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Abstract: Circular Economy (CE) empowers firms (micro-level), network of firms (meso-level), cities, 
regions and nations (macro-level) sustainability. CE potentialities in making regenerate resources are 
even greater if supported by technologies, and Artificial Intelligence (AI) is gaining momentum in this 
regard. The extant literature presents a limited investigation of the exploitable synergies among CE and 
AI at the different scales of CE adoption in manufacturing, also named Circular Manufacturing (CM). 
Indeed, this paper entails a systematic literature review to investigate the state-of-the-art in this domain 
proposing future research opportunities. Among the findings, AI exploitation is advanced at micro-level, 
whilst the meso-level, macro-level, and the synergies among the three levels require further exploration. 
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1. INTRODUCTION the different scales of adoption at the state of the art of the 
scientific literature?”. Therefore, the research objective (RO) 
is to investigate the SOTA about how AI could support the 
implementation of CM strategies at micro, meso, and macro 
levels opening the way for future research directions.  

Circular Economy (CE) is covering a prominent position in 
boosting sustainable development, being it an industrial 
economy purposely designed to recirculate resources by 
shaping regenerative systems (The Ellen MacArthur 
Foundation, 2012). It is based on the values of slowing, 
narrowing and closing resources loops (Bocken et al., 2016), 
that can be embraced mainly at three scales of adoption, thus 
at the macro level (e.g. nations, regions and cities), meso 
level (e.g. networks of firms) and micro level (e.g. firm, 
product) (Ghisellini et al., 2016). This economic model is 
attracting the attention of scholars that studied how CE is 
adopted in manufacturing, being it considered one of the 
most resource-intensive sectors. Within manufacturing, CE 
values can be operationalized into different strategies such as 
remanufacture, recycle, industrial symbiosis, etc. which 
concurrent adoption takes the name of Circular 
Manufacturing (CM) (Acerbi and Taisch, 2020).  Industry 4.0 
(I4.0) technologies represent a great opportunity to pursue the 
transition towards a circular system by promoting the 
exploitation of data gathered for sustainable aims, especially 
concerning the manufacturing sector (Nascimento et al., 
2019). Out of all the I4.0 technologies, Artificial Intelligence 
(AI) is prominently positioned to drive CE values 
embracement (The Ellen MacArthur Foundation, 2019). 
Indeed, AI enables using appropriately data gathered from 
industrial systems (Mihailiasa and Avasilcai, 2019) thanks to 
the capability of AI to track and monitor process and product 
data (Malahat Ghoreishi and Happonen Ari, 2019). 
Considering the great potentialities of exploiting AI to 
embrace CE values in manufacturing, even at different scales 
of adoption (i.e. micro, meso, macro), the present 
contribution aims at retracing extant scientific literature to 
depict the state-of-the-art (SOTA) thus answering to the 
following research question: “How does AI support CM at 

The paper has the following structure. Section 2 describes the 
research methodology used, section 3 elucidates the results 
obtained based on the theoretical framework developed by 
the authors, in section 4 the results are discussed, and section 
5 outlines the conclusions and the research agenda. 

2. RESEARCH METHODOLOGY 

A systematic literature review (SLR) has been performed to 
span the extant scientific knowledge in a structured and 
systematic way relying on predefined criteria to address the 
RO by selecting the eligible contributions for the review. As 
the scope of this review lies in the industrial domain, Scopus 
was chosen as scientific database, and it was queried as 
follows: TITLE-ABS-KEY ((“Circular Economy” OR 
“Circular Manufacturing”) AND “Artificial Intelligence”). 
Since the term “circular economy” is the most diffused one, it 
has been added as keyword to ensure gathering all papers of 
interest. Then, to assure compliance with the research scope, 
only those papers referring to manufacturing have been 
selected during the screening process. Instead, considering 
that AI represents a specific topic within I4.0 domain already 
diffused in the literature, only the keyword “artificial 
intelligence” has been used. The search process was stopped 
in July 2020. No timeframe constraints were adopted to 
include both the most recent documents and seminal papers, 
and only English documents were included. As an outcome, 
50 documents were firstly identified, out of which only 29 
were considered eligible for the review. The selection process 
was performed into two subsequent phases (see Fig. 1): 1st 



 
 

     

 

screening reading the title and the abstract, 2nd screening by 
reading the entire contribution. As a result, 42% of the 
discarded papers were eliminated since they did not explore 
the adoption of AI as support tool to implement CM 
strategies. A further 33% was eliminated since there was not 
a direct link to CM but rather to sustainability in general, and 
for the 25% it was not possible to perform the integral 
reading of the paper.  

have been published starting from 2018, highlighting a 
growing research interest in AI for CM. In addition, the year 
2010 coincides with the years around which started to be the 
diffusion of CE in manufacturing and Industry 4.0 paradigm.  

To dig deeper into understanding how scholars are tackling 
the concurrent analysis of CM and AI in the extant literature, 
each contribution has been mapped according to the CM 
strategy addressed and the scale of adoption investigated (see 
Fig. 3). The contributions might cover more than one strategy 
per time leading to a total value greater than 29.  

 

 Fig. 1. Selection process of eligible papers for the review 

Fig. 3. AI exploitation in CM strategies adoption at micro, 
meso, and macro levels 

In section 3.1., a statistical analysis  has been conducted on 
the eligible contributions, to investigate the researchers’ 
interests, by evaluating (i) the distribution of the 
contributions over the past years, (ii) the CM strategy tackled 
in the contribution (i.e. reuse, remanufacture, recycle, waste 
management, resource efficiency, cleaner production, 
industrial symbiosis, closed-loop supply chain, servitization 
and circular design (Acerbi and Taisch, 2020)), and the scale 
of adoption (i.e. micro, meso macro). In section 3.2., the 
sample of eligible papers has been analysed based on the 
framework, developed by the authors, reported in Fig. 2.  

As visible from Fig. 3, most of the contributions tackles with 
the micro level. Lots of researches are focused on CM in 
general without looking at a specific strategy obtainable 
benefits.  In addition, large interest is shown around the waste 
management strategy which remains also the most diffused one 
at the macro level. At meso level instead, there is a heightened 
interest in using AI to facilitate closed-loop supply chain 
adoption while industrial symbiosis is neglected if considering 
the publications identified for this review. Looking at Fig. 3, 
the number “0” is quite diffused; whereas it is normal if 
considering the “0” publications regarding closed-loop supply 
chain and industrial symbiosis at micro level, it is interesting to 
see a “0” for the remanufacturing strategy at micro level and to 
see limited attention at macro level in general. These results 
underline the still limited but growing investigation of AI in 
CM, that is also emphasised by the scarce number of 
publications identified while performing the review. 

 

Fig. 2. Theoretical framework to explore AI-CM synergies 

It has been investigated how the adoption of different CM 
strategies is supported by AI throughout the different scales 
of adoption (i.e. micro, meso and macro (Ghisellini et al., 
2016)) to expand the firm perspective towards the entire 
ecosystem. This analysis enabled to investigate the SOTA 
about the current status of the adoption of AI for CM not only 
at firm level but also at network of firms and nations levels, 
enabling to detect future research directions to be addressed.  

3.2. Contributions Analysis 

AI is gaining momentum in supporting the adoption of CM 
strategies, in enhancing energy efficiency, and enabling the 
extension of product and components useful life, by grasping 
as much as value possible from resources (Cioffi et al., 2020). 
At factory level (i.e. product and process), AI boosts the 
scaling up of CE values by supporting the decision process 
through the real-time tracking and monitoring of products, 
intending to evaluate their residual value (Mboli et al., 2020). 
AI can support the transformation challenges too, by 
integrating knowledge into operative aspects in a safe and 

3. LITERATURE REVIEW RESULTS 

3.1. Descriptive Statistics 

The first identified paper dates to 2010 with the publication 
of a single contribution, while most of the papers (i.e. 83%) 



 
 

     

 

quick way (Drabble and Schattenberg, 2016), enhancing 
system flexibility (Wang, 2011). In addition, AI can be used 
to promote the introduction of visual tools that provide a 
clear vision over the information flows regarding products, 
resources and processes, and facilitate the investigation of the 
unexplored benefits gained by CE embracement (Bianchini et 
al., 2019). Moving the focus to the macro level, with the 
monitoring of CM strategies adoption, AI stimulates the 
resource reutilisation in one specific city (Runaghan, 2019). 

instance, Niu et al. 2019 proposed the adoption of AI to 
support the development of a model which enables to take 
investments decisions, regarding the design for 
remanufacturing of products, according to the dynamics of 
the supply chain by boosting either vertical or horizontal 
cooperation (Niu et al., 2019). Through that research, Niu et 
al., (2019) enabled to extend the traditional micro-level 
vision of circular design strategy to the meso level, requiring 
the interaction among parties. In addition, to enhance the 
potentials of circular design within a network, another usage 
of AI has been seen in the creation of an algorithm used, for 
instance, to map the vehicles, adopted to collect waste for 
recycling, to balance their loading and better manage their 
scheduling (Xiaonan Zhang et al., 2011). Indeed, as widely 
acknowledged, decisions taken at design stage are largely 
linked with the adoption of the other CM strategies and, AI 
introduced during the design stage enhances the product 
circularity characteristics by enabling to increase resources 
traceability and to optimize the testing phase (Malahat 
Ghoreishi and Happonen Ari, 2019). On one hand, 
manufacturers, thanks to the introduction of sensors 
embedded into products, and the capability of AI to manage a 
complex set of data, can control product performances along 
their entire lifecycle and optimize them in real time or for the 
future design initiatives to guarantee better and optimised 
performances in future product releases. On the other hand, 
AI represents an opportunity to create different versions of 
product prototype without wasting resources but ensuring the 
alignment with market needs (Malahat Ghoreishi and 
Happonen Ari, 2019). AI has the potential, thanks to the 
possibility to exploit complex data, in managing also the 
material acquisition process. Then, once the product has been 
sold to end user, data mining and analytics boost the 
introduction of servitization strategies and promote resource 
recycling and reuse, thanks to the interaction among different 
stakeholders along the supply chain (Su et al., 2019). The 
possibility to disassemble, recycle, remanufacture or reuse a 
product depends on product characteristics which have been 
defined at design stage. Starting from the possibility to 
disassemble a product, product design becomes essential to 
be implemented under a circular perspective and it is 
facilitated by decision support tools to promote a modular 
design (Stavropoulos et al., 2020). In addition, the 
disassembly becomes more efficient if automatized, that can 
be done via the adoption of collaborative robots that are 
boosted by AI (Poschmann et al., 2020). Once the product 
has been disassembled, the product components can be 
recycled and to do that, by ensuring a cost efficient solution, 
a data intelligent algorithm has been proposed. This 
algorithm works based on the information embedded in used 
parts characterising the component and thus, it enables to 
facilitate the decision process by creating a prediction model 
of used parts (Fan and Cai, 2019). CM transition is also 
underpinned by appropriate manufacturing processes, 
reflected in cleaner production and resource efficiency, 
whose adoption can be facilitated as well by AI according to 
the extant literature. AI covers a promising position in 
contributing to processes optimisation by reducing resources 
usage and increase sustainable performances. Indeed, cleaner 
production, relying on AI for the development of decision-

As visible from Fig. 3, scholars extensively investigated how 
AI can support closed-loop supply chain adoption. Indeed, AI 
could highly stimulate the transition towards circular systems 
by involving all supply chain actors, thanks to the gathering 
of real-time information on resource consumption and waste. 
This enables to efficiently analyse the current situation and 
adapt the system according to the environment (Rajput and 
Singh, 2019). Actually, the transition towards this new 
paradigm has impacted different aspects of companies, 
among which their interactions and logistics. The latter two, 
at supply chain level, have required advanced technological 
integration and a cultural change of people involved, which 
can be addressed through an adequate training conducted 
relying on AI (Zijm and Klumpp, 2015). In addition, the 
adoption of closed-loop supply chain requires overcoming 
some barriers, and AI could efficiently face them by 
managing data related to returned products. Indeed, a huge 
problem regards the uncertainties about the quality, quantity 
and time of returned products. AI can be used to develop 
decision support tools to determine the quality of a product, 
the needed reprocessing activities, and in case no 
regenerative processes can be implemented, AI supports the 
identification of the most appropriate and cost efficient 
disposal modes for the different returned products (Lechner 
and Reimann, 2019). Decision support tools relying on AI are 
also introduced for the management of spare parts in 
automotive sector (Makarova et al., 2018). Indeed, AI highly 
supports also waste management strategy adoption especially 
regarding the management of municipal waste produced by 
the end users. For instance, AI has been adopted through 
smart bins that have sensors embedded allowing to analyse 
waste-related data detecting the materials within waste to 
ease its management (Sarc et al., 2019). AI has been used as 
well to improve the e-waste efficiency via smartphones to 
manage municipal waste by optimising the loading and the 
packing of waste on vehicles (Nowakowski et al., 2020). 
Web-based solutions have been developed to support the 
decision process along the supply chain of municipal solid 
waste by tracking waste quality, waste quantity and their 
related time variability to create market opportunities having 
tracked also the waste contractors (Paul and Bussemaker, 
2020). In addition, the adoption of AI has been also used to 
support the decision making process in waste management 
for wastewater treatments (K. Jaderko, 2018) and for bio-
waste treatments, to develop bio energy by relying on criteria 
which cover the social, environmental, and economic aspects 
(Vlachokostas et al., 2020) with the final goal to reuse waste 
as a resource. Actually, an opportunity to reduce waste 
generated by end-users is represented by the implementation 
at company level of new circular design strategies which, to 
be effective, must be also linked to an adequate network. For 



 
 

     

 

making tools based on data analytics, pushes towards energy, 
water and utilities usage reduction (Fan et al., 2020).  

energy, water and other utilities usage during the production 
process. AI, exploited via collaborative robots, makes 
automated the disassembling tasks which are necessary to 
easily recycle the product materials or to re-manufacture 
products. More precisely in these cases, AI allows the 
exploitation of the potential of data analytics to evaluate 
product residual value, so to estimate its possible reuse, or to 
evaluate the best remanufacturing path option at the end of its 
lifecycle. Finally, AI is also applied to reduce waste 
generated during the prototyping phase. 

4. DISCUSSION 

In the extant literature, AI arose to be a great opportunity in 
enabling product and process based circularity since it 
ensures the treatability and management along the entire 
product lifecycle. Using complex data, interventions can take 
place starting from the material acquisition until resource 
disposal or resource introduction in a new lifecycle. AI seems 
to register great potential for enabling the adoption of most of 
CM strategies and at different scale levels. Therefore, thanks 
to the specific features of AI representative technologies, all 
working with similar cognitive human characteristics of 
learning and reasoning, AI has great potentialities to be 
exploited to pursue the transition towards CM. 

In line with the great benefits highlighted for firms, AI also 
represents a great opportunity at meso-level in supporting 
collaboration among entities building on reliable data. 
Indeed, whenever a product is moved along the supply chain, 
it can be tracked and monitored, and data regarding specific 
waste can be analysed as well to evaluate the residual value 
of resources, so to successfully give them new life. For 
instance, AI features increase the ease of tracking of quantity, 
quality and time data of returned products, enabling to face 
barriers for adequate closed-loop supply chain management. 
However, limited attention is given to AI adoption supporting 
Industrial Symbiosis, enabling the evaluation of the links 
among industrial entities to exchange waste as resources. 

Starting from the micro level, (i.e. firm level thus, product 
and process), it is possible to envisage the potential of 
tracking in real-time huge amount of complex data which 
enable to support the decision-making process in pursuing the 
right path relying of the contextual situation. In addition, AI 
can be exploited to manage waste coming from the usage of 
the product by end-users by recognising the materials 
embedded into products and to decide how to recycle or 
dispose them. Therefore, concerning the product side, 
different opportunities arose regarding the possibility to use 
AI to map data coming from the product usage by end-users 
and to propose adequate services customised on consumers’ 
behaviours and needs. Concerning processes, AI enables to 
keep high sustainable levels along the production processes 
whenever cleaner production or resource efficiency strategies 
are applied. More specifically, thanks to tracking capabilities, 
AI could be used for the development of decision-support 
tools which enable to evaluate the best path according to the 

The macro level sees benefits from the usage of AI as more 
complex data are required to be managed and for which AI is 
envisioned to be a great asset. For example, AI provides the 
opportunity to monitor and appropriately manage the waste 
generated by municipalities and this indirectly can benefit the 
industries circularity if stronger relationships would be 
established among firms and policymakers. 

To conclude, this review enabled to elucidate the benefits 
emerged in supporting the implementation of CM strategies 
with AI. A summary is reported in  Table 1.

Table 1.  AI benefits in CM adoption at different scales of adoption 

Scale  Entity 
impacted  CM strategy  AI benefits 

Micro Product Circular Design Tracking the material starting from the acquisition phase. 
Prototyping the new product without wasting resources during the test phase  
Keeping high product modularity exploiting AI to prototype products 
Gathering data from smart products to improve next generation products on the 
basis of end-users behaviours 

Servitization Tracking and monitor the product usage to improve the service provided 
Disassembly Defining the best and most efficient disassembly path relaying on AI in 

collaborative robots 
Reuse Tracking the product to monitor the conditions and evaluate whether the product 

reuse is possible 
Recycle Tracking the product to monitor the conditions and evaluate whether and how the 

product components and materials can be recycled 
Process Waste 

Management  
Tracking the type of material present in the waste to evaluate its recyclability or 
disposal 

Resource 
Efficiency 

Tracking energy, water, and other resources usage during the production process 

Cleaner 
Production 

Tracking energy, water, and other resources usage during the production process 
to evaluate possible improvements 

Meso Network 
of firms 

Closed-loop 
Supply Chain 

Creating collaboration by mapping the most convenient circular path 
Forecasting return products quality, quantity, and time 



 
 

     

 

Tracking products in real-time to estimate the residual value 
Tracking vehicles to manage the loading of waste and recyclable resources 

Circular Design Designing the product considering the actors involved in the value chain 
Remanufacture Tracking the turned back product to monitor the conditions and evaluate whether 

the product can be remanufactured 
Exploiting product data, once returned, so to define the best remanufacturing path 

Macro Nations, 
Regions, 

Cities 

Waste 
Management 

Keeping track of circular performance to forecast it in nations, regions and cities 
Monitoring municipal waste type and quantity 

5. CONCLUSIONS AND FUTURE RESEARCHES REFERENCES 

The research contribution entails an SLR with the goal to 
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the bridge between companies and policymakers to 
collaborate towards sustainable actions. 
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