (and that in the sequel may vary from line to line), while
it is clear that the same computation performed in the Proof of Proposition 4.4 leads to

lim
ε→0
Fε(ûε, v̂ε; Ωε) = F(u, 1) +R(u, f). (5.13)

By making use of this facts we proceed to define (uε, vε) ∈ H1(Ω; Rn)× Vε by simply shrinking our domain
Ωε into Ω throughout Φε. More precisely

uε(x) := ûε(Φε(x)), vε := v̂ε(Φε(x)).

Notice that for x ∈ ∂Ω we have Φε(x) ∈ ∂Ωε \ Ω ⊂ (∂Ω)δ \ Ω and that P (Φε(x)) = P (x) = x for all x ∈ ∂Ω.
Hence

uε(x) = ûε(Φε(x)) = f(P ((Φε(x))) = f(x), vε(x) = v̂ε(Φε(x)) = 1 for all x ∈ ∂Ω.

We underline that, as in Remark 4.2, we are once again neglecting a possible factor (asymptotically equal
to 1) in front of vε that might be needed in order to comply with the constraint |∇vε(x)| ≤ 1/ε. Up to this
carefulness we can infer (uε, vε) ∈ H1(Ω; Rn) × Vε. The L1 convergence is immediately derived from the easy
relations ∫

Ω

|uε − u|dx ≤
∫

Ω

|ûε(Φε(x))− û(Φε(x))|dx+
∫

Ω

|û(Φε(x))− u(x)|dx,∫
Ω

|û(Φε(x))− u(x)|dx ≤ Cε(‖u‖∞ + ‖∇u‖∞),

also holding for the function vε. It remains to show that the energy of the pairs (uε, vε) is converging to
F(u, 1) +R(u, f). From

∇uε(x)−∇ûε(Φε(x)) = (∇Φε(x)− Id )∇ûε(Φε(x)),

and thanks to (5.8) we get

|∇uε(x)−∇ûε(Φε(x))| ≤ Cε|∇ûε(Φε(x))|,
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for a constant C depending on Ω and u only. In particular,∣∣∣∣ ∫
Ω

vε(x)A[e(uε)(x)− e(ûε)(Φε(x))] · e(ûε)(Φε(x)) dx
∣∣∣∣

+
∣∣∣∣∫

Ω

vε(x)A[e(uε)(x)− e(ûε)(Φε(x) · [e(uε)(x)− e(ûε)(Φε(x))] dx
∣∣∣∣

≤ Cε
∫

Ω

v̂ε(Φε(x))|∇ûε(Φε(x))|2 dx = Cε

∫
Ωε

v̂ε(x)|∇ûε(x)|2|JΦ−1
ε (x)|dx,

which vanishes due to (5.7) and (5.12). Along the same lines and by exploiting Remark 2.3 combined with
hypothesis (5.1) and item (3) in 2.1 on F we get∫

Ω

|F (x, e(uε)(x), vε(x))− F (x, e(ûε)(Φε(x)), vε(x))|dx

≤ `
∫

Ω

|e(uε)(x)− e(ûε(Φε(x))|dx

≤ C`ε
∫

Ω

|∇ûε(Φε(x))|dx

≤ Cε
∫

Ωε

|∇ûε(x)||JΦ−1
ε (x)|dx→ 0,

once again due to (5.7) and (5.12). On the other hand, by exploiting (5.2) we can infer that∫
Ω

|F (x, e(ûε)(Φε(x)), v̂ε(x))− F (Φε(x), e(ûε)(Φε(x)), v̂ε(x))|dx

≤ ρ
∫

Ω

|Φε(x)− x||e(ûε(Φε(x))|dx

≤ Cε
∫

Ωε

|∇ûε(x)||JΦ−1
ε (x)|dx→ 0.

In particular, all this considered we can conclude that

lim
ε→0
Fε(uε, vε; Ω) = lim

ε→0

∫
Ω

vε(x)Ae(ûε)(Φε(x)) · e(ûε)(Φε(x)) dx

+
∫

Ω

F (Φε(x), e(ûε)(Φε(x)), vε(x)) dx+
∫

Ω

ψ(vε(x))
ε

dx

= lim
ε→0

∫
Ωε

|JΦ−1
ε |v̂εAe(ûε) · e(ûε) dx

+
∫

Ωε

|JΦ−1
ε |F (x, e(ûε), v̂ε) dx+

∫
Ωε

|JΦ−1
ε |

ψ(v̂ε(x))
ε

dx

= lim
ε→0
Fε(ûε, v̂ε; Ωε) = F(u, f) +R(u, f),

where we exploited (5.7) and (5.13). Notice that (uε, vε) provide the desired sequences. �

Proposition 5.6. Let Ω be an open bounded set with C2 boundary and fix a smooth boundary data f ∈
C1(∂Ω; Rn). For any function u ∈ SBD2(Ω) there exists a sequence uk ∈ Cl(Ω; Rn) such that uk → u in
L2 and

lim sup
k→+∞

F(uk, 1) +R(uk, f) ≤ F(u, 1) +R(u, f)
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Proof. Consider Ω̂ ⊃ Ω be a slightly larger domain and consider w ∈ H1(Ω; Rn) to be such that w
∣∣∣
∂Ω

= f .

Consider the extension û := u1Ω+w1Ω̂\Ω ∈ SBD2(Ω̂). Then, by virtue of Proposition 4.8, we can find a sequence

ûk ∈ Cl(Ω̂; Rn) such that

F(ûk, 1; Ω̂)→ F(û, 1; Ω̂) = F(u, 1) +R(u, f) +
∫

Ω̂\Ω
Ae(w) · e(w) dx+

∫
Ω̂\Ω

F (x, e(w), 1) dx.

If we trace through the Proof of Proposition 4.8 we can see that the following is also guaranteed:

lim sup
k→+∞

∫
Juk∩A

ϕ(x, û+
k , û

−
k , νk) dHn−1(z) ≤

∫
Jû∩A

ϕ(x, û+, û−, ν) dHn−1(z),

for any A ⊆ Ω̂ and for any upper semicontinuous function ϕ satisfying (4.11) and (4.12). In particular, by
testing the above inequality with A = Ω,

ϕ(x, ξ, η, ν) = a
√

A(ξ − η)� ν · (ξ − η)� ν + F∞(z, (ξ − η)� ν)

and with ϕ = b we can infer that

lim sup
k→+∞

∫
Jûk∩Ω

[a
√

A([ûk]� νk · [ûk]� ν + F∞(z, ([ûk]� νk) + b] dHn−1(z)

≤
∫
Jû∩Ω

[a
√

A([û]� ν · [û]� ν + F∞(z, ([û]� ν) + b] dHn−1(z).

Thus

lim sup
k→+∞

F(ûk, 1; Ω) ≤ F(u, 1; Ω)

By noticing that

F(·, 1; Ω) = F(·, 1; Ω) +R(·, f),

we conclude by simply setting uk := ûk1Ω ∈ Cl(Ω; Rn). �

We finally notice that the same diagonalization argument exploited in the Proof of Theorem 4.9 allows us to
prove the following proposition.

Proposition 5.7. Consider Ω to be an open bounded set with C2 boundary and fix a boundary data f ∈
C1(∂Ω; Rn). Let {εj}j∈N be a vanishing sequence of real numbers. Then, for any u ∈ SBD2(Ω) there exists a
subsequence {εjk}k∈N ⊂ {εj}j∈N and a sequence of function (uk, vk) ∈ H1(Ω; Rn)× Vεjk such that

εjk → 0, ‖uk − u‖L2 → 0, ‖vk − 1‖L2 → 0,

with uε = f , vε = 1 on ∂Ω and

lim sup
k→+∞

Fεjk (uk, vk) ≤ F(u, 1) +R(u, f).
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5.4. Proof of Theorem 5.2

We are finally in the position to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. By extending the functions uε into ûε ∈ SBD(Rn) through a function w ∈ H1(Rn\Ω̄; Rn)
such that w

∣∣∣
∂Ω

= f and by applying the Poincaré-type inequality ([24], Thm. 1.7.6) we get

‖ûε‖L1(Rn) ≤ C(n)|Eûε|(Rn)

that translates into
‖uε‖L1(Ω) ≤ C(n) (‖∇w‖L2 + |Euε|(Ω)) . (5.14)

Thanks to Proposition 3.2, the uniform bound in energy yields also supε{W(uε, vε)} < +∞. By then arguing
as in the Proof of Proposition 3.3 we can retrieve relations (3.13) and (3.14) that imply

sup
ε>0
{|Euε|(Ω)} = sup

ε>0

{∫
Ω

|e(uε)|dx
}
< +∞. (5.15)

In particular, (5.15) combined with (5.14) and with the energy bound leads to

sup
ε>0
{‖uε‖L1 + Fε(uε, vε)} < +∞

that can ensure (thanks to the compactness Thm. 2.6) that there exists at least an accumulation point and that
any accumulation point has the form (u0, 1) for some u0 ∈ SBD2(Ω). �

Proof of Theorem 5.2. We divide the proof in three steps.
Step one: Existence for γε. Fix ε > 0 and consider (uk, vk), a minimizing sequence. Then

sup
k∈N

{∫
Ω

|e(uk)|2 dx+ ‖vk‖H1

}
< +∞.

In particular, Korn’s inequality2 combined with the L1-compactness for sequences with uniformly bounded
H1-norm gives us that uk → u ∈ H1, vk → v ∈ Vε in L1 and e(uk) ⇀ e(u) in L2 with also u = f , v = 1 on ∂Ω.
Moreover, because of assumption (5.3) on F and due to the uniform L2 bound on the symmetric part of the
gradient e(uk) we have∣∣∣∣∫

Ω

[F (x, e(uk), vk)− F (x, e(uk), v)] dx
∣∣∣∣ ≤ ∫

Ω

ωF (vk; v)|e(uk)|dx→ 0.

Furthermore, due to the weak convergence of e(uk) and to the strong convergence of vk (see e.g., [10], Thm.
2.3.1)

lim inf
k→+∞

∫
Ω

vkAe(uk) · e(uk) dx ≥
∫

Ω

vAe(u) · e(u) dx

All this considered yields, together with the convexity of F (x, ·, v),

lim inf
k→+∞

Fε(uk, vk) ≥
∫

Ω

vAe(u) · e(u)dx+
1
ε

∫
Ω

ψ(v) dx+
∫

Ω

F (x, e(u), v) dx.

In particular, by the application of the direct method of calculus of variation we achieve existence for γε, ε > 0.

2The arbitrary rigid displacement is here fixed by the prescription of the boundary condition.
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Step two: Liminf inequality. Let {(uε, vε)}ε>0 ⊂ H1(Ω; Rn)× Vε be such that uε → u0, vε → 1 in L1 and with
uε = f , vε = 1 on ∂Ω for all ε > 0. Then

lim inf
ε→0

Fε(uε, vε) ≥ F(u0, 1) +R(u0, f). (5.16)

Indeed, by considering Ω̂ ⊃ Ω, a function w ∈ H1(Ω̂; Rn) with w
∣∣∣
∂Ω

= f and the extension

ûε = uε1Ω + w1Ω̂\Ω, v̂ε = vε1Ω + 1Ω̂\Ω

we can notice that ûε → û0, v̂ε → 1. Moreover

Fε(ûε, v̂ε; Ω̂) = Fε(uε, vε; Ω) +
∫

Ω̂\Ω
[Ae(w) · e(w) + F (x, e(w), 1)] dx

and thanks to Theorem 3.1 we have∫
Ω̂\Ω

[Ae(w) · e(w) + F (x, e(w), 1)] dx+ lim inf
ε→0

Fε(uε, vε; Ω) = lim inf
ε→0

Fε(ûε, v̂ε; Ω̂)

≥ F(û0, 1; Ω̂) = F(u0, 1; Ω) +R(u0, f) +
∫

Ω̂\Ω
[Ae(w) · e(w) + F (x, e(w), 1)] dx,

leading to (5.16).

Step three: Proof of (5.5) and existence of a minimizer. Let {εj}j∈N be the sequence such that lim supε→0 γε =
limj→+∞ γεj . Thanks to Proposition 5.7 we have that, for any fixed u0 ∈ SBD2(Ω) we can find {εjk}k∈N ⊂
{εj}j∈N and (uk, vk) ∈ H1(Ω; Rn)× Vεjk with uk = f , vk = 1 on ∂Ω and such that it holds

F(u0, 1) +R(u0, f) ≥ lim sup
k→+∞

Fεjk (uk, vk) ≥ lim sup
k→+∞

γεjk = lim sup
ε→0

γε.

Thus, by taking the infimum among u0 ∈ SBD2(Ω) we get

γ0 ≥ lim sup
ε→0

γε. (5.17)

On the other side, by denoting with (ūε, v̄ε) the minimizers at the level γε we clearly have

sup
ε
{Fε(ūε, v̄ε)} < +∞ (5.18)

that allows us (thanks to Thm. 5.1) to deduce the existence of an accumulation with the form (u0, 1) for some
u0 ∈ SBD2(Ω). Thus step two guarantees that

lim inf
ε→0

γε = lim inf
ε→0

Fε(uε, vε) ≥ F(u0, 1) +R(u0, f) ≥ γ0.

Combining this previous relation with (5.17) proves (5.5) and demonstrates also that any other accumulation
point of {(uε, vε)}ε>0 provides a minimizer for γ0. �

6. Selected applications

We now provide examples of energy with some specific functions F of interests with a view to applications.
As a title of example we consider the case where ψ(v) = (1− v)2 yielding a = 2

√
α and b = 2

3 .



1340 M. CAROCCIA AND N. VAN GOETHEM

6.1. A simple model of fracking

In the case of hydraulic fracturing, with a simple variational model as studied in [36], the phenomena is
modeled through a potential of the type

F (x,M, v) = −p(x,M, v)trace(M).

We directly state the hypothesis on p that guarantees our Γ-convergence result 2.5 and the existence
Theorem 5.2. In particular, in order to apply our results we require that the pressure p is a concave func-
tion of the variable M and that

(1) p(·,M, 0) ∈ C0(Ω) for all M ∈Mn×n
sym ;

(2) p(x, ·, v) is a concave function for all (x, v) ∈ Ω× [0, 1];
(3) −σ|x − y| ≤ p(x,M, v) − p(y,M, v) ≤ `|x − y| for all x, y ∈ Rn and all (M,v) ∈ Mn×n

sym × [0, 1] where ` > 0
is any real constant and

0 < σ < max
λ∈(0,1)

{
2
√
αψ(λ)

√
κ(1 + 2

√
α|Ω|ψ(λ)/λ)

}
< 2

√
αψ(0)
κ

; (6.1)

(4) having set

ωp(s; t) := sup
{
|p(x,M, s)− p(x,M, t)| : (x,M) ∈ Rn ×Mn×n

sym

}
then

lim
s→t

ωp(s; t) = 0.

Under these assumptions the potential F = −p(x,M, v)trace(M) satisfies Assumption 2.1 and (5.1)–(5.3).
Moreover

F∞(x,M) = −trace(M) lim
t→+∞

p(x, tM, 0).

6.1.1. Pressure constant in e(u) and linear in v

We first examine the case
p(x,M, v) := (mv + q)ρ(x)

where ρ ∈ L∞ is a Lipschitz function and m, q ∈ R. Provided ρ has suitably small L∞ norm, Hypothesis (1)–(4)
are clearly satisfied. We have

p(x,M, 1) = (m+ q)ρ(x), p(x,M, 0) = qρ(x).

Moreover F∞(x,M) = qρ(x)trace(M). Hence the Γ-limit of the energy (2.1) is given by

Φ(u) :=
∫

Ω

[Ae(u) · e(u)− (m+ q)ρ(x)div(u)] dx+ bHn−1(Ju)+

+ a

∫
Ju

√
A([u]� ν·)([u]� ν) dHn−1(z)− q

∫
Ju

ρ(z)[u](z) · ν(z) dHn−1(z).

The model in [36] corresponds to m = 0 and ρ is a constant taken as a hydrostatic pressure acting as a
boundary condition inside the crack considered as impermeable. Note that in [36] exactly the approximation of
this work is proposed. Another phase-field approximation closer to the original Ambrosio–Tortorelli model is
considered in [37], with q = 0 and a constant ρ. Note however that their claimed limit functional is not what
we proved to be.
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6.1.2. Pressure non constant in e(u): isotropic and anisotropic case

We now examine the case where the pressure p has a concave dependence on the variable M :

p(x,M, v) := ρ(x, v)g(M).

A suitable choice of ρ ensures that (1) and (2) are in force. In order to guarantee (3) (and thus (4) provided
a suitable ρ) we ask also that ‖g‖L∞ < c for an appropriate constant c. In particular any concave bounded
function is such that

lim
t→+∞

g(tM) = γ(M)

exists finite. Thus the Γ-limit of the energy (2.1) is given by

Φ(u) :=
∫

Ω

[Ae(u) · e(u)− ρ(x, 1)g(e(u))div(u)] dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju)−
∫
Ju

ρ(z, 0)γ([u](z)� ν(z))[u](z) · ν(z) dHn−1(z).

This case corresponds to a more realistic fracking model where the pressure is a thermodynamic variable
with a certain constitutive law (as related to the Biot’s coefficient and the pore-pressure [37]), instead of a
hydrostatic pressure given as a model datum. In particular this case applies to the case where the crack is no
more impermeable, and hence the pressure satisfies a certain balance equation in the whole domain.

6.2. Pressure almost constant in x: the two-rocks model

Of particular interest in the case of hydraulic fracking is the case where the pressure p takes values
p1(e(u)), p2(e(u)) in two different region of our ambient space Ω and quickly varies from p1 to p2 in a small
layer of size δ bordering the two regions. This models the situation of a so-called stratified domain, i.e., where
we have two permeable rocks (or impermeable if pi assumes a constant value in each rock) separated by an
interface (where the pressure is linearly interpolated). As a title of example we consider the situation depicted
in Figure 4. In particular we set

p(x,M, v) :=


ρ(v)p1(M) if x ∈ Q1 and d(x, S) > δ;
ρ(v)p2(M) if x ∈ Q2 and d(x, S) > δ;
d(x,S)
δ ρ(v)p1(M) if x ∈ Q1 and d(x, S) ≤ δ;

d(x,S)
δ ρ(v)p2(M) if x ∈ Q2 and d(x, S) ≤ δ;

(6.2)

If pi are concave function and ‖ρpi‖∞ is suitably small, we can surely choose ρ so that conditions 3) and 4)
are satisfied. Moreover, setting

p∞i (x,M) = lim
t→+∞

pi(tM)

and

p∞(x,M) :=


ρ(0)p∞1 (M) if x ∈ Q1 and d(x, S) > δ;
ρ(v)p∞2 (M) if x ∈ Q2 and d(x, S) > δ;
d(x,S)
δ ρ(0)p∞1 (M) if x ∈ Q1 and d(x, S) ≤ δ;

d(x,S)
δ ρ(0)p∞2 (M) if x ∈ Q2 and d(x, S) ≤ δ;

(6.3)
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Figure 4. The two different materials behave differently when subject to an elastic strain. This
is modeled by considering two different pressures on each component. In the picture, different
gray corresponds to different value of p(·,M, v). Notice that the role of the layer (δ) around
the interface S can be made as small as we like and it is adopted only to satisfy the continuity
assumption on the spatial behavior of the pressure and to take into account eventual situations
where Hn−1(Ju ∩ ∂Q1 ∩ ∂Q2) > 0.

we get that the limiting energy reads

Φ(u) :=
∫
Q

[Ae(u) · e(u)− p(x, e(u), 1)div(u)] dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju)−
∫
Ju

p∞(x, [u](z)� ν(z))[u](z) · ν(z) dHn−1(z),

that can be rearranged as

Φ(u) :=
2∑
i=1

∫
Qi\Qδ

[Ae(u) · e(u)− ρ(1)pi(e(u))div(u)] dx

− ρ(0)
∫
Ju∩(Qi\Qδ)

p∞i ([u](z)� ν(z))[u](z) · ν(z) dHn−1(z)

+
2∑
i=1

∫
Qi∩Qδ

[Ae(u) · e(u)− d(x, S)ρ(1)
δ

pi(e(u))div(u)] dx

− ρ(0)
∫
Ju∩(Qi\Qδ)

d(x, S)
δ

p∞i ([u](z)� ν(z))[u](z) · ν(z) dHn−1(z)

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z) + bHn−1(Ju).

The case with several rocks can be obtained in the same way.
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6.3. A model of plastic slip: F = p|e(u)|
Now we analyze the case

F (x,M, v) := p(x, v)g(|M |),

that consists of a generalization of a phase-field approximation of plastic slip as discussed in [6] for the anti-plane
case.

By possibly making additional restriction on the function p, a functional dependence on M can be considered.
However, for the sake of clarity and as a title of example we would avoid such a dependence. It is immediate
that

F∞(x,M) = p(x, 0)g∞|M |,

where g∞ := limt→+∞
g(t)
t . Thus, the limit energy in this scenario is

Φ(u) :=
∫

Ω

[Ae(u) · e(u)− p(x, 1)g(|e(u)|)] dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju) + g∞

∫
Ju

p(z, 0)|[u](z)� ν(z)|dHn−1(z).

6.4. The Tresca yield model in elasto-plasticity: F = λmax(Ae(u))− λmin(Ae(u))

This is so far an academic example in the sense that no such criterion, though important in engineering, is
known to the authors as implemented in any variational setting so far.

Nevertheless, interpreting p as a Lagrange multiplier, could provide a model with a sort of averaged Tresca
threshold. Consider the operators

λmax(AM) := max
i=1,...,n

{λi(AM)}

and
λmin(AM) := min

i=1,...,n
{λi(AM)}

where λi(P ) denotes the ith eigenvalue of the matrix P . This function are, respectively convex and concave and

λmax(Ae(u))− λmin(Ae(u)) ≤ λmax(Ae(u)) ≤ ‖A‖|M |.

Hence, by setting
F (x,M, v) = p(x, v)g(λmax(Ae(u))− λmin(Ae(u)))

provided g is a convex function with sublinear growth, the class of function p such that hypothesis 2.1 and
(5.1)–(5.3) on F are satisfied is not trivial.

Notice now that

λmax(tAM) = tλmax(AM), λmin(tAM) = tλmin(AM),

and thus, as above, we get

F∞(x,M) = g∞p(x, 0)(λmax(AM)− λmin(AM)).
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where g∞ = limt→+∞
g(t)
t . The limit energy here is

Φ(u) :=
∫

Ω

[Ae(u) · e(u)− p(x, 1)g(λ(Ae(u)))] dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju) + g∞

∫
Ju

p(z, 0)(λmax(A([u]� ν))− λmin(A([u]� ν))) dHn−1(z).

6.5. The non-interpenetration condition

It is well-known that an opening crack should satisfy the non-interpenetration condition [u] · ν ≥ 0 which is
not enforced so far by the Lagrangians we considered. In particular we would like to have a model where ([u]·ν)−

is not energetically influent in the evolution of the system. Having set H(u) :=
∫
Ju
|([u] · ν)−|(z)dHn−1, from a

variational point of view we can define a minimization problem for an energy G subject to a non-interpenetration
condition as

inf{G(u)| u ∈ Ad and H(u) = 0}, (6.4)

where Ad is a suitable admissible class. The associated Lagrangian to such a problem reads as

L(u, p) := G(u) +
∫
Ju

p(z)([u] · ν)−(z)dHn−1, (u, p) ∈ Ad × L∞(Ju;Hn−1).

It is a well-known result that
(6.4) = inf

v∈Ad
sup

p∈L∞(Ju;Hn−1)

L(u, p).

Indeed, following our approach we can write a Lagrangian by exploiting our lower order potential F . An
appropriate low-order potential for this problem can be chosen as

F (x,M, v) = (1− v)2p(x) max{−trace(M), 0} = (1− v)2p(x)trace(M)−.

Notice that, M 7→ max{−trace(M), 0} is a positive convex function and with sublinear growth (since
|max{a, b}| ≤ |a| + |b|). In particular a suitable choice of p, which now comes as a datum, will ensure
that our hypothesis on F 2.1 together with (5.1)–(5.3) are satisfied. Notice that, for t > 0, one has
trace(tM)− = tmax{−trace(M), 0}, and thus

F∞(x,M) = p(x)trace(M)−

With these carefulness we can Γ-approximate the Lagrangian

Φ(u) :=
∫

Ω

Ae(u) · e(u) dx+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju) +
∫
Ju

p(z)([u] · ν)− dHn−1(z)

by

Fε(u, v) =
∫

Ω

vAe(u) · e(u) +
1
ε

∫
Ω

ψ(v)dx+
∫

Ω

(1− v)2p(x)div(u)− dx.
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Appendix A.

A.1. A semicontuity result on SBD

We now proceed to the proof of a lower semicontinuity result. This result can be derived by gathering several
results available in the literature. We retrieve them here and we give a brief sketch of the proof of the main
result in order to present our work as self-contained as possible. Let us start with the following proposition:

Proposition A.1. For any fixed L ∈Mn×n
sym there exists a function F∞(x,M ;L) : Mn×n

sym → R such that

lim
t→+∞

F (x, L+ tM, 0)− F (x, L, 0)
t

= F∞(x,M ;L).

Moreover F∞(x, rM ;L) = rF∞(x,M ;L) for all r ∈ R+.

Proof. Consider, for fixed M ∈Mn×n
sym and x ∈ Ω the quantity

f(t) :=
F (x, L+ tM, 0)− F (x, L, 0)

t
·

Due to the convexity of F (x, ·, 0) we deduce that f(t) is increasing on (0,+∞). Moreover, assumption (1)
in 2.1 also guarantees that∣∣∣∣F (x, L+ tM, 0)− F (x, L, 0)

t

∣∣∣∣ ≤ `( |L| − F (x, L, 0)
t

)
+ `|M |.

In particular
lim

t→+∞
f(t) = exists finite.

Thus there exists a function F∞(x,M ;L) such that

lim
t→+∞

f(t) = F∞(x,M ;L).

By definition of F∞ we have finally that

F∞(x, rM, 0;L) = rF∞(x,M ;L).

�

Remark A.2. We can think the function F∞(x, ·;L) as a function defined on the unit sphere of Mn×n
sym and

extended homogeneusly on the whole space.

The first thing we need is the following decomposition Lemma, holding for convex function with suitable
regularity, which as a Corollary yields the independence of the function F∞ from the starting point L.

Proposition A.3. Let G : Ω×Mn×n
sym → R be a function such that G(x,M) is lower semicontinuous in (x,M),

G(x, ·) is convex for all x ∈ Ω and |G(x,M)| < `|M | for some ` ∈ R and for all (x,M). Then there exists two
families of continuous function {aj(x) : Ω→Mn×n

sym }j∈N and {bj(x) : Ω→ R}j∈N such that

G(x,M) = sup
j∈N
{aj(x) ·M + bj(x)}

and

lim
t→+∞

G(x, L+ tM)−G(x, L)
t

= sup
j∈N
{aj(x) ·M}

for any L ∈Mn×n
sym .
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The proof of the previous Proposition comes as a consequence of Lemma 2.2.3, Remark 2.2.6, Lemma 3.1.3
from [10].

Remark A.4. Let us briefly sketch the Proof of Proposition A.3 in the easy case where G(x,M) = G(M) is
convex just to give an idea to the reader about why such decomposition hold true (the proof can be also found
in [5]). Chosen {Pj}j∈N ⊂Mn×n

sym a dense set it is enough to define the values

aj := ∇MG(Pj), bj := −∇MG(Pj) · Pj +G(Pj).

Notice that

G(Pj) = ∇MG(Pj) · Pj −∇MG(Pj) · Pj +G(Pj) = aj · Pj + bj . (A.1)

Pick now any M ∈ Mn×n
sym and let {Pjk}k∈N ⊂ {Pj}j∈N be a subsequence such that Pjk → M . Since G(x, ·)

is convex and thanks to (A.1) we get G(M) ≥ aj ·M + bj , and hence

G(M) ≥ sup
j∈N
{aj ·M + bj}.

On the other hand, by continuity, G(M) = limkG(Pjk) and thus for any δ > 0 there exists K0 such that

G(M) ≤ G(Pjk) + δ for all k ≥ K0.

Thus

G(M) ≤ G(Pjk) + δ = ajk · Pjk + bjk + δ

= ajk ·M + bjk(x) + δ + ajk · (Pjk −M)
≤ sup

j∈N
{aj ·M + bj}+ δ + ajk · (Pjk −M).〉 (A.2)

Function G being convex it is also Liptshitz on every bounded set in Mn×n
sym and in particular ajk = ∇MG(Pjk)

is bounded for Pjk close enough to M . Thus ajk · (Pjk −M)→ 0 and in particular, by taking the limit in k and
then in δ in (A.2), we get

G(M) ≤ sup
j∈N
{aj ·M + bj}.

For the recession function instead we see that, because of the convexity, for any L ∈Mn×n
sym the quantity

G(L+ tM)−G(L)
t

is increasing in t and thus

lim
k→+∞

G(L+ kM)−G(L)
k

= sup
k∈N

G(L+ kM)−G(L)
k

·

On the one hand, for all j ∈ N, we get

G(L+ kM)−G(L)
k

≥ aj · L+ bj −G(L)
k

+ aj ·M,

which implies

lim
k→+∞

G(L+ kM)−G(L)
k

≥ sup
j∈N
{aj ·M} .
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On the other, for any k ∈ N, it holds

G(L+ kM)−G(L)
k

= sup
j∈N

{
bj + aj · L−G(L)

k
+ aj ·M

}
≤ sup

j∈N
{aj ·M} ,

since bj + aj · L ≤ G(L). In particular the equality is attained.

Remark A.5. In the light of Proposition A.3 it is clear that the recession function is independent of the
starting point L.

We recall the following technical lemma from Lemma 2.35 of [5].

Lemma A.6. Let ν be any positive Radon measure and let ϕi : Ω → R+ with i ∈ N be a family of Borel
functions. Then

sup
i∈N

{∑
i∈I

∫
Ai

ϕi(x) dν(x)

}
=
∫

Ω

sup
i∈N
{ϕi(x)} dν(x).

where the supremum ranges over all finite families {Ai}i∈I of pairwise disjoint open set compactly contained in
Ω.

We now state and prove the semicontinuity result. For the sake of completeness we mention that this result
comes also as a consequence of Theorem 3.4.1, Corollary 3.4.2 from [10].

Proposition A.7. Let G : Ω×Mn×n
sym → R+ be a positive function such that G(x,M) is lower semicontinuous

in (x,M), G(x, ·) is convex for all x ∈ Ω and |G(x,M)| < `|M | for some ` ∈ R and for all (x,M). Then, for
any uε ∈ H1(Ω; Rn) such that uε → u in L1 with u ∈ SBD2(Ω) it holds

lim inf
ε→0

∫
A

G(x, e(uε)) dx ≥
∫
A

G(x, e(u)) dx+
∫
A∩Ju

G∞(z, [u]� ν) dHn−1(z)

for all open set A ⊂ Ω.

Proof. We first notice that, since uε → u in L1 and uε, u ∈ SBD2(Ω) we have

e(uε)Ln ⇀∗ Eu.

Fix A ⊂ Ω. We can apply Proposition A.3 to find two families of continuous functions aj(x) : Ω → Mn×n
sym ,

bj(x) : Ω→ R such that

G(x,M) = sup
j∈N
{aj(x) ·M + bj(x)}, G∞(x,M) = sup

j∈N
{aj(x) ·M}.

Let A0, . . . Am be pairwise disjoint open subset of A and ϕj ∈ Cc(Aj) with 0 ≤ ϕj ≤ 1 for all j = 0, . . . ,m.
Then ∫

A

G(x, e(uε)) dx ≥
m∑
j=0

∫
Aj

ϕjG(x, e(uε)) dx

≥
m∑
j=0

∫
Aj

ϕjaj(x) · e(uε) dx+
∫
Aj

ϕjbj(x) dx,
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which, by passing to the limit in ε and by exploiting the fact that ajϕj ∈ Cc(Aj ;Mn×n
sym ) leads to

lim inf
ε→0

∫
A

G(x, e(uε) dx ≥
m∑
j=0

∫
Aj

ϕjaj(x) · dEu(x) +
∫
Aj

ϕjbj(x) dx

=
m∑
j=0

∫
Aj

ϕj

[
aj(x) · dEu

dLn
(x) + bj(x)

]
dx+

∫
Aj

ϕjaj(x) · dEus(x)

=
m∑
j=0

∫
Aj

ϕj [aj(x) · e(u) + bj(x)] dx+
∫
Aj∩Ju

ϕjaj(x) · ([u]� ν) dHn−1(x).

We now want to apply Lemma A.6 and thus we set ν = Ln +Hn−1xJu and we define the functions

φj(x) :=
{
aj(x) · e(u) + bj(x) for x ∈ A \ Ju
aj(x) · ([u]� ν) for x ∈ Ju ∩A,

,

φ(x) :=
{
G(x, e(u)) for x ∈ A \ Ju
G∞(x, [u]� ν) for x ∈ Ju ∩A.

(A.3)

Notice that, due to the mutual singularity of Ln and Hn−1xJu, we get

m∑
j=0

∫
Aj

φjϕj dν ≤ lim inf
ε→0

∫
A

G(x, e(uε)) dx.

By taking the supremum over ϕj we get

m∑
j=0

∫
Aj

φ+
j dν ≤ lim inf

ε→0

∫
A

G(x, e(uε)) dx.

Thanks to Proposition A.3, for any fixed x ∈ A it holds

sup
j∈N
{φj(x)} = sup

j∈N
{φ+

j (x)} = φ(x),

since φ ≥ 0 for all x ∈ Ω. Now, by taking the supremum among all the finite families of pairwise disjoint open
subsets of A and by applying Lemma A.6, we get

lim inf
ε→0

∫
A

G(x, e(uε)) dx ≥ sup
i∈I

{∑
i∈I

∫
Ai

φ+
j dν(x)

}
=
∫
A

sup
j∈N
{φ+

j (x)}dν(x)

=
∫
A

G(x, e(u)) dx+
∫
A∩Ju

G∞(z, [u]� ν) dHn−1(z).
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