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Abstract

Multicopter drones equipped with cameras can perform rapid inspections of large
buildings, including those with hard to reach features, like bridge pylons. Drones can
be made autonomous by providing them with a method to choose a path that maxi-
mizes the collected information during the limited flight time allowed by the battery.
It is therefore crucial to optimize the trajectories to minimize inspection time. The
problem of finding an approximately optimal path passing through a series of desired
inspection points in a three-dimensional environment with obstacles is considered. A
hierarchical approach is proposed, where the space containing the inspection points is
partitioned into different regions and multiple instances of the TSP (Travelling Sales-
man Problem) are solved, decreasing the overall complexity. An extended graph is
used in the TSP, in order to tackle the problem of collision avoidance while planning
the trajectory between point pairs. This approach leads to an efficient and scalable
method capable of avoiding obstacles, and significantly reduces the time needed to
find an optimal path with respect to non-hierarchical methods. Simulation results
highlight these features.

1 Introduction

The versatility and ever decreasing cost of drones have recently pushed their use
in the construction and maintenance of buildings. Increased autonomy benefit
inspection tasks by making them easier to perform, more repeatable and safer
than those carried out by humans, which often entail climbing structures or
rely on a human pilot to guide the drone. To exploit the full potential of
UAVs (Unmanned Aerial Vehicles) it is necessary to systematically elaborate
trajectories, that maximize the collected information while minimizing flight
time and energy consumption. We address this problem, assuming that a 3D
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model of the building to inspect is available and that a series of points in space
are given where the drone must travel to carry out some task, for example take
a picture of a structure.

This research constitutes one of the first building blocks in a larger project,
whose aim is to develop a system composed of tethered [9] and non-tethered
multicopters, specialized in performing inspections of the built environment.
The final aim is to make monitoring and inspection tasks on buildings and
infrastructure as autonomous as possible, including visual inspection of surfaces
and possibly contact measurements.

1.1 State of the Art

The topic of path planning for autonomous vehicles has been addressed in dif-
ferent scenarios. For the particular goal of inspection and exploration, several
techniques have been studied, most of which entail on-line path planning [1, 3]
and/or on-line update and correction of a pre-computed trajectory [2, 7]. The
latter is justified when the environment is either not completely known or un-
certain. The problem of finding and explicitly describing an optimal trajectory
in space and the related control inputs for the drone is difficult, because it re-
quires the solution of multiple non-linear differential equations. The presence
of obstacles makes the feasible space non-convex, so that the problem becomes
extremely hard to solve analytically and computationally expensive to solve nu-
merically. For these reasons, sub-optimal heuristics are used. One common ap-
proach is to partition the 3D space into voxels, [1], classifying them as occupied
or not based on the presence of obstacles in them. The problem of navigating
such simplified representation of space is then solved by formulating trajecto-
ries that span adjacent unoccupied voxels, ensuring no collision with obstacles
takes place. Another approach is to distribute points in the 3D space such that
they lie outside obstacles, then connect them to form a graph, based on their
distance and the presence of obstacles between them. Different algorithms exist
to connect points in different topologies to ensure desirable properties. One
such algorithm is RRT (Rapidly exploring Random Trees) [12], which builds
a tree of feasible paths connecting the nodes, that is then exploited to make
the computation of trajectories faster [3, 4]. Another solution, employed in this
paper, is to generate a graph and then use some algorithm to find paths and
cycles through it, for example by formulating a TSP or using other well-known
graph search techniques. The weights assigned to the graph connections can
be tuned to represent the physical nature of the problem and the limits of the
deployed system. In [5, 6], for example, they are chosen as the time it takes for
a drone to travel from one point to the other, calculated as the solution of a
boundary value problem formulated on a simplified model of the aircraft. This
discretization of continuous 3D space significantly reduces the complexity of
the initial problem by decoupling the search for an optimal trajectory from the
issue of avoiding obstacles. Both approaches can be combined with additional
heuristics to obtain smoother and faster trajectories. In [8], for example, the
authors propose a combination of TSP and a genetic algorithm to calculate the
optimal visiting order of a number of points and subsequently plan a smooth
trajectory that avoids forbidden regions. The authors of [15] study a simpli-



fied version of the problem where the environment is supposed to be modular
and they provide both an algorithm to efficiently solve the multi-agent version,
and a theoretical lower bound on the sub-optimality of the obtained solutions.
Unfortunately, no efficient algorithm for solving TSPs exists, and a guarantee
of optimality is only available through enumeration of all possible solutions. In
the worst case scenario the number of possible solutions for a graph of n nodes
is n!, which quickly becomes impractical even for n in the order of tens. This
poses a significant constraint on approaches that do not employ some heuristic
to speed up the search, at the cost of optimality.

1.2 Main Contribution

The primary contribution of this research is a scalable algorithm that calculates
a near-optimal, feasible path for a drone to visit a set of given points in space.
It employs a hierarchical structure to significantly limit the computational com-
plexity, while also guaranteeing an obstacle-free trajectory. The path is obtained
as a series of waypoints to be sent to the drone, which is position-controlled,
i.e. it tracks position set-points. The weight assigned to each edge of the graph
corresponds to the actual distance an UAV would have to travel between its
vertices. This means that the distance covered for avoiding possible obstacles is
accounted for, instead of the simple geometric distance. The proposed algorithm
is tested in simulation on a realistic bridge inspection task with 180 inspection
points to be visited, distributed around the bridge pylons.

2 Problem description

We use bold symbols to indicate vectors. The T superscript is the matrix
transposition operator. All vectors are intended as columns unless otherwise
specified. For a given point p ∈ Rn and convex set O ⊆ Rn, the distance
operator δ(p, O) is defined as:

δ(p, O) = min
x∈O
‖p− x‖2,

while for two points pi, pj ∈ Rn the operator φ(pi,pj , O) is defined as:

φ(pi,pj , O) =

{
1 if (αpi + (1− α)pj) /∈ O, ∀α ∈ [0, 1]
0 otherwise

i.e. it returns a boolean indicating whether the segment connecting pi and pj

is outside the set O. Without loss of generality, we consider a quadcopter drone
for simulations. We adopt a rather standard model with six degrees of freedom,
as described e.g. in [14].

2.1 Environment Model

We start by introducing the hypothesis that a reliable model of the 3D structure
to be inspected is available. Since our work is aimed at developing a system that
will be used to perform cyclic inspections, it is reasonable to suppose that such



a representation of the environment, updated at each inspection, is sufficient
to avoid most obstacles, and that the presence of unexpected ones appearing
during the flight is dealt with by a reactive feedback controller, using e.g. LiDAR
measurement, as in [13]. The environment model includes a number no ∈ N of
polytopic obstacles Oj , j = 1, . . . , no, collected in the set O. Their shapes
and positions are known with respect to a global reference frame (X,Y, Z). In
particular, the obstacles Oj are stored as polytopes in inequality form:

Oj = {x ∈ R3 | Ajx ≤ bj} j = 1, . . . , no.

Where Aj ∈ Rnc,j×3, b ∈ Rnc,j are a matrix and a vector depending on the
specific obstacle. In addition, a set P containing np inspection points is given

P = {pi ∈ R3} i = 1, . . . , np.

Such points represent positions that the drone mus visit to perform a certain
inspection task, therefore none of them lies inside an obstacle. The set P is
supposed to be provided by an external agent; the inspections points depend
both on the kind of task to be carried out and on the desired output quality.
Depending on the physical dimension of the structure and the number of in-

Fig. 1: A representation of an environment with obstacles (green shapes) and a
few inspection points (red dots). In this case, a gas station is represented
and obstacles approximate its shapes.

spection points, both sets are partitioned into a number m of subsets, to ease
the computational load. �

* Mention orientation of drone too?

The lift forces and drag torques generated by the rotors are given by

Lj(t) = bΩj(t)
2, j = 1, . . . , 4

Tj(t) = dΩj(t)
2, j = 1, . . . , 4,

(1)

where t ∈ R is the continuous time variable, b, d represent the thrust force and
drag torque coefficients of the propellers, the index j indicates the j-th rotor



and Ωj denotes its rotational speed, which is commanded by the flight controller
via Electronic Speed Controllers (ESCs). Letting

u1(t) =
4∑

j=1

Lj(t)

u2(t) = ar (L4 − L2)
u3(t) = ar (L3 − L1)
u4(t) = (T2 + T4)− (T1 + T3) ,

(2)

where ar is the distance between the center of mass of the drone and the the
rotor’s hubs (assumed equal for the four rotors for simplicity), and applying
Newton’s law, we obtain the model equations

p̈(t) = 1
md
R(t)T

 0
0

u1(t)

−
0

0
g


ṗ(t) =

Iy−Iz
Ix q(t)r(t) + u2(t)

Ix −
Jp

Ixq(t)Ωr(t)

q̇(t) = Iz−Ix
Iy p(t)r(t) + u3(t)

Iy +
Jp

Iy p(t)Ωr(t)

ṙ(t) =
Ix−Iy
Iz p(t)q(t) + u4(t)

Iz .

(3)

The first matrix equation describes the evolution of the drone’s linear accelera-
tions p̈(t) along the (X,Y, Z) inertial axes, through the rotation matrix R(t)T

that translates local coordinates in global ones, for more detailed definitions, see
[9]. g is the gravity acceleration, while p(t), q(t) and r(t) are the drone’s angu-
lar speeds around, respectively, the x, y and z local axes of the drone. Ix, Iy, Iz
are the elements of the matrix of inertia of the drone (assumed diagonal), Jp
the moment of inertia of the propellers and Ωr(t) a suitable linear combination
of their rotational speeds. The drone is controlled with three nested feedback
loops, so to track set-points of the form pref (t) = [xr(t), yr(t), zr(t), ψr(t)]T ,
i.e. position and yaw angle references. The reader is referred to [9] for further
details on the simulated model and the employed control scheme.

2.2 Problem Statement

The goal of the path-planning task is to plan the path that approximately
minimizes the travel time required to visit all inspection points P , while avoiding
the 3D obstacles in O, starting from and returning to a given initial position, p∗.
The result is a sequence Sref of vectors wi ∈ R4, each representing a waypoint
in the 3D space and a yaw reference:

Sref = {w1, . . . ,wN} (4)

Such a sequence can be fed to the drone controller in order to simulate the related
trajectory, using to a path following strategy detailed in the next section. We
use simulations to validate the path planning and obstacle avoidance algorithms.
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Fig. 2: A representation of the control scheme. Our research focuses on the high-
lighted path planner, an algorithm that produces a series of waypoints
Sref .

Given our specific parameter values, pertaining to a rather large drone platform
with high inertia and with maximum speed bounded to a rather low value of
1.1m/s , the simulated aircraft travels at constant maximum speed for most of
the time, which in turn means that distance between points and actual travel
time can be used interchangeably as cost metrics in the formulation of the
problem. We chose geometric distance as metric because, contrary to travel
time and required energy, it is immediately available given two points without
any additional computation. Section 3.1 details how a series of waypoints is
managed by the control system.
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Fig. 3: A simulated example of the drone tracking a series of position references
in space. Dashed lines represent the references. Note how, for most of the
time, the position evolves as a straight line whose gradient corresponds
to the drone’s maximum speed.



3 Proposed approach

3.1 Path-Following Strategy

As anticipated in the introduction, our approach is based on a TSP where the
cost function to be minimized is the total distance required to visit all points in
P . To move the aircraft between two generic inspection points pi,pj ∈ P , we
feed the path following controller a sequence of waypoints of the form:

Srefi,j =
{
pi,w1 . . . ,wNi,j

,pj

}
where the intermediate waypoints w` ∈ R4, ` = 1, . . . , Ni,j are chosen as de-
scribed in Section 3.2, in order to avoid obstacles. The path following strategy
then sets w1 as the initial reference position and yaw angle for the drone and
switches from wi to wi+1 when the drone is sufficiently close to wi, within a
user-defined distance r̄. Thus, the drone does not stop at each waypoint, rather
the latter are used to shape its trajectory in space. On the other hand, after the
last switching event from wNi,j

to pj , the latter is kept as reference until the

drone reaches it and its linear and angular speed values are negligible (e.g., 10−6

m/s and rad/s, respectively). A sequence comprising more than two points of
interest, such as the final result Sref of our algorithm, is followed by applying
the same switching strategy, where the drone stops at each point of interest and
travels through the intermediate waypoints.

3.2 Local Path Generation Strategy

The proposed solution method starts by partitioning the set of obstacles O
and the set of inspection points P into nz subsets or ”zones”. Each zone is
therefore characterized by some obstacles and by the inspection points of P
that are closest to them. More precisely, we calculate the distance between
each inspection point i and each obstacle j as the geometrical distance between
the point and the polytope describing the obstacle selecting a finite number of
“zones”, each one containing a subset of obstacles and of inspection points. In
particular, let us indicate with Ok, k = 1, . . . , nz, a finite number of subsets of
O such that:

nz⋃
k=1

Ok = O; Ok1
∩ Ok2

= ∅ ∀ k1 6= k2. (5)

Thus, the sets Ok partition O into nz non-overlapping regions. For each set Ok,
let us denote with Pk the set of inspection points that are closer to an obstacle
Oi ∈ Ok than to any other obstacle outside Ok:

Pk = {p ∈ P : δ(p, Oi) < δ(p, Oj), ∀Oj ∈ O \ Ok

∧ Oi ∈ Ok} , k = 1, . . . , nz
(6)

where
di,j = dist(pi, oj), i = 1, . . . , np; j = 1, . . . , no. (7)

Then, we name a zone zk the pair (Ok, Pk). see e.g. Fig. ?? (upper plot). Let us
denote np,k the number of point of interest in zone zk. For each of the nz zones



obtained this way, a cloud of ni,k intermediate waypoints named Ik is obtained
by randomly distributing them in a limited region of space surrounding the
obstacles of the zone. In particular, they must lie within a bounding box of the
obstacle, but at a distance of at least do from the nearest obstacle. A random
distribution was chosen to represent a general situation, but it is also possible
to discretise the space by distributing points in ordered patterns. In any case it
is crucial to make sure that none of the points lies inside an obstacle and it is
useful to add a safety margin by ensuring all points lie at least at an arbitrary
minimum distance from the nearest obstacle. An undirected weighted graph Gk
is then drawn, where nodes Vk include both inspection and intermediate points
of zone zk

Vk = Pk ∪ Ik, (8)

for a total of np,k + ni,k nodes. Edges Ek are drawn between a pair of nodes
(vi,vj) ∈ Vk (be they inspection or intermediate points) if their distance is
below a certain threshold d̄ and no obstacle lies between them. The edges are
collected in the set Ek:

Ek(Vk,Ok, d̄) =
{

(vi,vj) : ‖vi − vj‖2 ≤ d̄
∧ φ(vi,vj , O), ∀O ∈ O}

(9)

The free(pi, pj) function is only true if no convex combination of the two points
pi, pj lies inside an obstacle:

free(pi, pj) ={
True Aj [αpi + (1− α)pj ] ≤ bj ∀α ∈ [0, 1], ∀Oj ∈ Ok

False otherwise.

(10)

The weight of an edge is equal to the distance between its extremes, i.e. ‖vi −
vj‖2 for the edge connecting points vi and vj . We denote with Dk the ensemble
of such edge weights.

Dk : (pi, pj)→ ‖pi − pj‖2, (11)

The graph pertaining to zone zk is finally denoted as:

Gk = (Vk, Ek, Dk). (12)

The edges represent all the feasible paths between points in space, thus
solving the problem of collision avoidance, provided that the aforementioned
safety margins are added in the generation of the intermediate points. Such
margins are necessary because the trajectory of the drone will not coincide
perfectly with the edges of the graph. The distribution of intermediate points
can be manipulated to obtain a denser point cloud in certain zones, such as
around corners or close to the obstacle surface, to provide more options to the
path planner. The distance threshold d̄ is a tunable parameter to modify the
number of edges in the graph, forcing only pairs of sufficiently close nodes to be
connected. A lower value of d̄ significantly reduces the overall computational
time needed to calculate shortest path without impacting much the quality of the



output. The reason is that, in practice, a path that visits all points of interest
exactly once is much more likely to contain shorter edges than longer ones,
corresponding to a situation where from each point a closer one is visited next,
instead of a farther one, if the choice is available. Furthermore, the presence of
an obstacle between two points is more likely if they farther away, so that longer
edges tend to violate the conditions in (9). On the other hand, the parameter
d̄ should be chosen large enough to obtain a connected graph. A theoretical
guarantee that the obtained graph will be connected in the absence of obstacles
is obtained if

d̄ ≥ d∗ = min
pi∈Vk

{
max
pj∈Vk

(‖pi − pj‖2)

}
, (13)

i.e. if the distance parameter is larger than the minimum worst-case distance
between each pair of points in Vk. This is easily proven: the single point whose
maximum distance from other points is minimized will be connected to all nodes,
including the farthest one, which lies d∗ away. If all node graphs are connected
to this single node, in turn, the graph is connected. Note that the property
of being connected might also be obtained with d̄ < d∗, depending on how the
points are arranged in space. The condition expressed in (13) guarantees the
property independently of point distribution. In presence of obstacles, though,
the condition is no longer sufficient, as edges between some nodes might become
unfeasible. In this case the probability that the resulting graph is connected can
be increased by raising the density of intermediate points.

Once the graph is obtained, for each pair of inspection points (pi,pj) ∈
Pks, the shortest path that connects them across the graph is computed, thus
obtaining a sequence Srefi,j that is fed to the simulated model of the drone, as
described in Section 3.1, to obtain the flight time Ft(pi,pj). The simulation
starts from one end of such path, where the drone is fed the coordinates of the
first set-point as reference. Once the three shortest paths are simulated the one
yielding the lowest time is deemed to be the fastest and both the path and the
time taken are stored in memory.

We can now generate a new, smaller, undirected, weighted graph Tk whose
nodes are only the inspections points Pk and whose edges represent the paths
found at the previous step. In this graph, the weight of each edge is the simulated
flight time of the fastest path between its extremes, see Fig. 7. It is also
possible to introduce a distance threshold, like the d̄ parameter before, to neglect
connections between inspection points that are far from one another, but due
to their number being much lower than the number of nodes in the previous
graph, the time saved is usually negligible. The last step we carry out on the
zone zk, k = 1, . . . , nz is to decide where to start the inspection from and in
what order the inspection points should be visited. Note that for a single zone,
the path does not need to be cyclic, rather we are looking for the shortest
Hamiltonian path, i.e. the shortest path that visits all the nodes of this reduced
graph exactly once. This is achieved by solving an instance of the TSP where
the graph is augmented with one dummy node, that is connected to all other
nodes through an edge of weight zero. The dummy node is chosen as the starting
point for the TSP, so that the solver returns a cycle from which we can obtain
the Hamiltonian path by removing the dummy node. This popular technique



also solves the problem of choosing what node the inspection should start from
to minimize the length of the path. The problem is thus formulated as follows:

min
ei,j

np,k∑
i=1

np,k∑
j=1

ei,jdi,j i, j = 1, . . . , np,k (14a)

subject to

ei,j ∈ {0, 1} i, j = 1, . . . , np,k (14b)
np,k∑
i=1

ei,j = 1 j = 1, . . . , np,k (14c)

np,k∑
j=1

ei,j = 1 i = 1, . . . , np,k (14d)

∑
i∈Q

∑
j∈Vk\Q

ei,j ≥ 1 ∀Q ⊂ Vk, |Q| ≥ 1, (14e)

where the decision variable ei,j is equal to 1 if the edge between i and j appears
in the solution and di,j = dj,i = Ft(pi,pj) is the weight of the edge connecting
the inspection points pi and pj . (14b) ensures the decision variables are boolean,
(14c), (14d) force each node to have exactly one incoming and one outgoing edge
in the solution, while (14e) imposes that the cyclic path is unique for the whole
graph. In other words, for every possible subset of nodes Q, there has to be at
least one edge that connects that subset to the rest of the graph, Vk \Q.

All TSP instances in this paper are solved with LKH (Lin-Kernighan-Helsgaun)
[10], an effective implementation of the Lin-Kernighan heuristic commonly adopted
in literature [5, 6]. The solution for the k-th zone is saved as a sequence Sref,k

passing through all the inspection points pertaining to that zone, and the pro-
cess is repeated for all k = 1, . . . , nz.

3.3 Global Path Generation Strategy

After the optimal path within each zone has been generated, we now consider
the whole set of obstacles O to derive the desired complete path for the drone,
with a conceptually similar approach at a higher level. To this end, instead of
considering all the inspection points P , only those which resulted to be start
or end point for the single zones are kept into account, i.e. the first and last
points visited in the solutions of each of the single zones. This is because now
only the order of travel between zones, not within them, must be chosen. The
starting position of the drone is added to the set and used as starting node. The
approach is very similar to the one for single zones: first a set Ig of waypoints, all
lying outside obstacles, is randomly distributed in the space around the latter,
then a graph is generated by connecting nodes that are sufficiently close, based
on a tunable distance d̄g and provided that no obstacle lies between them. The
new graph Gg is thus indicated as:

Gg = (Vg, Eg, Dg), (15)



where the node set Vg contains the randomly distributed intermediate points Ig
and, among the inspection points p ∈ P , only those that correspond to entry
and exit points for each of the nz zones, plus the starting/final position of the
drone, p∗. Entry and exit points of a zone are respectively the first and last
inspection points appearing in the solution for the single zone Sref,k, indicated

as S
(1)
ref,k and S

(end)
ref,k , respectively. We group these points in the set

Pg =

nz⋃
k=1

(
S
(1)
ref,k ∪ S

(end)
ref,k

)
∪ p∗. (16)

Edges between such nodes are drawn with the same criterion,

Eg(Vg,O, d̄g) = {(pi, pj) | dist(pi, pj) ≤ d̄g ∧ free(pi, pj)}
i, j = 1, . . . , 2nz + ni + 1.

(17)

The same remarks on the role of the distance threshold apply. The weight
associated to each edge the function Dg is once again the geometrical distance
between the nodes it connects. Then, a new graph Tg is defined, whose nodes
are the points in Pg and edges are weighted with the flight distance values.
A last instance of the TSP is solved on this “global” graph, with p∗ as the
starting node. Note that this time the path we are looking for is cyclic, hence
we need not add the dummy node. The problem is formulated so that the edges
between each entry point and the corresponding exit point of a zone appear
in the optimal solution to the TSP, thus ensuring that compatibility with the
previously found paths inside each zone. To obtain this feature, with reference
to formulation (14), the following constraints are added:

ei,j = 1, ∀(i, j) : pi = S
(1)
ref,k ∧ pj ∈ S

(end)
ref,k , k = 1, . . . , nz (18)

effectively reducing the number of decision variables. The solution Sg of the
global TSP is combined with those of each zone, by inserting the sequences
Sref,k in the corresponding edges of Sg, in order to eventually obtain the desired
global series of waypoints for the drone, Sref .

The described procedure is summarized in the following algorithm.

Algorithm 1 - Hierarchical path planner

1. Initialize the problem by subdividing the obstacles and inspection points
sets, O and P , into nz zones;

2. Compute the local optimal paths. For each zone zk, k = 1, . . . , nz:

(a) consider its obstacles and its inspection points, Ok and Pk. Distribute
nk,i randomly chosen points around the obstacles, then build a first
graph Gk encompassing points Pk and Ik;

(b) For each pair of inspection points in Gk, find the shortest path con-
necting them and save the total distance;



(c) Based on the calculated distances, build another graph Tk, whose
nodes are the inspection points Pk and edges correspond to the actual
paths between them;

(d) Find the ideal order of navigation Sref,k between the nodes of Tk as
the solution of a TSP augmented with one dummy node.

3. Compute the global optimal path:

(a) Consider all obstacles O and the set of points Pg, comprising the
first and last point for each of the nz local solutions plus the starting
position of the drone;

(b) Build a graph Gg based on those nodes plus a set Ig of randomly
distributed intermediate points lying outside the obstacles;

(c) Generate the shortest paths between any pair of nodes of interest;

(d) Build another graph Tg connecting the points in Pg with edges rep-
resenting the simulated paths among them;

(e) Find the sequence Sg through all zones and back to the starting
position by solving another TSP, forcing to 1 the edges that connect
each entry point of a zone to its exit point.

4. Build the global series of waypoints Sref by combining the information in
Sg and Sref,k.

4 Simulation results

We carried out simulations in an environment that represents six identical pylons
of a bridge (Fig. 12). All computations have been performed using Matlab and
Simulink, on the same machine with an Intelr CoreTM i7 2.20 GHz processor
running Ubuntu 18. For the sake of simulating different conditions, the positions
of inspection points were chosen randomly in confined regions of space near
obstacle surfaces. The approach is evaluated in terms of both the time taken
to elaborate a series of waypoints and the time taken by the simulated drone to
travel between them, referred to as cost. The algorithm was tested five times
with the same obstacles and the same number of randomly distributed inspection
points. All runs consistently produced feasible paths. In particular, choosing
|Pk| = 30 inspection points and ni = 1000 random intermediate points per
pylon, given the initial position p∗ = [10, −1, 0]T , d̄ = 3 and d̄g = 12, it took
on average t = 35.4 s to elaborate a solution. Attempting to find a new solution
by fixing the inspection points and changing the randomly chosen intermediate
ones yielded very similar solutions in terms of simulated cost: repeating the
procedure in an instance with a final simulated cost of c = 936 s (equivalent to
820 m traveled) yielded results contained within ±0.2% of the first one, which
leads us to conclude that the placement of random points does not significantly
affect the final solution.

If we were to solve the same problem without the hierarchical structure,
i.e. by grouping all random points and inspection points in one set instead of



partitioning, building the graph as described in Section 3 and solving a single
instance of the TSP, the time taken would significantly increase: it takes 4.9
hours to reach the globally optimal solution, that shows a simulated travel time
of c = 906s (equivalent to 794 m traveled), just 3.2% faster than the one ob-
tained by our hierarchical technique. Figs. 9 and 10 show the dependence of
the obtained results on problem complexity. The same problem was solved with
identical parameters multiple times in a similar environment, starting from only
considering two pylons and adding one at a time. The solutions were obtained
both with the method presented in Section 3 and by applying the same approach
in a non-hierarchical fashion. The time taken was subdivided into total obstacle
check and graph creation time (tgraph) and total TSP formulation and solution
time (tTSP ). The fact that by far most of the computational time is spent
checking for collisions along edges and building the enlarged graph instead of
solving the TSP instances (see Fig. 9 and 10) was unexpected to us. Neverthe-
less, our hierarchical approach also tackles that problem by partitioning space
into zones, thus originating many smaller graphs instead of a single one and
decreasing the computational burden, in this case by three orders of magnitude.
Furthermore, the TSP solution time depends in general on the number of in-
spection points in each zone, and our approach still is computationally much
faster. Simulations also indicate that, as discussed in Section 3.2, reducing the
number of edges in the graph with intermediate and inspection points by only
connecting nodes whose distance is less than the threshold d̄ positively impacts
the solution time, by reducing the complexity of the graph. While using the
distance threshold in the previously mentioned instance of the problem yields
a solution with cost c = 936 s in t = 35.4 s, removing the threshold (thus
considering all possible feasible edges) increases the time to t = 935 s, while
still leading to the same solution. This simplification proves reasonable because
edges between nodes represent the time it takes to go form one to the other,
thus we can expect that the optimal solution tends to contain shorter edges,
rather than the same number of longer ones.

5 Conclusions and future work

The presented algorithm is found to return scalable and nearly optimal solu-
tions to the considered path planning problem. This is achieved by effectively
decoupling the obstacle avoidance problem from the planning itself, through
a discrete approximation of space that is also useful to determine the visiting
order of the points of interest, by partitioning the space so that more, smaller
instances of the TSP can be solved instead of a single large one, and by in-
troducing a tunable distance threshold to reduce the number of graph edges
to be considered when solving the TSP. While theoretically the optimality of
the solution is impacted, from a practical standpoint it is clear that the optimal
solution is really unlikely to contain edges with high weights, as they represent a
geometric distance. In other words, optimal solutions are expected to connect a
point to its close neighbors rather than to a distant one. Neglecting one edge of
the graph also means that it is not necessary to check if it traverses an obstacle,
which is rather costly. The required computational time is sufficiently low for
an off-line application, and it is achieved through two main steps:



* Partitioning the space so that more, smaller instances of the TSP can be
solved instead of a single large one. This comes at the cost of a certain sub-
optimality, since the local solution for each zone, together with entry and
exit point, is already fixed when the global solution is calculated. While
the simulations show that the impact on the global solution is negligible,
this issue will be addressed in the future development phases of the project.

* Introducing a tunable distance threshold to reduce the number of graph
edges to be considered in solving the TSP. While theoretically the opti-
mality of the solution might be impacted, from a practical standpoint it
is clear that the optimal solution is really unlikely to contain edges with
high weights, as they represent a value that is conceptually similar to a
geometric distance. In other words, optimal solutions are expected to con-
nect a point to its close neighbors rather than to a distant one. Neglecting
one edge of the graph also means that it is not necessary to check if it
traverses an obstacle, which is rather costly.

This approach is also quite flexible, as the cost assigned to edges of the graph
of inspection points can be modified to contain various parameters such as the
simulated energy consumption, not only the time spent.

5.1 Future work

As mentioned in Section 1, this research is part of a larger project aimed at
building a prototype of a system of both tethered and untethered drones to be
used in automated recurrent inspections of the built environment. This algo-
rithm will likely be developed and expanded into a multi-agent version, where
more drones are available to perform the inspection tasks and they have to be
coordinated. It will also be complemented with a procedure for the automated
generation of inspection points starting from information regarding the obsta-
cles and as a function of the type of inspection to be performed. The issue of
sub-optimality due to entry and exit points being fixed will be addressed, as
there is an attempt currently under way to use the position of those points as
decision variables in an optimization problem aimed at minimizing the length
of the overall trajectory.
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Fig. 4: A representation of an obstacle (green) with the related inspection points
(red).

Algorithm 1: Pseudocode for the illustrated approach.

Result: Series of waypoints for the drone
[nz,O1:nz , P1:nz ] = partition(O, P );
for k = 1, . . . , nz do

Ik = randomDistribution(ni,Ok);

Gk = graph(Pk ∪ Ik, Ek, Dk,Ok, d̄);
Sk = shortestPaths(Gk, Pk);
Wk = simulate(Sk);
Tk = graph(Pk, Sk,Wk);
zoneSolk = HamiltonianPath(Tk);
Pg = [Pg, zoneSolk(1), zoneSolk(end)];

end
Ig = randomDistribution(ni,O);

Gg = graph(Pg ∪ Ig, Eg, Dg,O, d̄g);
Sg = shortestPaths(Gg, Pg);
Wg = simulate(Sg);
Tg = graph(Pg, Sg,Wg);
globalSol = TSP (Tg);
solution = combine(globalSol, zoneSol1:nz

);



Fig. 5: Representation of an obstacle (green) with the related inspection points
(red) and intermediate points (blue).



Fig. 6: The same representation of fig. 5, with added intermediate points (blue).

Fig. 7: The graph of inspection points obtained from the point cloud in Fig. 5
(right) after simulations.



Fig. 8: The simulated environment. The dots represent inspection points.
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Fig. 9: In both approaches, the most time consuming task is the creation of
the graph. With the proposed technique, the total graph creation time,
tgraph,h, is significantly reduced. Note the logarithmic scale. The sub-
script h indicates the hierarchical approach. The time is highest with
two pylons with the hierarchical approach because in that case the free
space around the obstacles has a volume comparable to the obstacles
themselves. This in turn means that it takes more time to randomly
distribute points in free space.
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Fig. 10: In the non-hierarchical case, the time needed to actually solve the TSP
problem increases exponentially with the problem complexity, though
with the chosen parameters it is just a fraction of the total solution
time. Our approach (blue) significantly reduces it with respect to a non-
hierarchical one (red) and has a linear increase, which is the expected
behavior when
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Fig. 11: The difference in simulated cost c is always rather small, a sign that
the solution obtained by the proposed approach is nearly optimal.



Fig. 12: The series drone trajectory (blue) for the solution found in the instance
of the previous figure. The black dot at position [10,−1, 0] represents
the initial position. The dotted line is the last segment of the trajectory,
to illustrate the direction.


