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DAMAGE-DRIVEN FRACTURE WITH LOW-ORDER POTENTIALS:
ASYMPTOTIC BEHAVIOR, EXISTENCE AND APPLICATIONS

MarcO CAROCCIA! AND NicoLAs VAN GOETHEMD*

Abstract. We study the I'-convergence of damage to fracture energy functionals in the presence of low-
order nonlinear potentials that allows us to model physical phenomena such as fluid-driven fracturing,
plastic slip, and the satisfaction of kinematical constraints such as crack non-interpenetration. Existence
results are also addressed.
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1. INTRODUCTION

In linearized elasticity, the simplest model of damage-driven brittle fracture assumes that a scalar 0 < v <1
multiplies the elasticity tensor, that is thus weakened in the damage region. At the same time, following Griffith—
Bourdin-Francfort—-Marigo approach [9,28,29], a certain amount of energy is dissipated in the damage region,
and one seeks the minimum of the total energy consisting of the sum of the elastic stored energy and the
dissipation terms. Specifically, in [1] the following damage-dependent energy functional was considered':

Je(u,v) = /QvAe(u) ce(u)dx + é/gw(v)dx, (1.1)

with 1(v) = k in the damage region w C Q, zero elsewhere, k a material-dependent damage coefficient, v > ae
with a > 0, and where € represent the thickness of the damaged region, also related to the mesh size. Here A
stands for one half the constant isotropic elasticity tensor. The numerical simulations done in [1] have shown
that model consistency under mesh refinement strongly depended on the ratio k/e. Indeed equation (1.1) was
used for numerical purposes as a phase-field approximation of Griffith-like energies for crack, though, without
studying any rigorous convergence result as € — 0. The aim of this work is to study this convergence for a
generalized model including low-order potentials.
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The so-called Griffith energy reads
Ja(u) ::/ Ae(u) - e(u)dx + kH" 1 (J,). (1.2)
Q

In anti-plane elasticity, though, that is, with A one half the identity tensor, e(u) replaced by Vu where u
is the vertical component of the displacement field, it is well-known that (1.2) is approximated in the sense of
I'-convergence by the Ambrosio—Tortorelli functional

AT (u,v) := /Q ((v +1e)|Vul® + @ + 8|Vv|2> dz, (1.3)

where it is crucial for the residual damage to be of order 7. = o(e). A general case study in function of this
parameter 7. with I'-convergence results in the anti-plane case was carried out in [31] as based on Ambrosio—
Tortorelli approximation, whereas an approximation of the type (1.1) had been considered for the scalar case,
slightly earlier by the same authors in [23]. In real elasticity, that is, for the vectorial v and its symmetric
gradient e(u) (as well as in n-dimensions), the first significant I'-convergence convergence result is found in [26],
with an Ambrosio—Tortorelli-like approximation. Recently, existence results for the original Griffith’s functional
have been provided in 2D passing by Korn-type inequalities in GSBD space [18, 30] (see also [16,17]). In
[14, 15] the authors manage to get rid of any artificial integrability condition on the displacement field by
carefully approximating the singularities, and prove some existence results by I'-convergence with the topology
of measures.

In the present paper, with the topology of L', we are concerned with approximations as based on functionals
of the type (1.1). Indeed, it is closer to the numerical method chosen for simulation of damage-driven fracture,
in particular as far as topological sensitivity analysis is performed, already in [1] and more recently in [35]. In
particular, we stick to a simple first-order damage energy, i.e., without gradients of v in the energy functional
(see [7] for other gradient-free approximations in other contexts). Note however, that the gradient constraint is
found in the admissibility class, which from a technical viewpoint has the same effect. The first aim of this work
was to justify from a mathematical perspective a simple model of fracking based on damage and fluid-driven
fracture and the topological derivative concept [36]. In that work, numerical simulations were performed, based
on the minimization of an energy functional of the type

F.(u,v) := Je(u,v) — p/Qw(U)div udz, (1.4)

that models a crack filled with a fluid with an imposed hydrostatic pressure p which is quasi-statically increased
in order to trigger a crack opening. As a generalization of this problem, our main goal in this paper is to study
the asymptotic behaviour, in €, of general functionals with low-order potential of the form

Fel(u,v) := Je(u,v) —|—/ F(z,e(u),v)dz, (1.5)
Q
where F' need not to be positive. In particular, fracking is recovered for F' = —pi(v)trace(e(u)), but it happens

that other interesting cases can be studied as for instance (i) hydraulic fracture in porous media, (ii) plastic
slip, (iii) non-interpenetration or Tresca-type conditions, just to cite some applications that we have chosen.
Our main result is the I'-convergence of F.(u,v) to the limit cohesive functional

D(u) = /QAe(u) ~e(u)dz + bH" 1 (J,,)

" “/ VA[() 0 () - ([(z) © v(2)dH" ! (2)
Ju

+ /Q F(z,u,1) + /Ju Foo(z, [u] © v)dH" 1 (2),
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for some appropriate coefficients a and b related to the choice of the damage potential ¢ and with F,, denoting
the recession function of the convex potential, i.e., coding the asymptotic behaviour of F as |e(u)] — oo.
Compactness and an original approach to existence results are also proposed in Section 5 (to be precise, the
so-called existence of weak type), as well as some general results given in the Appendix A. Let us remark that
a specific such low-order potential together with a treatment of the Dirichlet boundary condition were also
considered in the anti-plane case in [6], with the additional condition that F > 0, a restriction that we wanted
to avoid in the present work. Let us emphasize that in this work, in contrast with the aforementioned results,
we address and solve the complete problem that consists in avoiding any L°°-bound on the displacement field.

Moreover, our aim is also to be entirely self-contained, in order for these computations and techniques be
available for the mathematical/mechanical communities in the clearest way possible. Therefore, some known
results are recalled and proven in our Appendix A. Precise bibliography is always provided when cross-references
applies, while otherwise our arguments and proof strategy are originals. Specific references for this topic are
[23,31] while general and fundamental results are found in [2—4,8,10,13,22,27, 34].

2. NOTATIONS AND PRELIMINARIES

We denote by M5 the set of all symmetric matrices with real coefficient. Given an open bounded set (2
with Lipschitz boundary we say that a function v € L'(£;R") is a function of bounded deformation if there

exists a matrix-valued Radon measure ((Eu);;)7;—_; such that for all 4,j = 1,...,n it holds

1 Op Oy
(Bug) =3 [ (w05 ) a
for all p € C(Q;R™).

Notice that, if ux € BD(Q) and uy — u in L', then Fuy —* Eu. The space of such functions is endowed
with the norm

[ullp = llull L1 (@) + [Eu|(£2)

where, for any given Radon measure p, || stands for its total variation. For any sequence {uy }reny bounded in
this norm, up to a subsequence, it holds u; — u in L'. Analogously to the behavior of the function of Bounded
Variation we can identify three distinct part of the matrix valued measure Eu: the absolutely continuous part,
the jump part (supported on J,,, an (n— 1)-rectifiable set) and a Cantor part. Namely, for a generic u € BD(Q),
we can write

Eu=e(u)L™ + [u] ® v, H" "' J, + Eu

where v, (z) is any unitary vector field orthogonal to J,, [u] = 4™ —u~ the jump of u with u* the approximate
limit of u as we approach J, and
[u] @ vy + 14 ® [u]

2

[u] ©® vy =

Note that in general symbol @ stands for the symmetric sum. Finally we define the space SBD?*(Q;R") as
follows:
SBD?(Q;R™) := {u € BD(;R™) | Eu =0, e(u) € L*( M25"), H" ' (Ju) < 400}

2.1. Settings of the problem

We consider a fourth order tensor A : MZE" — MI1" such that there exist a constant  for which

kUM?? < AM - M < k|M|?

where M - L := tr(ML") is the standard scalar product inducing the Frobenius norm which, for a generic
M e M2x" is here denoted by |M].

sym
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Having fixed o > 0 we define
Voi={veWh™(Q) |ea <v <1, |Vo|] < 1/e}.
With these notation we define the sequence of energy functionals F. : L'(Q;R™) x L'(Q;]0,1]) — R, to be

1
vAe(u) - e(u)+ — [ Y(v)dx
/Q (1) el) 6/ ) if (u,0) € H'(Q;R") x V.

Fe(u,v) = +ZF(I,6(U),U)dz (2.1)

+o00 otherwise

where v is any strictly decreasing (and thus we will often use that ¢(0) > 0), convex function such that (1) =0
and F' is a generic potential subject to the following hypothesis.

Assumption 2.1 (On the potential F). The function F' : R™ x MZX" X [0,1] — R satisfies the following
properties:

(1) F(-,M,0) is Lipschitz continuous uniformly in M € MZ";

(2) F(z,-,0) and F(z,-,1) are convex for all v € Q;

(3) —o|M| < F(x,M,v) < M|, for all (x,M,v) € R™ x M2x™ x [0,1] where £ > 0 can be any real constant

sym
and
2y ay(N) ayp(0)
O0<o< <2 ; 2.2
726N { Jr(l+2 a|Q|1/)(/\)//\)} K 22)
(4) having set
wr(s;1) := sup { [, M, S)J\_/[f(x’M’ Dl (z, M) € R" x Ms@fnn},
wF(s;O) — Sup{F(‘xaM’s)]&f(xaMaO” . ($,M) cR" x M:;ifnn}’

then
lim wp(s;1) = lir%wp(s;()) = 0.

s—1
Remark 2.2. In particular, F' can be taken as negative as we want by simply taking a1)(0) large enough.

Remark 2.3. We remark that, for any fixed z, since f(M) = F(z, M,0) is convex and satisfies f(M) < ¢|M|,
then f is a Lipschitz function with constant £. Indeed, consider a convex function f : R” — R (with n > 1) such
that f(x) < £|z| and notice that, for any v € S"~1, g(t) := f(x + tv) is still convex and meets the requirement
g(t) < lz + tv|. In particular lim;_ 4 M < ¢ and since the map t — M is increasing we get
M < ¢ for all t € R, leading to ¢’(0) < £ and thus to

Vf(x) -v<l forallve S" ! = |Vf(z) <L

We are interested in the asymptotic behavior (as € — 0) of the sequence of energies (2.1). In particular the
first aim of this paper is to show that the family of functional F_, under the Assumptions in 2.1, is I'-converging
to the energy

P(u) := /QAe(u)-e(u)dx—k/QF(ac,u,l)dx
+a [ VAR © ) 16 © V@ ()
Ju

+bH"‘1(Ju)+/J Foo(z, [u] ©v) dH" 1 (2)
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defined for u € SBD?(©; R™) and extended to +oo otherwise. Here we have set, for the sake of shortness,

a = 2+v/ap(0), b:2/0 P(t)dt

and

F(z,tM,0) — F
Foo(va) = lim (Z’t ’O) (270,0)

for z € J, and M € MI**"
t—+400 t

sym

(see Prop. A.1 to see why F, is well defined for potential F' satisfying Assum. 2.1).

Remark 2.4. Notice that the role of the condition o > 0 is linked, at least in the present analysis, to the
possibility for F' to be negative. The approach here proposed seems to work also if we replace the condition
ve > ae with the condition ve > 7. for an n. such that 7. /e — 0, provided F > 0.

2.2. Main Theorems
Setting, F : L'(Q;R™) x L*(£;[0,1]) — R, to be

if u € SBD?*(Q)

®(w), and v =1 L™-a.e. in §,

Flu,v) = (2.3)

400  otherwise
we are able to provide the following I'-convergence result:
Theorem 2.5. Provided the notations and the assumptions introduced in Section 2.1 we have
=7
on the space H'(Q;R™) x V. € SBD?(Q) x L*(Q) with respect to the convergence induced by the L' topology. In

particular, the following assertions hold true:

(a) For any (uc,v.) € HY(;R™) x V. such that u. — u, v. — v in L' we have

lim i(I)lf Felte,ve) > F(u,v);
E—

(b) Let {ej}jen be a vanishing sequence. Then for any u € SBD?*(Q) there ewists a subsequence {ej, }ren C
{ej}jen and (ug,vp) € H'(R™) x Ve, such that

up —u, wvp— 1 in L2, and klim Fe,, (urs vr) = F(u, 1).
—+o0

Let us remark that, assertion (b) allows us to recover the energy of any u € SBD?(2), which consist of an
important improvement of the results in [26], where only v € SBD?(Q) N L>(Q;R™) can be recovered. This
improvement is mostly due to the recent refinement [21] of the approximation theorem for GSBD function
contained in [31]. Such a theorem yields a more precise information about the lack of energy on the jump set
between the function u and its (more regular) approximants (see Property (d) of Thm. 4.6 below). Thank to
this recent result, our solution is sharp, since the complete problem is addressed, i.e., without the L°°-bound,
as found in most results about this problem.
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Moreover, we prove that the sequences with bounded energy are compact with respect to the L' topology.
Namely the following theorem holds true:

Theorem 2.6. With the notations and the assumptions introduced in Section 2.1, if (uc,v:) € HY(Q;R™) x V.
are sequences such that
sup{||lue||zr + Felue,ve)} < +00 (2.4)
£

there exists two subsequences {(ue, ,ve, ) tren C {(ue,ve)}eso and u € SBD*(Q) such that
U, —u, v, — 1 in L
and Eue, —* Eu. Moreover, for any A € (0,1) it holds

e(ur)Lin,, >xp — e(u) in L2(Q; MZxT).

sym

The Proof of Theorem 2.5 is obtained by separately proving statement (a) (in Sect. 3, Thm. 3.1) and statement
(b) (in Sect. 4, Thm. 4.9 ). The compactness Theorem is proven in Section 5.1 and it is basically a consequence
of Propositions 3.2 and 3.3 in Section 3. For the existence of minimizers with prescribed Dirichlet boundary
condition we send the reader to Section 5.2 where, under specific additional hypothesis on the potential F', on
the boundary data and on the domain, the relaxed problem over Q is treated. We finally provide some examples
of applications in Section 6.

3. LIMINF INEQUALITY
This section is entirely devoted to the proof of the following theorem:
Theorem 3.1. Given (uc,v.) € HY(Q;R") x V. such that u. — u in L' and ve — v a.e. it holds

lim iglf Felue,ve) > F(u,v).

To achieve the proof we will analyze separately what happens on the energy restricted on the sequence of
sets 0 = {v. > A} and Q\ Q2. We start by first gaining some information on the sequences with bounded
energy. To do that we will exploit the hypothesis on the nonlinear potential F'. Let us denote by

Wetasv) o= /Q (vAe(u) -e(u) + Tﬁ(gv)) dz if (u,v) € HY(QR™) x Ve

(3.1)
+o00 otherwise
and let us observe that
Fe(u,v) = We(u,v) +/ F(z,e(u),v)dz.
Q
We underline that any bounds of the type
Sup{We (e, ve)} < 400
e>0
leads, as we will discuss below, to an information on the convergence of wu.,v.. We now show how to

derive such kind of control starting from the boundedness of F.. In the sequel we adopt the notations
We(u,v; A), Fe(u,v; A), F(u, v; A) meaning the usual energies localized to the set A.

Proposition 3.2. Under the hypothesis stated in Section 2.1 on A,y and F, there exists a constant C depending
on a, A, |Q),v and o only such that

We(u,v; A) < C(Fe(u,v; A) + 1) (3.2)
for all (u,v) € H*(;R™) x V2 and for all open sets A C Q.
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Proof. The key point is the estimate

/AF(x,e(u),v)dxz —0/A|e(u)|d:r.

Set

and notice that

and that

f e =2 [ 2T e o
< M% () contempars [ ¥0 )

< M% ( /A  vhe(u) - e(u)do + /A o w;) dx)

_VE
- 2Vep(N)

In particular, by combining (3.3)-(3.5) we obtain, for any (u,v) € H'(Q;R") x V.
[k Q]
/ F(z,e(u),v)dz > —0o a| VW, )+ ——
a
04|Q\ 1 ]

2—0\/5(14—1/\/8(11,11;14)) —_— 2\/7

VR(L+ %/MW ]
ap(N) ’

W (u,v; A).

u,v; A
anid )1

—o(14+W.(u,v; A))

1311

(3.3)

(3.6)

where we have used the fact that /We(u, v; A) and W (u,v; A) are each always bounded by (1 4+ W, (u, v; A)).
Moreover, inequality (3.6) holds for any A€ (0, 1) and hence it holds for the minimum among A which means

that

A€(0,1)

/AF(;v,e(u),v)de—0(1+W5(u,v;A)) min { 2 /ai )

V(L + 2¢/a]2[p (V) /) } .
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Notice that Assumption (1) in 2.1 requires that
-1
2
I e (o vEn e |
Ae(0,1) | vR(1 4 24/a|Q(X)/N) A€(0,1) 2/ ap(N)
In particular for some § > 0 depending on «, A, |Q|, ¢ and o only we have

{\/E(H?\/alﬂlw(A)/A)} <9
2,/ (N) -

o min
A€(0,1)

leading to
/AF(ac7 e(u),v)dz > —(1 = 6)(1 + We(u,v; A)). (3.7

By exploiting (3.7) we reach

Fe(u,v; A) = We(u,v; A) + /A F(z,e(u),v)dz

> WE(U,U;A) - (1 - 5)WE(U,U,A) - (1 - 5) > 5WE(U,U;A) -1
which, by setting C' = 6!, achieves the proof. O

Let us now analyze the behaviour of the part of the energy that lives on the set {v. > A}. We set up some
notation that will be repeatedly used in this subsection. Given a sequence {v.}.~o C V; and a fixed A € (0,1)
we define

Q) = {v. <A}
We also set
no = [ o el )
2o = [ . L
B\ = /Q <v5Ae(u5) ce(ue) + MSE)) da.
Then

fa(us,va;Q?) :IS()\) + F(x,e(ue),v:)dx

Q2
is the part of the energy that will provide the jump terms in the limit, as Proposition 3.4 will show. Let us first
treat the bulk part F.(ue,ve) — Fe(ue, ve; Q22) = IL(A) + I2(N\) + fQ\QA F(z,e(ue),ve).

Proposition 3.3. Let (uc,v.) € HY(Q;R™) x V. be such that
U — U, Vg —V in L'

and with
sup{ Fe(ue,ve)} < +o0. (3.8)
e>0

Then

sup{ le(ue)] dx} < 400. (3.9)
e>0 Q
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Moreover u € SBD?(Q;R™), v =1 a.c. in Q and for any X\ > 0 it holds

sup {/ le(ue)|? de, } < 400, (3.10)
e>0 | Ja\Q)
lim inf [vsAe(uE) ce(ug) + w(ve) + F(z,e(u.), vg)} dz
0 o y (3.11)
& / [Ac(u) - e(u) + F(x,e(u), 1))] dz + 2(h(1) = A(A))H" ™' (Ju)
Q
where .
h(t) ::/ Y(1)dr.
0
Proof. Thanks to Proposition 3.2, the bound (3.8) implies
sup{ W (ue, ve)} < +00. (3.12)
e>0
In particular
/ Yve)de — 0
Q
which implies (v) = 0 a.e. in Q and thus v =1 a.e. in 2. Moreover, fix A € (0,1) and notice that
I\ = / vAe(u) - e(u)dz > A\~ * / le(u)|? dz (3.13)
Q\Q2 o\Q2

and

3
> 2\/a\/,71/m le(u)| /Y (ve) dz > /k=Tarp(N) /Q le(u)| dz. (3.14)

Inequality (3.13) implies (3.10), while (3.14), after a further application of Cauchy—Schwarz inequality in
(3.13), yields (3.9), that in turn establishes the weak compactness in BD. Such a compactness in the weak
topology of BD, together with u. — u in L', implies u € BD(Q2). The remaining part of the proof is obtained as
a slight variation of the original arguments of [26] extended in such a way as to take into account the nonlinear
potential part.

By = /Q (UAe(u) e(u) + w(ff)) da > /Q (/i_la5|e(u)|2 + MU)) do

Step one: proof that u € SBD?*(Q). We start from the fact that

sup{IX(\) + I2(\) + I3(\)} = sup{W.(uc,v:)} < +oo  for every A € (0,1)
e>0 e>0

which implies a uniform bound in € on each I? for i = 1,2, 3. Thanks to the co-area formula and to the property
of ve € V. (in particular to |Vv.| < 1/¢) we obtain, by recalling the definition of h

If()\):/ dez/ |Vv5|w(ve)dx:/ |Vh(ve)| dz
o\ € Q\Q2 Q\Q2
h(1)

- /hm P({h(ve) > t}; ) dt > (h(1) = (X)) P({h(ve) > te}: ),
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where in the last inequality we considered the mean value theorem to find ¢. € (h(\), h(1)). We now set
Ae i=h7HE) € (A1)

and observe that
PQ\ 20) < CI2(N),

yielding
sup{P(2\ 22=; Q)} < 4o0.
e>0

Consider 7. := uclg, g. and notice that, since ve — 1 (and thus |Q\ Q2| — |Q|), we have . — u in L!.
It is easy to see that, as a consequence of the chain rule [5], Theorem 3.96 (see [5], Example 3.97, u. is a BV

function with
Du, = 19\925 VuL" +u. ® Ve H"il\_ﬁ*Q;‘E.

Moreover the above formula implies that H"~1(J5, \ 9*Q2<) = 0. Thus . € SBD(Q;R™) N L2(£2) (since also
[u.| < |ue| € L?). In particular
sup{H" ! (Jz.)} < +oo0.

e>0

From (3.13) we also get that 7. € SBD?*(Q;R") N L2(Q) with

e>0

sup {/Q le(T@.)|? dx +H”_1(Jus)} < +o0. (3.15)

By applying Lemma 5.1 from [13] this gives us that « € SBD?*(Q; R"), since

e(t:) — e(u) weakly in L?(Q; M), (3.16)
H(T,) < liming”_l(Jﬂa). (3.17)

Step two: proof of (3.11). Remark that the sequence {A;}c>¢ defined above lies in the interval (A,1). In
particular Q '\ 22 C Q\ Q2 and relation (3.16), due to the convexity of the map M — AM - M and to the
strong convergence of v, to 1 almost everywhere, means that (see for instance [10], Thm. 2.3.1)

e—0 e—0

lim inf/ veAe(ue) - e(ue) dr > lim inf/ velAe(ue) - e(ue) dz
02 a\Qz°

= lim inf/ veAe(Te) - e(u.) dz
Q

e—0
> /QAe(u) e(u) de. (3.18)

Moreover

/Q\Q? F(z,e(us),v;) dz —/ F(z, e(u),1) de

< / wr(ve; 1)|e(ue)| da
o\ Q\Q

< / le(ue)| dz,
Qze\22

where we exploited item (3): |F'(z, M,v)| < £|M| of Assumption 2.1. The above quantities are vanishing (by
item (4) of Assumption 2.1 on F, thanks to the fact that |Q)< \ Q)| — 0 and thanks to (3.10)) and hence

/Q\Qg F(m,e(ug),l)dx—/ Flz, e(u), 1) dz

Q\Q2¢
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this fact, together with the convexity of the map M — F(x,M,1), implies (using once again (3.16) and the
semicontinuity theorem [10], Thm. 2.3.1)

e—0 e—0

lim inf/ F(z,e(ue),ve) de = lim inf/ F(z,e(us),1)dx
o\ Q\Q2e

E/QF(x,e(u),l)dx. (3.19)

To achieve the proof of (3.11) we need only to show that

liminf/ P02 G > 2(h(1) = RO R ().
Q\Q2

e—0 9
In particular we use the fact that

liminf P({h(ve) > t}; Q) > 2H"1(J,) for all t € (h()\), k(1)) (3.20)

proved in [26] via a slicing argument as established also in Lemma 3.2.1 of [25]. Relation (3.20) implies imme-
diately that

P(ve) 1) -1
/ V) g > / P{h(v.) > £5:Q)dt > 2(h(1) — h\)H* ()
o € h(X)
leading to
lim inf YO 4y > 2(h(1) = hO)H™ (). (3.21)
0 Jawy €
By collecting (3.18), (3.19) and (3.21) we deduce (3.11). O

We now provide the liminf inequality for the (asymptotically equivalent) remaining part of the energy on
Q\ Q2. In order to do so, we will need to apply Proposition A.7, stated in the Appendix A, that is a well-known
approach (inspired by [11]) when dealing with local functionals. We will also use the blow-up technique originally
designed in [27].

Proposition 3.4. Let (u.,v.) € H'(Q;R"™) x V. be such that
Ue — Uy, Ve — U in L'

and with

sup{Fe (ue,ve)} < +00. (3.22)
e>0

Suppose also that, at a given z € J,, such that
L IEul(B,(2)

r—0 wn_l’rn_l

= |[u](2) © v(2)| (3.23)

we have

lim lim inf Fe(ue, ve; Br(2))

r—0 rn—1

< +o00,

then, for every A € (0,1), it holds

lim lim infli / [2¢/a1p(0)\/Ae(u.) - e(us) + F(x, e(ue),0)] dz
B,.(z)N§22

r—0 e—0 rn—1

> 2/ap(0)VA[](2) © v(2) - [ul(2) © v(2) + Fu(2, [u](2) © 1(2),0).

(3.24)
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Proof. Set G : R™ x MZX" — R* to be

G(x, M) = 2y/a\/(0)VAM - M + F(x, M,0)

and notice, by the hypothesis on F, that G(z,-) is a positive convex functions on Mgy for any x € Q. In
particular G satisfies the hypothesis of Proposition A.7 and thus

lirsn_}(r)lf /B,.(z) G(z,e(ue))dx > /BT(Z) G(z,e(u))dz + / Goo(y, [u] @ v)dH" " (y) (3.25)

JuNBy(z)

for any B, (z) C Q. Let ¢, be the sequence achieving

lim inf G(z,e(u.))dx = lim G(z,e(ug,))dz
e—0 Q> k—+o0 Qé\k

and define, for every measurable set A C 2, the Radon measures:
pr(A) ::/ G(z,e(uy,)) dz,
ANQY,

&k(A) = / G(z, e(ue,)) dz,
A
Notice that, due to the uniform bound on the energy F. we have

sgp{uk(ﬂ)} < +o0, Slslp{fk(Q)} < +o0,

and thus, up to a subsequence (not relabeled), we can find Radon measures p,  such that
pe =" gy &k T8
Step one: We assert that the proof of (3.24) follows easily from the following fact:

fo BBE) L EB(2) (5.26)

r—0 rn-1 r—0 -1
Indeed, by assuming the validity of (3.26) we conclude that, for £!-a.e. r > 0 it holds (because of (3.25))

§BE) - 1 g (B,(2) > — /J iy G OV AT,

— 400

,r-n—l rn—l k

implying
WB(2) | EB(2)

lim a1

r—0

o A > Goo(2, [u](2) © v(2))

for H"'-a.e. z € J,. This gives
= [ Gl o))
JuNA

and since

Goo(y, M) = 2/atp(0)VAM - M + Fi (y, M)

we obtain, for A = Q, relation (3.24).
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Step two: Let us focus on (3.26). It suffices to check that

1
lim lim inf / G(z,e(ue,))dz =0.
r—0 k—+4o00 1 BT(Z)Q(Q\Q?k) €k

Set 7 = max{c, £}. We claim that

lim lim inf —=& (Uey s Va5 Br(2))

< +00.
r—0 k——+oo rn—1

Indeed, by defining for a generic Borel set A C 2, the measures
Ck(A) =Wk, (uik » Veps A)

and by exploiting the uniform bounds on F. and Proposition 3.2 we have, up to a subsequence, ( —* (.
Moreover, due to (3.5)

ﬁﬂmwmm=mm+AFm4%%mMm

and

/F@dmwwmz—av’ M%mw+/ d%mw]
A a0, AR,

and by repeating the computation in (3.4), ) we achieve

[ |A
/ e(ue, )| dz < ‘ |Ck / e(ue,)|dz < \ et (N Ck
A2, AN,

In particular

C(Br(2))

T oen—1

|< Wn

k‘—>+ rn—

and this yields, still following the computation giving (3.6), (3.7), for r small enough and for some § > 0
depending on a, A, |€2|,% and o only

/B . F(z, e(ue, ,v.,)dz > —(1 — §) (C(ﬁ_(f)) + 1) .

lim inf T
k—-+oo T

Thus
B, B,
tim liminf oo Vi Br@) Sy gy, SBH2)
r—0 k—+4o0 rm r—+4oco T
for a positive constant C. Thus, if
. B’I‘
lim tim inf 20005 Br@)
r—0 e—0 pn—1
then
. B’I‘
tim Tim inf 2V (e Vi Br(@) (3.27)

r—0 k—+o0 rn—1
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Clearly,
/ Gl e(us,))de| < [ (2v/ab (0 + 7)le(u,)| e
(@0 )NBr(2) (@2, )NB.(2)
< (2 Otl[J(O)Ii+T)/ le(ue, )| dz
(22, )NB, (2)
1/2
< | e(us)2dz | .
A\ "B, (2)
Thus
) ) 1/2
— / G(z,e(ug,))dz < Orl/? — le(ue, )| dz
e Q2 )NB-(2) T (Q\QMNB,.(2)
1/2
Cri/? 1 24
= /2 | pn-1 QmBr(z)ka|e(usk)| x

IN
Q
3
-
~
N
o~ " ——
—_
—
<
)
S
(g
—~
I
5
kol
N—
o
+
<
—
<
D)
Ead
SN—
| I
o
SN—
<
N

But now, thanks to (3.27), it holds

lim lim inf / G(z,e(ue,))dz| =0,
r=0k—+oo 11 | Jio\Q) )nB,(2) ( o)
yielding (3.26), thence completing the proof. a

We are now ready to proceed to the Proof of Theorem 3.1.
Proof of Theorem 3.1. Let (uc,ve) € HY(Q;R") x V. with u. — u and v, — v in L.
We can easily assume that sup, {F:(ue,v:)} < +00 (otherwise there is nothing to prove). Let A € (0,1) to be

chosen later and apply Proposition 3.3 to deduce that v = 1 £L"-a.e. in Q, u € SBD?*(Q) and to conclude that
(3.11) and (3.10) are in force. Thus

imin vehAe(us) - e(u M x,e(us),v x
lsﬁof/n\ﬂé [ chelue) - efue) + ==+ Fl@, efue), E)} 4 (3.28)
> [ [Ae(u) - ew) + Fla.e(u. 1)] do +2(h(1) ~ B)H ().
By writing
P(ve)
Fe(ue,ve) > vehe(ue) - e(ue) + —= + F(x, e(ue),ve) | do
/”\“? [ © } (3.29)

—|—/m {UEAe(us) e(us) + @

€

+ F(x,e(ug),ve)] dz,
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it is readily seen that it suffices to focus on the second addendum in the right-hand side of (3.29), denoted as
Ge(ue,ve; A), which by Cauchy—Schwarz inequality yields

Ge(ue, ve) Z/

Q2

{2\/5\/1%6(%) -e(ue) VU (ve) + F(z, e(ue), UE):| dz.

Since 9(s) — ¥(0) and wp(s;0) — 0 for s — 0, for some A\s we have that |\/1(s) — \/¥(0)| + wr(s;0) <
0 for all s < As. Thus, for a suitably small A\, we have

/Q 2vav/Ae(us) - e(us) (Vb (ve) = V/i(0)) de

< 25\//104/ e(ue)| dz

and

/ [F(z, e(u.), v.) — F(, e(u.),0)] de
o

< /Awp(v5;0)|e(u5)\dx < 5/9» le(ue)] da.

=

In particular, according to (3.9), we reach

[ 2vayE) e (Vi) - Vi) do

lim
e—0

+ lim

e—0

F(z,e(ue),ve) — F(z,e(ue),0)] dz| < 6C

@2

where C' is a constant depending only on the sequence on the sequence u.. In particular, we have

limi(l)lfgg(ug,vg) > —6C—|—limi(§1f/ [2\/oz¢ WAe(u) - e(us) + F(x, e(u.), O)} dez.
E— E— (2?

For H" 1-a.e. z € J, we can guarantee that

Lo EulB(2)

r—0 Wy_17"" 1

= [[ul(z) © v (2)].

Moreover, if
;B
lim lim inf Fe(ue, ve; Br(2)) = 400
r—0 e—0 rn—1

then the (n—1)-dimensional densities of the lim inf lower bound is +00 and the lim inf inequality trivially holds.
Instead, for all the other point it must hold
fe(uaa Ve; Br(z))

lim lim inf < 400.
r—0 e—0 7’”71

Hence by applying Proposition 3.4, and in particular relation (3.24), we get

limiélfgg(ue,vg) > —(5C’—|—/

{2\/ozz/) (0)\/Afu] u] O v+ Fy(x, [u] ©v,0)| dz. (3.30)
Ju

Summarizing, we have shown that for any J > 0 there exists a As such that, if A < Ay, then (3.30) holds true.
Moreover (3.28) is in force for every A € (0,1). Thus, for any § > 0 it must holds

limi(r)lffe(us,ve) > —0C + F(u,v),

that, by taking the limit as 6 — 0, achieves the proof. O



1320 M. CAROCCIA AND N. VAN GOETHEM

4. LIMSUP INEQUALITY

This section is entirely devoted to the construction of a recovery sequence. We first show how to recover the
energy on a special class of function C1(£2; R™) and then we show, with a density argument, that each function
u € SBD?*(Q;R") can be recovered. Let us define

u € SBV2(Q;R™) N L2 (Q;R™) N W™ (Q\ J,; R™),
for all m € N

Cl(&R") := where J, N is the finite union S of closed, ( (4.1)
pairwise disjoint (n — 1)-dimensional simplexes

intersected with Q and H"~*((J, N )\ J,) = 0.

4.1. Recovery sequence in C1(€2; R™)

Consider u € C1(Q;R™) and fix once and for all a unitary vector field v = v, which is normal H" l-a.e. to
K = J,NQ. Notice that, since J,, is the finite union of closed and pairwise disjoint (n—1)-dimensional simplexes,
then the point where v is not well-defined is a set of dimension at most n—2. The projection operator P : ) — K
is well defined almost everywhere around a small tubular neighborhood T C €2 of K and thus we can consider,
for points in T, the signed distance

dist(z, K) = (z — ) - v(T), == P(x).

We consider a normal extension of ¥ on T. We now introduce the recovery sequence. Set ¥ : J, — R, a
function such that

¥ e Wy (Ju;R,HY, 9>0 on Jy,

to be chosen later. We also require that J(z) = 0 for all x € K \ J,,. For any ¢ > 0 small enough, consider the
set defined as

Age i ={y+tv(y) [y € Ju, te(=I(y)ed(y)e)}-

Notice that up to choose € small enough it is not restrictive to assume that Ay has finitely many disconnected
component well separated one from another, each of which is part of a tubular neighborhood of an (n — 1)-
dimensional hyperplane.

With the same carefulness explained in Remark 4.1 (or by suitably modify the construction provided by
Thm. 4.7, see [26], Rem. 3), it is not restrictive to assume also K = .J, N Q C €.

Having in mind this assumptions on the jump set, we define the following functions

1 if x ¢ A(19+1)8
Us(x) _ (1 —6065) |diSt($, Ju>| — 19(5) + (1 + 19(5))048 ifz € A(19+1)8 \ Aye (42)
Qe if v € Ay,
and
U lf x ¢ Aﬂe
ue(x) = (u(;v +V(@)ev) iu(j — ﬂ(x)gy)) dist(z, Ju) . (4.3)
20(z)e it € Ay,

Jru(f + ¥ (T)ev) J2r u(T — H(T)ev)
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FI1GURE 1. In grey is depicted the set Ay.. Up to choose £ small enough we can always assume
that the pieces of the set Ayc, on each branches of J,, do not overlap. In order to alleviate the
notations we are neglecting this correction.

Remark 4.1 (On the regularity of (uc,v.)). When x approaches J, \ J, we have u.(r) = u(x) and thus we
can conclude u. € WH°(Q; R™). On the other hand, we see that v. might present a jump on the lines

{y+t7/ | yETu\Jua te (_575)}

where 9(y) = 0. To overcome this problem we can argue as follows. As a consequence of Corollary 3.11, Assertion
ii” [19] we can claim that the better regularity of the jump set of u ensures that H"2(J, \ J.) < +oo and
thus, for every € > 0 we can cover such a set with a finite number N. of balls By(¢) of radius ¢ such that
lim. o N.e"~1 =0.

Moreover, we can find a function (. such that {, = 1 outside X, := Uff:ﬁl By (2¢), V(| < 1/e, (. = az on
Uk Bg(g). In particular we can make use of the neighbourhood Ugil By (3¢)\ X tosew up (. 1y, with v.(1—15x,)
in an H! way. Furthermore, the slope of the function constructed in this way can be controlled by 1/e and hence
the gradient of the surgery, namely ¥, still has modulus less than 1/e (up to the carefulness of Rem. 4.2) as
required by the constraint. In particular, by considering 9. in place of v. we can see that 0. € V.. In order to
alleviate the notations we will neglect this correction that, indeed, does not affect the energy asymptotically,
due to the fact that \Ugil Bi(3¢)|/e < CN.e"1 — 0.

Remark 4.2 (On the constraint |Vve| < 1/¢). Notice that

[Ve| = [1+e2|[Vi(z)PP] < Cc/e

(1—ae)
€
where C; \, 1. In particular we can correct our v, by dividing by the factor C. > 1 so to ensure |Vuv.| < 1/e
without essentially changing the structure of the recovery sequence. To ease the notations we also decided not

to take into account this small correction that is anyhow asymptotically negligible.

Up to these modifications we can thus pretend that u. € WH(Q;R"), v. € WH>°(Q;[0,1]) and u. — u,
ve — 1in L'. For the sake of shortness, in the sequel when referring to a point 2 € Ay, we will adopt the slight
abuse of notation ¥(x) by meaning ¥(z) = ¢(Z) which is equivalent to consider the normal extension of 9 to
Aye. We now proceed to the proof of the following proposition.
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Remark 4.3. Since we will make use of the following computations in the sequel, let us briefly clarify it in few
lines. We will often deal with integrals of the form

/A@E q(z) dz

that we will slice with the co-area formula with respect to the function g(z) = d(z, J,,) (notice that |Vg(z)| = 1)

yielding
Vmax€
[ oawae= [ a aly) aH ()
Aye — U max€ {d(y,Ju):t}ﬂA,9€

_/mmx6 dt/Dq(z+tl/(z))dHn71(Z)

—VUmax€

where

Umax = sup{¥(z)}, D={z€ J, | z+tv(z) € Ay:}.
zEJy,

The identity between characteristic functions

]]-[—19,naxs,19maxe} (t)]]-D(Z) = ]]-Ju (Z)]]-[—ﬂ(z)s,ﬂ(z)e] (t)

is in force for any ¢ is small enough and thus an application of Fubini’s theorem yields

(2)e
/ x) dx —/ / q(z +tv(z)) dtdH" ().
Age —9(2)e

Proposition 4.4. Ifu € Cl(Q;R"™), there exists a function ¥ such that the sequences defined in (4.2) and (4.3)
are recovery sequence for the energy F. In particular

liH(l) Fe(ue,ve) = Fu, 1).

Moreover |luc||p~ < ||ulL~ and u. — u in L2.

Proof. We choose 9 at the very end. We just develop all the computation by assuming that

%I[U](y) Ov(y)| <I(y) < Kl[ul(y) © v(y)] (4.4)

for a universal constant K so that

sup
yEJy

{ |[u](y) © v(y)]
9I(y)

We first compute the gradient of u. for points = € Ay,.

Vu(Z + edv)(VP(z) + eV(I)) + Vu(T — edv)(VP(z) — eV (Iv))
2
w(T +Jev) @ v —u(T —dev) @ v
20¢
n Vu(Z 4 edv)(VP(x) + eV () — Vu(T — edv)(VP(z) — eV (Iv))
20¢e

~u(@+edv) ® VI —u(@ —edv) @ VI dist(z, Ju)

292%¢
= Vu(T £ Jev)(VP(x) £ V() [; + dlStz(f’éJu)}

Syeu(T) @ v
20¢ ’

}<+oo.

Vu.(z) =

dist(z, Ju)

Sgsu( ) ®@ VY

9%z dist(zx, Jy,) +

(4.5)



DAMAGE-DRIVEN FRACTURE WITH LOW-ORDER POTENTIALS 1323

where
Syeu(T) = u(T + Jev) — u(T — Jev).

In order to give a more clear picture of the computations we are performing, we will argue on each separate
addendum of the energy F.. In particular we divide the proof in three steps plus an additional fourth where
we choose the appropriate 9 : J, — R. Each addendum contains a principal part that has a nonzero limit as ¢
approaches zero and a vanishing remainder R.(u.,v:). For the sake of shortness in the sequel, we will always
denote with a small abuse, by R. any term that is vanishing. In particular the term R, can change from line
to line.

Step one: Limit of the absolutely continuous part of the gradient. Notice that
/ vehe(ue) - e(us)dz = / Ae(u) - e(u) dz
Q QN\Aw11)e

+ / aele(ue) - e(ue) do + Re(ue,ve),
A

ve

where
R (ue,ve) = / vehAe(u) - e(u) da,
Aot1ye \Ave

which (since v. < 1,u € W and ¥ € L>=(J,; R, H*™ 1)) is clearly vanishing to 0. Moreover

Syeu(T) © v(x 1 dist(z, Jy, _
c(uc)(o) - 2OV < |2 B 9 )] (19P e + 29 (00
- dist(z, Jy,)
+ |S198U(33)|||V19||00W
1| oo [| V| 00
< 19Ul ([Pl + £ T (00 o) + L ¥

2] oo
< ]_ LI Ll
< C’< + 2

where C' is a constant depending on u and ¢ only (that in the sequel may vary from line to line). In particular

Ae(ue) - e(ue) A(Sycu(T) © v(x)) - Sy-u(T) © v(x)

1
492¢2

< ‘Ae(us) : [e(us) _ (Sﬁsu@%&@ v(w))} ’ N ‘ A(Sﬁsu(i)gf v(x)) [e(ue) B W ] ‘
<ot ) oot (14 14).

Due to our assumption on v and ¢ (4.4) we know that

|[u] ©® v| < C
e ¢

‘ Syeu(T) © v(x)
21e

and thence we can conclude

Ae(ue) - e(us) — A(Syeu(T) O v(x)) - Spu(T) O v(z)| <

IN

| Q
%o

&l

1
4192¢2
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This means that

[ e
Age

1 _ _
/Aﬂs ache(u,) - e(u.)dz = a/AﬂE WA(SﬁEU(fE) Ov(x)) - Speu(T) O v(z)de

+ Rg(UE,U5)~

ez A(Sou(®) © V() - Soeu(®) © v(a)| da < acC

Ae(u,) - e(ue) —

implying

By slicing the term as in Remark 4.3 we get

a/AﬂEZW(lz)QsA(SﬂEu(:E) @ v(z)) - Speu(T) © v(z) dz

—o [ ) [ A 00 - Spens) o)t
B Ju —ed(z) 419(2)26 e e

! n—1
a/] 219( ) (5195 ( ) (Z)) . SﬁEU(Z) ® y(z) dH (z)
By virtue of Sy.u(z) — [u](z), we get

lim [ v.Ae(ue) - e(us)dx = /QAe(u) ce(u) dx

e (4.6)
+a/ A([u](2) QV(;B(;()[U](Z) ©v(z)) A1 (2). '
Step two: Limit of the fracture’s potential part. Notice that
1 P(ae)
E w( ) /‘4(19+1)5\A19£ ¢(UE) ot € Aye d
(19(z)+1)s
/ /( G ) 0 ) atan )
I(z)e
+ 2¢(ace / I(z) dH" " (2)
/ / B0z + (t2 + £0(2)))) + (0o (= — (te + £0(2))0))) dt dH1(2)
+ 2(ae) / 9(z) dH™ (2).
Ju
Since v (z £ (te + e¥(z))v) — t, we get
;%g/zpvg dz = 2¢(0 /19 YAH" " (2) + 2H" T, /¢ (4.7)

Step three: Limit of the lower order potential. We see that

/ F(x,e(us),ve) da = / F(x,e(u),1) der/ F(z,e(u),ve)dz
Q Q\A11)e A1y \Ave

+/ F(x,e(ue), ae) dx
Ape

= / F(x,e(u),1) der/ F(z,e(ue),ae)dz + Re(ue, ve).
Q\A(9+1)e Ay
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Once again the co-area formula leads to
e
F(z,e(ue), ae) do = / / F(z +tv,e(us)(z +tv), ag) dt dH" 1 (2)
Ave Ju J—0¢
1
= / 19(2')5/ F(z 4+ t9(2)ev, e(u ) (z + t9(2)ev), ag) dt dH" 1 (2)
J'U/ 0
1
+ / 19(2)6/ F(z — t9(2)ev, e(ue ) (z — t9(2)ev), ae) dt dH™ 1 (2)
Ju 0

- / (67 (=) + g7 (2) AW (2)

u

where
gt (z) = 19(2')5/0 F(z + t9(2)ev, e(us)(z + t9(2)ev), ae) dt

gz (2) = 19(2)5/0 F(z —td(z)ev, e(ue)(z — t9(2)ev), ac) dt

Notice that, since F(-, M,0) is Lipschitz continuous uniformly in M we can obtain

1 . ! [u] ® v
iFw(Z’ [l Ov) = gli%ﬁ(z)s/o F (z + td(2)ev, R ,O) dt

and

42 (2)=9(2)e / F ( i), B ”,o) dt‘

< wi(as; 0)(2)e /0 le(ue) (z + teow)]| dt

+ 019(2')5/01

e(us)(z  ted(z)v) = EVU(VP +eV(I))(z £ 9ev) [1 £ 1

[u] ©v

e(ue)(z + t¥(z)ev) — ode

dt.

‘We underline that

+ i(vpt + eV (00))) Vil (2 £ ev) [1 £ 1]

Syeu(z) © VI ¢ Scou(z) Ov [u](z) O v
- 2 0 T 20 Mt e

with

M, = iVu(VP +eV())(z £ ev) [l £ t] + i(VPt + eV ()" ) Vul (2 + 9ev) [1 £ 1]

_ Syeu(z) © VYt n Sepu(z) Ov —[u] © v
2 ¥(2) 2e

Note also that

u(z + ted(2)v) — u(z)* 1 ted(z) t
< < —
T ‘ < 55902) /0 |[Vu(z + sv)v|ds < 2||Vu||oO

1325
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that implies
le(ue)(x + tedv)|9e < C, Ye|M,| < eC.

Hence 1
iii% gt (z) — ﬂ(z)e/o F (z + td(2)ev, [u;iVﬁ) dt‘ =0
and thence )
lim |g (2) — = F(2, [u] ©® v)| = 0.
e—0 2
In the same spirit, starting from g_ (z) we conclude
. _ 1
lim (g7 (2) — = Fo(z, [u] @ v)| = 0.
e—0 2

These, holding for every z € J,, lead to
lim [ F(ze(u),a)dz / Foo (2, [u] © 1) dH™1(2).
e—0 Aﬁs Ju

In particular,

lim [ F(z,e(us),v:)dx = /

n—1
iy | A F(z,e(u),1)dz + / Foo(z, [u] ©v) dH" " (2). (4.8)

Ju

Step four: Choice of ¥. Collecting together steps one, two and three and in particular (4.6), (4.7) and (4.8) we
write

gi_r%fs(us,vs) = / Ae(u) - e(u) dz

Q
A(lu](z) O v(2)) - ([ul(z) O v(2) o ne
+ a/Ju 2002) dH" " (2)
1
+21(0) /] 9(z)dH" 1 (2) + 2 ; Y(t) dtH" (T,

+/§2F(x,e(u),1)dx+/]u Foo(z, [u] © v) dHP 1 (2).

Due to Schwarz inequality

A VA
— +2UB > 2VAB where “=" is attained iff ¥ = —,
29 2V B
by choosing ¥(z) := Vo VA([u](z) ©v(2)) - [u](z) ® v(z) we can guarantee that, for any other J(z) satisfying

24/(0)
the hypothesis, it will hold

29(z) T

u

> 2y/ay(0) /J VA[l(2) © () - [ul(2) © v(2) AR (2).

In particular, with this choice we reach the equality (minimum energy). Notice that all the hypothesis are
satisfied together with (4.4) due to the regularity of u € C1(2;R"), in particular J(z) € WL (K;R, H*~1) N
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L>(K;R,H"1). Moreover, by definition it holds ¥ > 0 on .J,, and = 0 on K \ .J,,. Thus, this choice guarantees
that

iii’% Fe(ue,ve) :/ Ae(u) - e(u) dx

Q

+ 2\/a¢(0)/J VA(u](2) © v(2)) - ([u](2) ® v(z)) A 1(z)

+2 (/Olz/z(t) dt> H L T,) +/§2F(x,e(u),l)dx

+ /J Foo(z, [u] © v) dH" 1 (2).

u

Step five: L? convergence and L™ bound. By construction, it follows that ||uc||pe < ||u||z. We easily compute

[ —utar= [ fue—uldr < Claacllul? — o,
Q Aye

O
Remark 4.5. Notice that, from (4.5) it follows also that
g _
[ wudas < fi0ivule + ) + [ Bl
Q de Je
Moreover, since u is regular outside J,, we can also see that
|Syu(z)] < |u(z + dev) —ut (Z)| + |u(@ — dev) —ut (2)| + [uT (Z) — u™ (7))
and
ed(T)
|u(Z + dev) —ut ()| < / [Vu(z)|dz < ||Vul|coe?d.
0
Since
(2 (= e + -
[ WO @, [ gy [0,
Age Ve Ju —de ve
=2 [l a7 ) < 2l ().
All this considered gives
/ [Vue|dz < C, (4.9)
Q
for a constant C' that depends on v and 2 only. Along the same line we can also obtain
(7)) — 0= (7)[2
/ v|Vue|? de < C [||Vu||g0 + a/ €|u (x)2 7u 2(x)| dx}
Age Age v ( )
I(y)e 2
< ||Ivul +a/ / ) WP
I(y)e y)s
for a constant C' that depends on w and 2 only. In particular,
/ ve|Vu[*dz < C, (4.10)
Q

for a constant C' that depends on u and €2 only.
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4.2. Recovery sequence for u € SBD?(Q)

We provide an approximation Theorem based on the following two theorems from [21] (which comes as a
refinement of [32]) and [20]. In particular note that condition d) in the following approximation result is a
consequence of a more general statement found in Theorem 1.1 from [21].

Theorem 4.6 ([32], Thm. 3.1, [21], Thm. 1.1). Let 2 be an open bounded set with Lipschitz boundary and let
u € SBD?(Q). Then there exists a sequence {ug }ren C SBVZ(QR™)NL®(Q;R*) NW L2 (Q\ Si; R™) such that
each Jy, is contained in the union Sy, of a finite number of closed, connected pieces of Ct-hypersurfaces and the

following properties hold

a) |lup —ullLz — 0;

b) lle(ur) — e(u)|lrz — 0;

(¢) H" M Ju, AJy) = 0;
)

(d / [fur] © v, — [u] @ v|dH" ™ — 0.
Ty, U

(
(

Moreover, if u € L (;R™) it holds ||ug| pe < ||ul|Lee.

Theorem 4.7 ([20], Thm. 3.1). Let Q be an open bounded set with Lipschitz boundary and let u €
SBVZ(Q;R™) N L>®(;R™). Then there exists a sequence of function {ug}ren C SBV (;R™) such that

(1) up € W™(Q\ Jy,) for allm € N and H" ' ((Ju, N Q) \ Ju,) = 0;
(2) The set J,, NQ is the finite union of closed and pairwise disjoint (n — 1)-simplexes intersected with Q;
(3) llur — ul[r2 — 0;
(4) Vug — Vul|gz — 0;
(5) limsup o(z,uf  uy, ,v) dH" Hz) < /7 oz, uT,u”,v)dH" " (x)
AanJ,

k— o0 KﬁJuk

where property (5) holds for every open set A C Q and every upper semicontinuous function ¢ : Q x R™ x R™ x
Sn=1 — [0, +00) such that

p(z,a,b,v) = p(z,b,a, —v) for all z,a,b,v € Q x R" x R® x S"~1; (4.11)
lim sup o(y,a’, b, u) < 400 for all z,a,b,v € 90 x R™ x R™ x §"~ 1 (4.12)
(y,a',b’,,u)e?z(z,a,b,u)
y

Moreover ||ug| pe < |Ju| .

About these results, other references of interest are [12-14], with special emphasis on the pioneer paper [13].
As a consequence we obtain the following result:

Proposition 4.8. For any function v € SBD?*(Q) there exists a sequence u, € CI(Q;R™) such that uy, — u in
L? and
li 1) = 1).
k—1>r-ir-10<> f(ukn ) .7:(11,, )

Moreover if u € L= (;R™) it holds ||uk oo < |1 oo-

Proof. We will apply Theorems 4.6 and 4.7 to improve the regularity of our sequence. We divide the proof in
two steps.
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Step one: Reduction to SBV?. Let u € SBD2(Q). Then, by applying Theorem 4.6 we find a sequence of
functions {wy }ren C SBV?(Q) N L>°(Q) such that properties (a)-(d) of Theorem 4.6 hold. We have that

Fr(wg, 1) = /QAe(wk) -e(wy) dz

+ 2/a0(0) / VAT () (@) - (el () © e (2)) dH™1(2)

“k

+2</0 z/)(t)dt) H”*l(ka)+/§1F(z,e(wk),1)dx

+ /J Foo(z, [wi] © v) dH™ 1 (2).

Wi

In particular, because of property (b) we can infer that Ae(wy) - e(wy) — Ae(u) - e(u) in L' and that
F(z,e(wg),1) — F(x,e(u), 1) where we exploited the fact that F is a Lipschitz function (Rem. 2.3). In particular

lim Ae(wk) (wk)dx+2</ Y(t) dt) H wk)—F/QF(ac,e(wk),l)dx

k—+o00
/Ae dm+2</ U(t) dt) H (T, )—l—/QF(;v,e(u),l)da:. (4.13)

Because of property (d) of our sequence we also have

/ Iwi] © v — [u] © | AH™1(2) — 0. (4.14)
Jw, Udy

wp

The functions VAM - M and F are 1-homogeneous and convex and thus Lipschitz on MJ1" (thanks to
Rem. 2.3). Then

IWVA(wi] (2) © v (2)) - ([wil(2) © —VA([ul(z) ©v(2)) - ([ul(2) © v(2))]
+ | Foo (2, [w k]@Vk)*Foo(,[] V)| < Clwg] © v — [u] © v|

that integrated over J,,, U J, and passed to the limit yields by (4.14)

JHm 2V e (0) / VAl (2) © vi(2) - ([we(2) © v (2)) dH" " (2)

/ Foo (2, [wy] © vg) dH™Y( / Foo(z, [u] @ v) dH" 1 (2)
Jwy,
+2v/ay(0) /J VA([U](2) ©v(2)) - ([ul(2) © v(2)) AL (2). (4.15)
By virtue of (4.13) and (4.15) we have produced a sequence wy, such that wy — u in L? and
khrf Fl(wg, 1) = F(u,1). (4.16)

Step two: Regularization to C1(Q;R™). For any w = wy produced in step one we can produce, by applying
Theorem 4.7, a sequence {ug }ren such that uy € C1(2; R™) and satisfying (1)—(5) of Theorem 4.7. In particular
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ur, — w in L? and, thanks to property (4) and (5) we obtain

limsup/ Ae(uy) - e(ug) dx
k——+oo JQ

200 [ VAIE © n) - [l 0w ae ()

+2</Olz/)(t)dt) H"—1<Juk)+/QF(x,e(uk),1)dx+/ Fao (2, [ug] ® 1) dH™1(2)

Ty,

< / Ae(w) - e(w) dz + 2+/a2p(0) / VA(w](z) 0 v(2)) - ([w](z) © v(z)) dH"(2)
Q "
+2 (/0 ¥(t) dt) H" (Jw) + /Q F(z,e(w),1)dz + /J Foolz, [w] ®v) dH" 1 (2)

where we have exploited the fact that F' is Lipschitz continuous (as in step one) and that the function

P(2,0,b,v) = 21/ap(0)V/A((a —b) ©v) - ((a —b) O v) + Foo (2, (a =) O v)

is always positive (due to the Hypothesis 2.1 on F') and satisfies assumptions (4.11), (4.12). By possibly passing
to the truncated dg(x) = max{ug(x),||w||-} the above inequality is preserved together with the condition
ikl oo < [|w]loo(< |Julloo if w is L®°). By taking into account Theorem 3.1, it is deduced that

Jim F i, 1) = Fw,1). (4.17)

By combining (4.16), (4.17) with a diagonalization argument on @j,w; we can produce the sought
sequence. O

We are thus in the position to state the lim sup upper bound and provide a recovery sequence for functions
u € SBD?*(Q).
Theorem 4.9. Let {¢;}jen be a vanishing sequence of real numbers. Then, for any u € SBDQ(Q) there exists
a subsequence {ej, }ren C {g;}jen and a sequence of function (ug,vy) € H*(Q;R™) x Ve,, such that

i = 00 flur —ulle =0, flog =12 =0

and
lim e, (uk,vi) = F(u,1).

K— 400

Moreover, if u € L (S;R™), it holds that ||uklleco < ||tloc-

Proof. We prove that, for any k > 0 there exists an ¢, and (ug,vx) € H'(;R"™) x Ve,, such that

1

llor = Ul zr + uk = ull 2 + 1P, (wr, o) = Fu, ] + 5, <

This would complete the proof. According to Proposition 4.8, for any fixed k£ > 0 we can find w € CI(Q2; R™)
(with eventually ||w]|oo < ||t|loo if u € L(Q;R™)) such that

(4.18)

1
1 (w,1) = Flu, D] + o = w2 < 5

The sequence (u.,v:) € H'(Q) x V. as defined in (4.2), (4.3) (thanks to Prop. 4.4) provides

(4.19)

lin%) Felue,ve) = F(w, 1),
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with w € CI(Q; R"), and satisfies ||uc| po < ||w]|roe (< ||u]|Loe). In particular, we can find an gq(k) such that

for all € < gg.

AR

[ue = w2 +[Jve = L2 + |Fe(ue, ve) = F(w,1)| <
We can select an ¢;, < eo(k), since ¢, is vanishing, such that

1
||u€j,C - wHL2 + HUEjk - 1||L2 + |“7:5jk (uﬁjk’UEjk) - .7:(’[1), 1)| + Ejk <

o (4.20)

By combining (4.20) and (4.19) and by setting uy = u;, , vk = ve; We obtain (4.18). O

Ik

5. COMPACTNESS RESULT AND MINIMUM PROBLEM

5.1. Compactness

This section is devoted to the Proof of Theorem 2.6.

Proof of Theorem 2.6. From Theorem 11.2.4 of [33] we obtain L!-compactness from uniform BD-boundedness.
In particular notice that, if (ue,v.) € HY(Q;R") x V. satisfies sup_{|luc| 1 + Fe(ue,ve)} < 400, then, thanks
to Proposition 3.2, we have sup_{W(uc,v.)} < 4+00. By then arguing as in the Proof of Proposition 3.3 we can
retrieve relations (3.13) and (3.14) that imply

igﬂEme}Zgg{ékwaww}<+m~

This, combined with the uniform L' upper bound on u. gives a uniform bound on the BD norm leading to
L' compactness of u.. Moreover sup_{W(uc,v.)} > 1 [, ¥(v.) dz implying that 1(v.) — 0 in measure and thus
ve — 1 in measure. Then there is a subsequence converging to 1 almost everywhere and due to the boundedness
of v. we have (up to a subsequence) v. — 1 in L. In particular we have shown that, up to a subsequence
(not relabeled), it holds u. — wu, v — 1 in L' and Fu. —* FEu. By applying Proposition 3.3 we obtain
u € SBD?*(Q). O

5.2. Statement of the minimum problem

We discuss the issue of existence of minimizers under Dirichlet boundary condition. We restrict ourselves to
smooth boundary data on an open bounded set having smooth boundary.

From now on the set Q will be assumed to be an open bounded set with C? boundary. Assume that A, F, )
are as in 2.1. On the potential F' we require additionally that

— F(x,-,v) is convex for all (z,v) € Q x [0,1] (5.1)
F(z,L,v)— F(y, L, nxn
psup{ (z |Ll)|)|$_;y o)l |2,y € Q, L e M, vG[O,l]}<+oo. (5.2)

and that, having fixed, for s,t € (0,1),

|F(x,L,s) — F(x, L,t)| |
L]

sym

wr(s;t) = sup{ (x,L) € Q x M”X”}

it holds
lirr% wr(s;t)=0 forallt € (0,1). (5.3)
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Consider the following infimum problems

Ye ‘= inf{fa(u,v) ‘ U= fa v=1on 897 (U,U) € Hl(Q’Rn) X ‘/;}7
inf {F(u, 1) + R(u, f) | w € SBD*(Q)} ,

Y -
where
R(u, f) = | Fuolz,[u—flOov)dH" 1 (2) + bH" ' ({z € 9Q | u(z) # f(2)})

o (5.4)
+a . VAu—flov-[u— flovdH" ().

Notice that the additional term R(-, f) is the price that a function has to pay in order to detach from the
boundary datum f on 9f). Then the following theorems holds true.

Theorem 5.1. If {(uc,ve)teso is such that ue = f, ve =1 on OQ with also

sup{Fe(ue,ve)} < +00
e>0

then there exists at least an accumulation point of {(ue,ve)}eso. Moreover any accumulation point has the form
(ug, 1) with ug € SBD*(9).

Theorem 5.2. For every € > 0 there exists minimizers (ug,ve) for .. Moreover
lim 7. =70 (5.5)
and any accumulation point of {(ue,ve)eso is of the form (ug, 1) with ug a minimum for vo.
This implies that, by combining Theorem 5.1 with Theorem 5.2, we can prove the following corollary.

Corollary 5.3. There exists at least a minimizer for the problem ~y.

The Proof of Theorem 5.2 follows by showing that the problem ~. (I')-converges to the problem ~y. While
it is easy to show that liminf~. > ¢ in order to prove the limsup inequality we have to exhibit a recovery
sequence with fixed boundary datum. Note that this approach to handle the boundary datum was proposed in
[6] in the anti-plane case, though without a complete proof. We also remark that such a framework (with the
penalization term R) has also been implemented in [14] to prove existence of a solution for the Griffith energy.

The arguments we used to address existence results should be considered as a title of example in order to
introduce and formalize an approach based on the extension of the domain €. For this reason, its generality is
restricted. In particular, for the sake of simplicity we restrict ourselves to smooth boundary data considered on
domain with smooth boundary. We are however confident that, with a refined analysis of the surgeries, one can
carry out a more general statement involving H'/? boundary data defined on pieces of the boundary 9 of a
Lipschitz domain.

We underline that the proof of existence for 7y can also be achieved by applying the direct method. It is not
immediate, however, to see that the energy

ur— Fu, 1) + R(u, f)

is lower semi-continuous due to the additional term R. We here decided to treat the problem from a
I'-convergence point of view in order to ensure also convergence of minimizers of the approximate problem.
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Extended Deformed
domain
(ue = Ue 0 D)

Original
domain domain

tr(u:) = f

FIGURE 2. In red is depicted the region where tr (u) # f. After the normal extension we can
see that the region {tr (u) # f} has become just part of J;. We then consider a recovery
sequence (g, 0.) defined as in (4.2) and (4.3). The grey part represents the region where the
damage variable v. < 1. Finally, by composing u.,v. with the diffeomorphism ®. provided
by Proposition 5.4, we go back to our domain €2 by preserving the boundary condition. This
operation does not affect in a significant way the energy and we asymptotically recover the
sharp energy, which also accounts for R(u, f) (that comes exactly from those regions where

{tr (u) # f1).

5.3. Recovery sequence with prescribed boundary condition

We now proceed to show how to recover the energy of a function u € C1(€;R™) by making use of function
u; € H'(;R™) with smooth boundary data f € C1(9€2;R™). At the very end, by making use of Theorems 4.6
and 4.7 we show that we can recover the energy F(u, 1) + R(u, f) of any u € SBD*(Q).

We briefly sketch the proof for regular functions before moving to the technical part. As depicted in Figure 2
it might happen that tr (u) # f on 9. To handle also this situation, which represents the main challenge of
our proof, we first extend normally our v € C1(Q; R™) into a @ defined on a slightly larger Q>oQina way that
does not destroy the regularity of u. In this way, any region on 92 where tr (u) # f becomes the jump region
of 4 and it is well contained in the extended domain. Thus we can proceed to define the recovery sequence as in
(4.2) and (4.3). Such a recovery sequence coincides with u far enough from the jump set and this allows us to
deduce a strong control on the energy in the strip Q \ Q. This normal extension further allows us to deduce that

along the level set E; = {d(x,0Q) = t} (for suitable t) we have that u. b = f. Then, by applying a smooth

diffeomorphism, that we are able to control in terms of e, we shrink back our extended domain onto © so that
Ey — 09 and this guarantees that the whole boundary condition is satisfied.

We start with the following technical Lemma that will provide us the required family of diffeomorphisms.
Let us recall that we are denoting by P : (0Q2)s — 0 the orthogonal projection onto 9 well defined on any
tubular neighbourhood (9€)s of d small enough. Moreover we are always considering the outer unit normal
v 1 00 — S"1 and we recall that, with the notation dist(x, 99), we are always meaning the signed distance

dist(x, 09Q) := (x — P(z)) - va(P(x))
well defined on small tubular neighbourhoods around 0.

Lemma 5.4. Let Q be an open bounded set with C? boundary and consider (0Q)s any fived tubular neighbor-
hood of OQ where the projection operator x — P(x) € 0 is well defined. Let also (00).r be another tubular
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FIGURE 3. We shrink the region (92).r U [(0Q)s N Q] onto (992)5 N €2 through ®. by gently
pushing the set along vq with a strength that decays in dist(x, 9Q2) fast enough so that ®.(z) = =
on 2\ (09Q)s.

neighborhood where L > 0 is any real constant and set Q. = QU (0Q)cr,. Then there exists a family of diffeo-
morphism {®. : Q@ — Q. }os0 such that

lim sup{|J®.(z)|} = 1, (5.6)
e—=0,e0
lim sup {|J® ! (2)[} =1, (5.7)
e—0 2€Q.
sup {|V®_ ! (x) —1d|} + sup{|V®.(z) — Id|} < Ce (5.8)
TEN,. TEQ

where C' depends on ), L and § only. Moreover

P(®:(z)) = P(®7'(2)) = P(z)  on (99)=1 U (99)s,

€

O (z)==x on Q\ (09)s,
and ®-1(0Q.) = 0Q, ®.(0Q) = 99..

Proof. Consider the diffeomorphism, depicted in Figure 3:

K ifxeQ\ (09)s
e(x) = {x + VQ(P(CE))i((SJFdng(I’BQ) el if z € QN (0Q)s (5.9)
with inverse \ (99)
o (w | if 2 € Q. \ (89)
e (@) = {:L' - VQ(P(%))W&L if x € Q. N Q. (5.10)
It is straightforward that ®.(9Q) = 9Q., ®-1(9.) = Q and ®.(z) = z on Q\ (0Q)5. Moreover
dist Q L
Vo (z) = Id + Vug(P(x) 095 5(36’ OV) 1, + vo(P(x)) @ VQ(P(Q:))%
in particular the desired convergences (5.6), (5.7) follow together with (5.8). O

Proposition 5.5. Let  be an open bounded set with C* boundary and let f € C*(0Q;R"™). For every u €
C1(Q;R™) there emists a sequence (ug,v.) € HY(Q) x Vo such that (ue,v.) — (u,1) in L2, u. = f, v- =1 on
09, and

Fe(ue,ve) = F(u,1) + R(u, f) as € —0.
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Proof. By virtue of Remark 4.1 we can always perform asympotically negligible modification so to assume that
J. N C Q. In particular we can find a § > 0 that depends only on © and u and such that (9Q)s N J, = (). We
first define the extension @ of u € CI(€;R"™) as

. {u(m) for x € Q (5.11)

YT f(P(x) for z e (09Q)5 )\ Q.

where P denotes the orthogonal projection onto 9 which is well defined on (99)s for ¢ small enough. Then,
having in mind Remarks 4.1 and 4.2, for any € > 0 we define (i.,?.) € H}(QU (092)5;R") x V. as in (4.2) and
(4.3) with the ¥ provided in step four of the proof of Proposition 4.4 (clearly we mean V; referred to the domain
QU (09)s which is here not explicitly denoted in order to enlighten the notation). Notice that

[ H" LTy = [uH" T, + [tr (u) — fIH"1Lo90.

According to the definition of @. in (4.3), we can see that @.(x) = a(x) for all x such that d(x,J;) > Loe
for an Ly depending on u only. In particular we can choose a suitable L > 0 so to guarantee that i.(z) =
w(x) = f(P(x)), 0e(x) =1 for all z € [(00Q)s \ (02) ] \ 2. We now apply our Lemma 5.4 to © with the tubular
neighborhoods (9Q)s, (9Q)cr, to produce a family of diffeomorphism {®. : @ — QU (Q).1, = Qc}. By virtue of
the computations in Remark 4.5 and in particular due to (4.9) and (4.10) we can deduce also

Vie(z)|de+ [ 0.|Va]?dz < C, 5.12
|
QE QE

for a constant C' > 0 that depends on Q and u only (and that in the sequel may vary from line to line), while
it is clear that the same computation performed in the Proof of Proposition 4.4 leads to

hr%fs(asa De; Qs) = ‘F(ua 1) + R(u, f) (5'13)

By making use of this facts we proceed to define (u.,v.) € H'(Q;R") x V. by simply shrinking our domain
Q. into Q) throughout ®.. More precisely

ue(z) i= U (P (), 0o := Ve(Pe(x)).

Notice that for x € 992 we have ®.(z) € 90 \ Q C (9Q)s \ Q and that P(D.(z)) = P(z) = z for all z € 9.
Hence
ue(z) = G (Pe(z)) = f(P((Pe(2))) = f(2), we(z)=0(Pc(x)) =1 for all x € IN.

We underline that, as in Remark 4.2, we are once again neglecting a possible factor (asymptotically equal
to 1) in front of v. that might be needed in order to comply with the constraint |Vuv.(x)| < 1/e. Up to this
carefulness we can infer (u.,v.) € HY(Q;R") x V.. The L! convergence is immediately derived from the easy
relations

/Q e — ul dz < /Q 10 (B2 (2)) — (B4 (x))] d + /Q (B, (x)) — u(z)|da,
/Q (B2 (2)) — u(@)] dz < Ce(llulloo + [|Vul),

also holding for the function v.. It remains to show that the energy of the pairs (u.,v.) is converging to
F(u,1) + R(u, f). From
Vue(z) — Vi (P (2)) = (VO (2) — Id ) Vi (P (x)),

and thanks to (5.8) we get

|Vue(z) — Vi (P (2))| < Cel Vi (e ()],
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for a constant C' depending on €2 and u only. In particular,

‘ /QUE(‘T)A[G(UE)(CL') —e(te)(Pe(2))] - e(te)(Pe(z)) dz

+

< CE/Qﬁs(¢€(x))|va€(®5(3§))\2dx:CE/Q 0 (2) Vit (2) 2| J®= ()| da,

€

which vanishes due to (5.7) and (5.12). Along the same lines and by exploiting Remark 2.3 combined with
hypothesis (5.1) and item (3) in 2.1 on F' we get

[ 1P euc) @), ve(e) = Pla (i) (@.(a). ve(a)] da
< [ Je(w)(a) = el (@ )|
< cte /Q Vite (3.(2))]| da
<ce | Vi) ()] de 0.
once again due to (5.7) and (5.12). On the other hand, by exploiting (5.2) we can infer that
[ 1P @) @(0)).8.(0) = P@0). () (@ 0). (2] da
< [ 19.0) — ale(ie(®.(a)) o

< C’s/ Vit (2)[| 8- (2)] dz — 0.

=

In particular, all this considered we can conclude that

hm Fe(te,ve; Q) = lim [ ve(x)Ae(le)(Pe(x)) - e(tie)(Pe(2))

e—0 Jo

dx
+/QF(‘I)E(w)ve(ﬂs)(q’s(w)),vg(x))dx+ : de

~ lim / 7B (6. Ac(a.) - e(d.) da
=0 Jo_
+ JO | F(z,e(t.),d.) dz + Jo ! CICHC)) dx
| € € g

€ €

= 11mf (G, 0e; Q) = Flu, f) + R(u, f),

where we exploited (5.7) and (5.13). Notice that (u.,v.) provide the desired sequences. O

Proposition 5.6. Let Q be an open bounded set with C? boundary and fix a smooth boundary data f €
CY(OQ;R™). For any function u € SBD*(Q) there exists a sequence uj, € Cl(;R") such that u, — u in
L? and

lim sup F(ug, 1) + R(ug, f) < F(u,1) + R(u, f)

k—-+oco
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Proof. Consider Q> Qbea slightly larger domain and consider w € H'(£;R"™) to be such that w I f.

Consider the extension 4 := ulq —i—w]lé\Q € SBD? (Q) Then, by virtue of Proposition 4.8, we can find a sequence
ay, € C1(Q; R™) such that

Flig, 1;,Q) — F(i,1;Q) = F(u, 1) + R(u, f) +/ Ae(w) - e(w) dz + F(z,e(w),1)dz.

O\Q O\Q

If we trace through the Proof of Proposition 4.8 we can see that the following is also guaranteed:

lim sup/ oz, af g, v) dH" 1 (2) < / o(x, 0T, a7, v)dH " (2),
k—-+oo Ju,y, NnA JaNA

for any A C Q) and for any upper semicontinuous function ¢ satisfying (4.11) and (4.12). In particular, by
testing the above inequality with A = Q,

<P(37»€a77,V):a\/A(f—ﬁ)QV'(f—ﬁ)QV‘f‘Foo(Za(f—??)@l’)

and with ¢ = b we can infer that

fim Sup/ aV/A(la] © vy - [an] © v+ Foo (2, (@] © vg) + 0] dH" 7 (2)
k—+oo JJa, NQ

g/ aVA(@ O v [0 @0 + Folz ([ © 1) + b dH™ 1 (2),.
JanQ
Thus

lim supF (i, 1; Q) < F(u, 1;Q)
k—-+o00

By noticing that
we conclude by simply setting ug := Gy 1 € C1(2; R™). O

We finally notice that the same diagonalization argument exploited in the Proof of Theorem 4.9 allows us to
prove the following proposition.

Proposition 5.7. Consider Q to be an open bounded set with C? boundary and fiz a boundary data f €
CY(OQ;R™). Let {e;}jen be a vanishing sequence of real numbers. Then, for any u € SBD*(Q) there exists a
subsequence {€;, }ken C {€;};jen and a sequence of function (ux,vy) € H'(;R™) x Ve, such that

€ = 0, flup —ullgz =0, vk — 1|2 — 0,
with ue = f, v- =1 on 0N and

lim sSup ‘ngk (ukavk) < f(uv 1) + R(“‘? f)
k——+oo
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5.4. Proof of Theorem 5.2
We are finally in the position to prove Theorems 5.1 and 5.2.
Proof of Theorem 5.1. By extending the functions wu. into 4. € SBD(R™) through a function w € H*(R™\Q; R")
such that w‘aﬂ = f and by applying the Poincaré-type inequality ([24], Thm. 1.7.6) we get
ltellrwn) < C(n)|Etic|(R™)

that translates into
[uellzi) < C(n) (V| Lz + [Euc|(2)). (5.14)

Thanks to Proposition 3.2, the uniform bound in energy yields also sup, {W(uc,v:)} < +00. By then arguing
as in the Proof of Proposition 3.3 we can retrieve relations (3.13) and (3.14) that imply

sup {|Eu:|(Q)} = sup {/ le(ue)] dx} < +o0. (5.15)
e>0 e>0 Q
In particular, (5.15) combined with (5.14) and with the energy bound leads to

sup {[Jue ||t + Fe(ue,ve)} < 400
>0

that can ensure (thanks to the compactness Thm. 2.6) that there exists at least an accumulation point and that
any accumulation point has the form (ug, 1) for some ug € SBD?*(Q). O

Proof of Theorem 5.2. We divide the proof in three steps.
Step ome: Ezistence for .. Fix € > 0 and consider (ug,vy), a minimizing sequence. Then

sup {/ |e(u;€)|2 dz + ||vk||H1} < +o0.
Q

keN

In particular, Korn’s inequality? combined with the L'-compactness for sequences with uniformly bounded
H'-norm gives us that uy — u € H', vy — v € V. in L' and e(uy) — e(u) in L? with also u = f, v =1 on 9.
Moreover, because of assumption (5.3) on F and due to the uniform L? bound on the symmetric part of the
gradient e(uy) we have

/Q[F(x, e(ur),vi) — F(z,e(ur),v)] dz

< / wr (vg; v)|e(ug)| dz — 0.
Q

Furthermore, due to the weak convergence of e(uy) and to the strong convergence of vy, (see e.g., [10], Thm.
2.3.1)

liminf [ vpAe(uy) - e(ug)dz > / vAe(u) - e(u) dx
k—+o0o Jo QO

All this considered yields, together with the convexity of F(x,-,v),

lim inf F. (uk, vg) z/QvAe(u)~e(u)dx—|—g/ﬂw(v)dx—i—/ﬂF(aﬁ,e(u),v)dx.

k—-+oco
In particular, by the application of the direct method of calculus of variation we achieve existence for 7., € > 0.

2The arbitrary rigid displacement is here fixed by the prescription of the boundary condition.
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Step two: Liminf inequality. Let {(ue,v:)}es0 C HY(Q;R™) x V2 be such that u. — ug, v- — 1 in L' and with
ue = f, ve =1 on 9N for all € > 0. Then

hm%lffe(u671j6) > f(’ll,o, 1) + R(u07 f) (516)

Indeed, by considering Q2 O Q, a function w € Hl(Q; R™) with w oo f and the extension

Ue = Ulg + w]lQ\Q, Ve = vl + ]]'Q\Q
we can notice that 4. — g, 0. — 1. Moreover
Fe(tie, Ue; Q) = Fe(ue,ve; Q) + / [Ae(w) - e(w) + F(x,e(w),1)] da
O\Q
and thanks to Theorem 3.1 we have

/ [Ae(w) - e(w) + F(z,e(w),1)] da + lim iglf]-'g(us, ve; Q) = liminf F, (t., 0c; )
a\Q e~

e—0

> f(ﬁ(% 1; Q) - f(u(% 17 Q) + ’R’(an f) +/ [Ae(w) : 6("(1)) + F(fﬂ, 6(11)), 1)] dﬂ],

a\Q

leading to (5.16).

Step three: Proof of (5.5) and existence of a minimizer. Let {€;};en be the sequence such that limsup,_,5v. =
limj . o 7e,- Thanks to Proposition 5.7 we have that, for any fixed ug € SBD?*(Q) we can find {&;, }ren C
{ej}jen and (ug,vy) € H' (4 R™) x Vo, with ug = f , v, = 1 on 9Q and such that it holds

F(ug, 1) + R(ug, f) > limsup Fej, (ug, vx) > limsup Ye,, = limsup~..
k——+oo k—+o00 e—0

Thus, by taking the infimum among 1y € SBD?*(Q) we get

Yo = limsup .. (5.17)

e—0

On the other side, by denoting with (@, 7.) the minimizers at the level . we clearly have

Slglp {Fe(tie, )} < 400 (5.18)

that allows us (thanks to Thm. 5.1) to deduce the existence of an accumulation with the form (ug, 1) for some
ug € SBD?(Q). Thus step two guarantees that

limi(r)lf'ys = limi(rjlf]-"s(ue,vs) > Flug, 1) + R(uo, f) = 7o-
E— E—

Combining this previous relation with (5.17) proves (5.5) and demonstrates also that any other accumulation
point of {(ue, ve)}eso provides a minimizer for 7g. O

6. SELECTED APPLICATIONS

We now provide examples of energy with some specific functions F' of interests with a view to applications.

. . _ 2 . . _ _ 2
As a title of example we consider the case where ¥(v) = (1 —v)? yielding a = 2/ and b = 3.
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6.1. A simple model of fracking

In the case of hydraulic fracturing, with a simple variational model as studied in [36], the phenomena is
modeled through a potential of the type

F(z,M,v) = —p(x, M, v)trace(M).

We directly state the hypothesis on p that guarantees our I'-convergence result 2.5 and the existence
Theorem 5.2. In particular, in order to apply our results we require that the pressure p is a concave func-
tion of the variable M and that

(1) p(-,M,0) € C°(Q) for all M € MZX™;

(2) p(z,-,v) is a concave function for all (x,v) € 2 x [0, 1];
(3) —olz —y| < p(z, M,v) — p(y, M,v) < Lz —y| for all z,y € R™ and all (M,v) € MZx" x [0, 1] where £ > 0

is any real constant and

0 <o < max
A€(0,1)

2/a () g [0, o)
VE(L+2y/alQp(A)/A) o '
(4) having set

wp(s;t) == sup{|p(x,M, s) —plx, M,t)| : (x,M) € R" x Ms’g,fn"

then
lilr% wp(s;t) = 0.

Under these assumptions the potential F' = —p(x, M, v)trace(M) satisfies Assumption 2.1 and (5.1)—(5.3).

Moreover
Foo(z, M) = —trace(M) , ligl p(z,tM,0).

6.1.1. Pressure constant in e(u) and linear in v

We first examine the case
p(z, M,v) := (mv + q)p(z)

where p € L™ is a Lipschitz function and m, ¢ € R. Provided p has suitably small L norm, Hypothesis (1)—(4)
are clearly satisfied. We have

p(l‘,M, 1) = (m + Q)p('r)7 p(.T,M,O) = qp(x).

Moreover Fo (2, M) = gp(z)trace(M). Hence the I'-limit of the energy (2.1) is given by

B(u) = /Q [Ae(u) - e(w) — (m + q)p(a)div(w)] dz + bH™ ' (J.)+

o [ VEWOW o)~ [ @) v dn o)
‘]‘llr JU
The model in [36] corresponds to m = 0 and p is a constant taken as a hydrostatic pressure acting as a
boundary condition inside the crack considered as impermeable. Note that in [36] exactly the approximation of
this work is proposed. Another phase-field approximation closer to the original Ambrosio—Tortorelli model is
considered in [37], with ¢ = 0 and a constant p. Note however that their claimed limit functional is not what

we proved to be.
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6.1.2. Pressure non constant in e(u): isotropic and anisotropic case

We now examine the case where the pressure p has a concave dependence on the variable M:
p(z, M,v) := p(z,v)g(M).

A suitable choice of p ensures that (1) and (2) are in force. In order to guarantee (3) (and thus (4) provided
a suitable p) we ask also that ||g||L~ < ¢ for an appropriate constant ¢. In particular any concave bounded
function is such that

lim g(tM) =~(M)

t——+oo

exists finite. Thus the I'-limit of the energy (2.1) is given by

O(u) == /Q[Ae(u) ce(u) — p(z, 1)g(e(u))div(u)] dx
i / VA 0 1) - ([ul) @ (=) dH ' (2)

+OH" () */J p(z,007([u](2) © v(2))[ul(2) - v(2) dH" 7 (2).

u

This case corresponds to a more realistic fracking model where the pressure is a thermodynamic variable
with a certain constitutive law (as related to the Biot’s coefficient and the pore-pressure [37]), instead of a
hydrostatic pressure given as a model datum. In particular this case applies to the case where the crack is no
more impermeable, and hence the pressure satisfies a certain balance equation in the whole domain.

6.2. Pressure almost constant in x: the two-rocks model

Of particular interest in the case of hydraulic fracking is the case where the pressure p takes values
p1(e(w)),p2(e(u)) in two different region of our ambient space §2 and quickly varies from p; to p2 in a small
layer of size  bordering the two regions. This models the situation of a so-called stratified domain, ¢.e., where
we have two permeable rocks (or impermeable if p; assumes a constant value in each rock) separated by an
interface (where the pressure is linearly interpolated). As a title of example we consider the situation depicted
in Figure 4. In particular we set

) if x € Q1 and d(«,
o(M) if z € Q2 and d(z,

( (
p(v (

P(%Mav) = d(m 5) (U)pl(M) if x € @1 and d(xa
d(z 5) p(v)p2(M) if © € Q2 and d(z,

v)p1(M
I (6.2)

If p; are concave function and ||pp;||« is suitably small, we can surely choose p so that conditions 3) and 4)
are satisfied. Moreover, setting

pi(x, M) = lim p;(tM)

and

P (M) ifre@ andd
(M 1f:c€ and d
poo(x,M) — P2 ( ) Q2
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o | /

Q2

Q1

S

FIGURE 4. The two different materials behave differently when subject to an elastic strain. This
is modeled by considering two different pressures on each component. In the picture, different
gray corresponds to different value of p(-, M, v). Notice that the role of the layer (4) around
the interface S can be made as small as we like and it is adopted only to satisfy the continuity
assumption on the spatial behavior of the pressure and to take into account eventual situations
where H"~1(J, N 0Q1 N 8Q2) > 0.

we get that the limiting energy reads

D(u) ::/Q[Ae(u) ce(u) — p(z, e(u), 1)div(u)] dz

i “/ VAE) 0 v(E) - ([WE) 0 v(E) dr T (2)
Ju
+ an—l(Ju> - /J poo(:v, [U](Z) ® y(z))[u](z) . V(Z) dHn_l(z)7

that can be rearranged as

B(u) =Y /Q [Ae(u) - e(u) — p(1)pi(e(w)div(w)] da

i\Qs

- P(O)/ P ([ul(2) © v(2))[ul(2) - v(2) dH" 7 (2)
JuN(Qi\Qs)

+ Zl/ [Ae(u) ~e(u) — Mpi(e(u))div(u)] da

iNQs

00 [ 4@, 5) oo 11(2) © (Nl (2) - v(2) AH(2)
10@AQs) O

+a/J VA([u](2) ©v(2)) - ([ul(2) © v(2)) dH" 7 (2) + bH" ™ (Ju).

The case with several rocks can be obtained in the same way.
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6.3. A model of plastic slip: F' = ple(u)|

Now we analyze the case

F(x, M,v) := p(z,v)g(|M]),

that consists of a generalization of a phase-field approximation of plastic slip as discussed in [6] for the anti-plane
case.

By possibly making additional restriction on the function p, a functional dependence on M can be considered.
However, for the sake of clarity and as a title of example we would avoid such a dependence. It is immediate
that

Foo(x, M) = p(x,0)goc | M],

where go 1= lim;_, 4 @. Thus, the limit energy in this scenario is

P(u) :z/Q [Ae(u) - e(u) — p(z,1)g(le(u)])] da
" a/J VA © () - (W) © v(z) dH" ' (2)

+OH () +gm[, p(z,0)[[ul(2) © v(2)| dH" 7 (2).

6.4. The Tresca yield model in elasto-plasticity: F = Apax(Ae(u)) — Amin(Ae(u))

This is so far an academic example in the sense that no such criterion, though important in engineering, is
known to the authors as implemented in any variational setting so far.

Nevertheless, interpreting p as a Lagrange multiplier, could provide a model with a sort of averaged Tresca
threshold. Consider the operators

Amax(AM) = Z:Hfaxn{)\’(AM)}

and
Amin(AM) := min {N;(AM)}

1=1,...,n

where \;(P) denotes the ith eigenvalue of the matrix P. This function are, respectively convex and concave and
Ama(Be()) = Amin(Ae(w) < Amax(Ae(u)) < [[A][M].

Hence, by setting
F(z, M,v) = p(x,v)g(Amax(Ae(u)) = Amin(Ae(u)))

provided g is a convex function with sublinear growth, the class of function p such that hypothesis 2.1 and
(5.1)—(5.3) on F are satisfied is not trivial.
Notice now that

Amax (LAM) = tA\pax (AM), Amin (FAM) = tAmin (AM),
and thus, as above, we get

Foo(z, M) = goop(2,0)(Amax(AM) — Apin (AM)).
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where goo = limy—, 4 oo @. The limit energy here is

B(u) = / [Ae(u) - e(u) — plz, Dg(A(Ae(w)))] d

+o | VAR © ) [E 0 @) )
Ju

FBHO ) 9o [0 0) s (A1) ©)) = A (4((u] ©2))) 41 2).

6.5. The non-interpenetration condition

It is well-known that an opening crack should satisfy the non-interpenetration condition [u] - ¥ > 0 which is
not enforced so far by the Lagrangians we considered. In particular we would like to have a model where ([u]-v)~
is not energetically influent in the evolution of the system. Having set H(u) := [ 7, |([ul- v)~|(z)dH"1, from a
variational point of view we can define a minimization problem for an energy G subject to a non-interpenetration
condition as

inf{G(u)| v € Ag and H(u) = 0}, (6.4)

where A, is a suitable admissible class. The associated Lagrangian to such a problem reads as
Llup) =G + [ p)u ) A () € Aax L),
Ju

It is a well-known result that

(6.4) = inf sup L(u,p).
vEAg pELo® (JyyHm—1)

Indeed, following our approach we can write a Lagrangian by exploiting our lower order potential F. An
appropriate low-order potential for this problem can be chosen as

F(z, M,v) = (1 —v)*p(z) max{—trace(M),0} = (1 — v)?p(z)trace(M)~.

Notice that, M +— max{—trace(M),0} is a positive convex function and with sublinear growth (since
| max{a,b}| < l|a| + |b]). In particular a suitable choice of p, which now comes as a datum, will ensure
that our hypothesis on F 2.1 together with (5.1)—(5.3) are satisfied. Notice that, for ¢ > 0, one has
trace(tM)~ = t max{—trace(M),0}, and thus

Foo(z, M) = p(z)trace(M)~

With these carefulness we can I'-approximate the Lagrangian

D (u) ::/QAe(u) ce(u)dx + a/J \/A([u](z) ®v(2)) - ([u](2) ® v(z)) AH" " (z)

+bH”*1(Ju)+/ p(2)([u] - v)~ dH""1(2)

Ju

Fe(u,v) = /QvAe(u) ce(u) + %/Qw(v)dx + /Q(l —v)?p(x)div(u)” dz.
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APPENDIX A.

A.1. A semicontuity result on SBD

We now proceed to the proof of a lower semicontinuity result. This result can be derived by gathering several
results available in the literature. We retrieve them here and we give a brief sketch of the proof of the main
result in order to present our work as self-contained as possible. Let us start with the following proposition:

Proposition A.1. For any fized L € M2X" there exists a function Foo(x, M; L) : M2X" — R such that

sym sym

lim F(z,L +tM,0) — F(z,L,0)

t— 400 t

= Foo(z,M;L).

Moreover Foo(x,7rM; L) = rFoo(x, M; L) for all r € RT.

Proof. Consider, for fixed M € M**™ and z € § the quantity

sym

F(z,L+tM,0) — F(z,L,0)

£(t) = t ~

Due to the convexity of F(x,-,0) we deduce that f(¢) is increasing on (0, +00). Moreover, assumption (1)
in 2.1 also guarantees that

F(x,L+tM,0) — F(x, L L) - F(x,L
(¢, L+t 7?) (2, 70)’§€<|t(93~0)>+zM|.

In particular
lim f(t) = exists finite.

t——+oo
Thus there exists a function Fuo(x, M; L) such that
lim f(t) = Foo(z, M; L).

t—+4oo

By definition of F, we have finally that
Foo(z,rM,0; L) = rFo(x, M; L).
d

Remark A.2. We can think the function Fi.(z,-; L) as a function defined on the unit sphere of M X" and
extended homogeneusly on the whole space.

The first thing we need is the following decomposition Lemma, holding for convex function with suitable
regularity, which as a Corollary yields the independence of the function F,, from the starting point L.

Proposition A.3. Let G : Q x MI1" — R be a function such that G(x, M) is lower semicontinuous in (z, M),
G(z,-) is convex for all x € Q and |G(x, M)| < £|M] for some £ € R and for all (x, M). Then there exists two

families of continuous function {a;(z) : Q@ — MZI3"}ien and {bj(z) : @ — R}jen such that

G(z, M) = sup{a;(z) - M + b;(2)}
jeN
and G(z, L M G(z, L
i G@LHM) =G, L) sup{a;(z) - M}
t——+o0 t jEN

for any L € M7X™.

sym
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The proof of the previous Proposition comes as a consequence of Lemma 2.2.3, Remark 2.2.6, Lemma 3.1.3
from [10].

Remark A.4. Let us briefly sketch the Proof of Proposition A.3 in the easy case where G(x, M) = G(M) is
convex just to give an idea to the reader about why such decomposition hold true (the proof can be also found
in [5]). Chosen {P;};en C MZX" a dense set it is enough to define the values

sym
aj = VMG(PJ), bj = —VMG(PJ)PJ"FG(PJ)
Notice that
G(Pj) = VMG(PJ) . Pj - VMG(PJ) . Pj +G(Pj) = aj . Pj +bj. (Al)

Pick now any M € Mg x" and let {P), }ren C {P;}jen be a subsequence such that P;, — M. Since G(z,)
is convex and thanks to (A.1) we get G(M) > a; - M + b;, and hence

G(M) > sup{a; - M + b, }.
JEN

On the other hand, by continuity, G(M) = lim, G(P;,) and thus for any ¢ > 0 there exists Ky such that
G(M) <G(Pj,)+6 forall k> K.
Thus

= Ay, 'M+bjk(x)+5+ajk '(Pj _M)
<sup{a; - M +b;} +6+aj, - (Pj, — M).) (A.2)
JEN

Function G being convex it is also Liptshitz on every bounded set in MJ1" and in particular a;, = Vi G(Pj,)
is bounded for P;, close enough to M. Thus aj, - (Pj, — M) — 0 and in particular, by taking the limit in k£ and
then in ¢ in (A.2), we get

G(M) < sup{a; - M + b;}.
JEN
For the recession function instead we see that, because of the convexity, for any L € MSQ,IXH” the quantity

G(L + tM) — G(L)
t

is increasing in ¢ and thus

oy G AEM) —G(L) _ qup G kM) — G(L)
k—+oo k keN k

On the one hand, for all j € N, we get
G(L—Fk'M)—G(L) aj-L—l—bj—G(L)

which implies
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On the other, for any k € N, it holds

G(L + kM) - G(L) :Sup{bj+aj L-GW), _M}
k' jeN k
< sup {a; - M},
JEN

since b; + a; - L < G(L). In particular the equality is attained.

Remark A.5. In the light of Proposition A.3 it is clear that the recession function is independent of the
starting point L.

We recall the following technical lemma from Lemma 2.35 of [5].
Lemma A.6. Let v be any positive Radon measure and let @; : Q — RT with i € N be a family of Borel
functions. Then

SHP{Z / mx)dwm} — [ sup (e} dv(a).

ieN | g7 J A Q ieN

where the supremum ranges over all finite families {A;}icr of pairwise disjoint open set compactly contained in

Q.

We now state and prove the semicontinuity result. For the sake of completeness we mention that this result
comes also as a consequence of Theorem 3.4.1, Corollary 3.4.2 from [10].

Proposition A.7. Let G : Q x M X" — Ry be a positive function such that G(x, M) is lower semicontinuous
in (z, M), G(x,-) is convex for all x € Q and |G(z, M)| < £|M| for some £ € R and for all (x,M). Then, for
any ue € H'(Q;R™) such that ue — u in L' with u € SBD*(Q) it holds

imipt [ Gloew)de > [ Glaetu)dos [ Gl oman ()

e—0
for all open set A C €.
Proof. We first notice that, since u. — u in L' and u.,u € SBD?*(Q) we have
e(us) L™ —=* Eu.

Fix A C Q. We can apply Proposition A.3 to find two families of continuous functions a;(z) : @ — MZ1",
bj(x) : © — R such that

G(z, M) = ?‘éﬁ,’{%(m) "M+ ()}, Goolw, M) = igg{aj(x) - M}

Let Ay, ... A, be pairwise disjoint open subset of A and ¢; € C.(4;) with 0 < ¢; <1 forall j =0,...,m.
Then

/AG(:E,e(uE)) dz > JZ_;)/Aj 0 Gz, e(u.)) dz

>§/AJ_ pja;i(x) 'e(ue)d$+/A/ p;ibj(x) dz,

J
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which, by passing to the limit in € and by exploiting the fact that a;¢; € Cc(Aj; M ") leads to

ligl}(r)lf/ G(z,e(u.)dx > Z/ p;a;(x) - dBu(z) + /A ;bi(z)dx
A
Aj

[
/

o [use) B2 400 drt [ pyas(o) - amurio

J

I
MS I MS I

=0
o3 laj(x) - e(u) + b (x)] dz + / pya;(x) - ([u] © v) dH ().
. Ajﬂ,]u

Il
o

J

We now want to apply Lemma A.6 and thus we set v = £" + H"~!LJ, and we define the functions

() e a;(x) - e(u) +bj(x) for x € A\ Jy
o) = { W ¢

[u] ® 1/) forxe J,NA,"

G(z,e(u for z € A\ J,
¢(x) := { Gio(xf[i])@ v) fgr x E Ju\m A.

Notice that, due to the mutual singularity of £ and H"~!LJ,, we get

Z/ i P dughm%lf/ Gz, e(ue)) do
j=07 43 T

By taking the supremum over ¢; we get

E / (b;_ dv < 1iminf/ G(z,e(ue))dr
¢ A e—0 A
j=0"Ai

Thanks to Proposition A.3, for any fixed z € A it holds

sup{¢;(z)} = SUP{¢j(x)} = ¢(z),
jJEN JEN

since ¢ > 0 for all x € 2. Now, by taking the supremum among all the finite families of pairwise disjoint open
subsets of A and by applying Lemma A.6, we get

liminf | G(z,e(u.)) dx>sup{2/ ¢+d1/ }:/ sujp\;{qﬁj(m)}dz/(x)

e—0 A IEI
:/ G(x,e(u))dx+/ Goo (2, [u] © v) dHP1(2).
A ANd,
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