
Augmented Memory Replay in Reinforcement
Learning With Continuous Control
Mirza Ramičić

Artificial Intelligence Center
Faculty of Electrical Engineering

Czech Technical University in Prague
Prague, Czech Republic

Email: ramicmir@fel.cvut.cz

Andrea Bonarini
Artificial Intelligence and Robotics Lab

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy
Email: andrea.bonarini@polimi.it

Abstract—Online reinforcement learning agents are currently
able to process an increasing amount of data by converting
it into a higher order value functions. This expansion of the
information collected from the environment increases the agent’s
state space enabling it to scale up to more complex problems but
also increases the risk of forgetting by learning on redundant
or conflicting data. To improve the approximation of a large
amount of data, a random mini-batch of the past experiences
that are stored in the replay memory buffer is often replayed at
each learning step. The proposed work takes inspiration from a
biological mechanism which acts as a protective layer of higher
cognitive functions found in mammalian brain: active memory
consolidation mitigates the effect of forgetting previous memories
by dynamically processing the new ones. Similar dynamics are
implemented by the proposed augmented memory replay or
AMR algorithm. The architecture of AMR, based on a simple
artificial neural network is able to provide an augmentation policy
which modifies each of the agents experiences by augmenting
their relevance prior to storing them in the replay memory.
The function approximator of AMR is evolved using genetic
algorithm in order to obtain the specific augmentation policy
function that yields the best performance of a learning agent in
a specific environment given by its received cumulative reward.
Experimental results show that an evolved AMR augmentation
function capable of increasing the significance of the specific
memories is able to further increase the stability and convergence
speed of the learning algorithms dealing with the complexity of
continuous action domains.

Index Terms—temporal-difference learning, deterministic pol-
icy gradient, replay memory, continuous action spaces, adaptive
actor-critic, active memory consolidation, computational memory
architectures, deep neural networks

I. INTRODUCTION

Due to their limited capacity it is crucial for both artificial
and biological learning systems to maintain the balance be-
tween retaining previously learned information and integrating
newly obtained one. This problem has been known as stability-
plasticity dilemma ever since Carpenter and Grossberg [1] pro-
posed a computational Adaptive Resonance Theory, or ART,
in order to mitigate the effects of near-complete forgetting of
pre-existing knowledge in neural network architectures (also
known as catastrophic interference [2]).

Since the artificial neural network or ANN architectures
take inspiration from biological learning systems, the burden

of explanation naturally turned on the broad area of neuro-
science: how can a human brain sustain its amazing adaptation
property of neuroplasticity [3], [4] while still be able to retain
the previously learned information in an effective way?

Extensive clinical evidence, supporting the fact that the
damages occurred in mammalian hippocampus region only
disrupts the recent memory while leaving the past ones intact,
prompted for a connectionist approach [5] of the memory
organization in the brain. The work by McLelalland et al. [5]
proposes that, although adaptation of the synaptic links occurs
in a wide range of areas the mammalian brain makes use of
two main complementary systems for its memory retention
capabilities: one system is in charge of adapting the synapses
of the neurons directly responsible for the processing of the
information namely in the neocortex. The other part adapts
the synaptic connections within a specialized memory system
such as hippocampus.

The complementary learning systems models such as [5]
rely on the ubiquitous interaction between the two systems
in order to explain the inherent plasticity of the mammalian
brain: the hippocampal memory system is able to support the
rapid acquisition of the new memories and play them back to
the neocortical system in an ”off-line” manner.

This reinstatement of the memories is expanded in recent
literature as active memory consolidation [6]–[9] or AMC.
Consolidation represents a buffer or a layer which facilitates
a better memory integration into the higher level cortical
structures and also prevents forgetting previously encoded
information; it usually occurs while sleeping or resting [10], a
time when the brain is not encoding or perceiving new stimuli.
Before its integration in the long term cortical structures,
each experience is mediated by a reactivation and replay in
the hippocampal memory as a part of the reinstatement. In
the process of reinstatement, or consolidation, memories are
altered either by relevance or compression [11] in a way that
their further integration into the existing knowledge would not
induce to forget the previous ones.

More recent studies [12]–[14] suggest that hippocampal re-
play is not a simple function of experience and that its content
reflects the cognitive and behavioural demands of a specific
task. In other words, the content of the replay structures is

believed to be heavily modified by the goal directed behaviour.
The active structural modification of AMC is selective and it
will facilitate strengthening the memories that are deemed to
be the more important ones, so to reach a certain retrieval
threshold. However, if the memory trace is deemed as not
strong enough for some memories, it will result in their
loss [15], [16]. Biological architectures found in human brain
and the computational reinforcement learning processes use a
functionally similar mechanism of replay memory. Along the
introduction of artificial neural networks, or ANN, as function
approximators in temporal-difference, or TD, learning [17], the
techniques that aim at their efficient training most commonly
use a replay buffer of previous experiences out of which a
mini-batch is sampled for re-learning at each time step. This
technique has been recently revived in Deep Q-learning [18],
[19]. Since in TD approaches the ANN is constantly updated to
better represent the state-action value pairs Q(s, a) that govern
the agent’s policy π, the mechanisms involved in its training
such as mini-batch replay became increasingly influential to
the learning process itself.

Another advantage of the replay memory structure is that,
when implemented, it acts as a form of agent’s cognition:
depending on the way it is populated, it can alter how the
agent perceives the information. In this way, a learning agent
is not only concerned about the information it receives from its
immediate environment, but also about the way in which this
information is interpreted by this cognitive mechanism. The
replay memory can now pose as an artificial mediating buffer
which facilitates the integration of the acquired information
into the main Q-approximating ANN.

In the proposed approach, a simple, still effective mech-
anism of replay memory is extended with the ability to
actively and dynamically process the information during the
replay, thus bringing it closer to the functional characteristics
of actual biological mechanisms. The dynamic processing
mechanism of Augmented Memory Replay, or AMR, presented
here is inspired by human memory consolidation and it is
capable of altering the relevance of specific memories by
aggregating their externally supplied reinforcement signal with
a dynamically-generated, augmenting reinforcement signal
based on the concept of adaptive critic elements introduced
by [20]. The dynamics of the AMR’s augmenting secondary
reinforcement signal are meta-learned in order to maximize
their adaptive, consolidation-supporting effect of increasing or
decreasing the importance of a specific memory.

In the experiments reported in this paper, the augmentation
dynamics are evolved over generations of learning agents
performing reinforcement learning tasks on realistic real-
world problems with continuous action spaces. Their fitness
function is defined in a straightforward way as their cumu-
lative performance over a specific environment. Experimental
results indicate that AMR type of memory buffer shows an
improvement in learning performance over the standard static
replay method in all the tested environments.

II. RELATED WORK

A. Computational Approaches of Complementary Learning
Systems

The increase of computational power along with the in-
creasing complexity of ANN architectures brought forward a
scientific community interested in modeling the overwhelming
complexity of the processes that a mammalian brain involves
in consolidating memories.

Pioneering works on the subject are largely based on
O’Reillys Hebbian learning model LEABRA [21] and exploit
the anatomical and physiological evidence presented in [5],
[22]; [23] introduced a computational model of hippocampus
able to facilitate a recollection of memories in such a way
that would mitigate the high level of interference and it was
followed by others [24]–[26]. Latter computational models
simulated in the work by Kali et al. [27] suggest that the cor-
tical memory replay alone protects episodic type of memories
against representational changes.

The oscillating inhibition approach presented by Norman et
al. [28] addresses Leabra’s lacks of a mechanism that would
selectively ”punish” less important memories during their re-
trieval. In line with the hereby proposed approach of AMR [28]
similarly introduces a cortical and hippocampal computational
model capable of combining selective strengthening of the
memory traces along with their targeted punishment.

One of the key points of the proposed AMR technique is
expanding the memory protection mechanisms such as the one
presented in [28] to the general RL problems which are also
susceptible to the catastrophic forgetting effect [2], since they
heavily rely on the ANN ability to approximate large state
spaces while using the power of well known RL techniques
such as replay memory [17]–[19].

The AMR also stems from the more recent works by
Kumaran et al. [29] that are bridging the gap between the
complementary learning systems such as [5], [28] and the RL
ones.

B. Adaptive Critic: Generating an Intrinsic Reward Signal

The adaptive critic approach [20] was primarily developed
to address the problem of delayed rewards caused by an inherit
reward sparsity of many modern RL problems: estimating the
expected returns proved to be a challenging task when faced
with a reinforcement function which rarely yields non-zero
rewards, or yields them only after a long sequence of actions. It
is also know as temporal credit assignment problem, indicative
of the inability of the temporal-difference RL algorithms such
as bootstrapping Q-variants to effectively propagate the effects
of a sparse delayed reward to the states preceding the one
where reinforcement has been obtained.

Adaptive critic agent mitigates the effects of a sparse
reinforcement by predicting its return, and in turn, acts upon
that prediction: an action that improves the likelihood of a
higher predicted return is reinforced. The predictive property
of an adaptive critic gives rise to a concept of a secondary
reinforcer: an intrinsic reward augmenting stimulus that has,

through a process of learning, obtained an ability to act as
a external or primary reinforcer of the agent’s immediate
environment [30]. Building upon the concept of adaptive
critic, AMR is able to alter the importance of a specific
memory by generating a secondary, intrinsic reinforcement
signal that is augmenting its stored primary reinforcement each
time the memory is replayed.

C. Reinforcement Learning

Although the proposed AMR approach can be applied to
any RL problem, its potential for memory augmentation can
be best demonstrated over a specific class of complex RL
problems that are dealing with a continuous action space.
These types of problems cannot be solved using vanilla Q-
learning [31] simply because approximating the Q-values for
infinite amount of possible actions is not feasible. Instead of
this, the agent is required to follow a deterministic actor policy
and allow a critic to determine how valuable the state-action
value pair is. This actor-critic architecture is referred to as deep
deterministic policy gradient, or DDPG, and has been intro-
duced by Lillicrap et al. [32]. Since then, the DDPG algorithm
has been successful in dealing with continuous action tasks
in its basic form or extensions. AMR takes advantage of the
fact that the specific memories stored in the replay buffer are
transitions that have been executed using deterministic actions
selected by the agent’s actor policy. Thus, in the process of
augmenting the reward signal or importance of a memory,
AMR also reinforces the importance of a deterministic action
choice stored in that memory.

Through its meta-learning process AMR is able to associate
the most effective deterministic action choices to specific
environment states. By augmenting the importance of the
memories it indirectly augments specific state-action pairs that
are predicted to be more effective in exploring the infinite
state/action space.

Mediated by AMR process, good deterministic actions
choices can be selected/reinforced even when their influence
on the agent’s future primary reward is highly indirect.

D. Extending the DDPG

An extension of DDPG algorithm was proposed by
Hausknecht and Stone [33] allowing it to deal with a low level
parameterized-continuous action space. However, the evalua-
tion of the approach was limited to a single simulated envi-
ronment of RoboCup 2D Half-Field-Offense [34]. Hoothoft et.
al [35] proposed a meta-learning approach capable of evolving
a specialized loss function for a specific task distribution
that would provide higher rewards during its minimization
by stochastic gradient descent. The algorithm can produce
a significant improvement of the agent’s convergence to the
optimal policy but, as it is the case with the AMR approach,
the evolved improvements are task specific.

Wang et. al [36] introduced an approach that is combining
the importance or prioritized sampling techniques together
with stochastic dueling networks in order to improve the con-

vergence of some continuous action tasks, such as Walker [37]
and Humanoid [38].

Another improvement of a vanilla DDPG is presented by
Dai et al. [39] as Dual-Critic architecture where the critic is
not updated using the standard temporal-difference algorithms,
but it is optimized according to the gradient of the actor.

An approach by Pacella et al. [40] evolved basic emotions
such as fear, used as a kind of motivational drive that governs
the agent’s behavior by directly influencing action selection.
As in the AMR approach, a population of virtual agents were
tested at each generation. In this process, each of the agents
evolved a specific neural network that was capable of selecting
its actions based on the input; this consisted of temporal
information, visual perception and good and bad sensation
neurons. Over time, the selection of best performing agents
gave rise to populations that adopted specific behavioral drives
such as being cautious or fearful as a part of a survival strategy.
Contrary to AMR, which evolves a cognitive mechanism that
only complements the main learning process, in [40] the
genetic algorithm represents the learning process itself.

Another evolutionary approach that is used to complement
the main reinforcement learning algorithm was presented
in [41]. Similarly to AMR, it uses a genetic algorithm to
evolve an optimal reward function which builds upon the basic
reward function in a way that maximizes the agent’s fitness
over a distribution of environments. Experimental results show
the emergence of an intrinsic reward function that supports
the actions that are not in line with the primary goal of the
agent. Schembri et al. [42] also presented a reinforcement
learning approach that relied on an evolved reinforcer in order
to support learning atomic meta-skills. The reinforcement was
evolved in a childhood phase, which equipped the agents with
the meta-actions or skills for the use in the adulthood phase.

Persiani et al. [43] proposed a cognitive improvement
through the use of the replay memory structure, like AMR.
The algorithm makes it possible to learn which chunks of
agent’s experiences are most appropriate for replay based on
their ability to maximize the future expected reward.

A cognitive filter structure was proposed by Ramicic and
Bonarini [44] and was able to improve the convergence of
temporal-difference learning implementing discrete control
rather than a continuous one. It was able to evolve the ANN
capable of selecting whether a specific experience will be
sampled into replay memory or not. Unlike AMR this approach
did not modify the properties of the experiences.

Similarly to the here presented AMR approach, a recent
work by Mattar et al. [45] have also dealt with the inter-
section between the neuroscientific models of hippocampal
memory consolidation and the artificial replay memory in
reinforcement learning: they implemented a prioritization of
the agents replay memory to a DYNA-based reinforcement
learning algorithm [46], based on its predicted utility. Another
proposal by Khamassi et al. [47] applied prioritization based
on the model-based search to the value-iterated reinforcement
learning problems [48].

[49], [50] present computational models of the

hippocampal-cortex interaction mostly based on the [5]
with regards to the temporal-difference reinforcement
learning.

III. THEORETICAL BACKGROUND

A. Temporal-difference learning

The goal of a reinforcement learning agent is to constantly
update the function which maps its state to their actions, i.e.
its policy π as close as possible to the optimal policy π∗. The
optimal policy is a policy that selects the actions that maximize
the future expected reward of an agent in the long run [48]
and it is represented by a function, possibly approximated by
an Artificial Neural Network or ANN. The process of updating
the policy is performed iteratively after each of the consecu-
tive discrete time-steps in which the agent interacts with its
environment by executing its action at, and gets the immediate
reward scalar rt defined by the reinforcement function. This
iterative step is defined as a transition over a Markov Decision
Process, and is represented it by a tuple (st, at, rt, st+1).
After each transition the agent corrects its existing policy
π according to the optimal action-value function shown in
Equation 1 in order to maximize its expected reward within the
existing policy. In the approaches that deal with discrete action
spaces, such as [31], the agent can follow the optimal policy
π∗ by taking an optimal action a∗(s) which maximizes the
optimal action-value function Q∗(s, a) defined by Equation 2.

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π] (1)

µ(s) = a∗(s) = max
a

Q∗(s, a) (2)

Qπ(s, a) = E
[
r + γmax

a′
Qπ(s′, a′)|s, a

]
(3)

The correction update to the policy π starts by determining
how wrong the current policy is with respect to the expecta-
tion, or value for the current state-action pair Q(s, a). In case
of a discrete action space, the expected return is defined by
the Bellman-optimality Equation 3 and it is basically the sum
of the immediate reward r and the discounted prediction of a
maximum Q-value, given the state s‘ over all of the possible
actions a‘.

B. Facing continuous action spaces

Maximizing over actions in Equation 2 is not a problem
when facing discrete action spaces, since the Q-values for
each of the possible actions can be estimated and compared.
However, when coping with continuous action values this
approach is not realistic: we cannot just brute force the values
of the whole action space in order to find the maximum. The
more recent approach of [32] eliminates the maximization
problem by approximating the optimal action a∗(s) and thus
creating a deterministic policy µ(s) in addition to the optimal
state-value function Q∗(s, a). Taking the new approximated
policy into consideration, the Bellman-optimality equation
takes the form of Equation 4 and avoids the inner expectation.

Qµ(s, a) = E [r + γQµ(s′, µ(s′))|s, a] (4)

The concept of temporal difference, or TD error, is common
among all the before mentioned approaches; it is basically the
difference between the current approximate prediction and the
expectation of the Q value. The learning process performs an
iterative reduction of a TD error using the Bellman-optimality
equation as a target, which guarantees the convergence of the
agent’s policy to the optimal one given an infinite amount of
steps [48].

C. Function approximation

In order to deal with the increasing dimension and continu-
ous nature of state and action spaces imposed by the real-life
applications, the aforementioned algorithms depend heavily on
approximation methods usually implemented using ANN. A
primary function approximation makes it possible to predict a
Q value for each of the possible actions available to the agent
by providing an agent’s current state as input of the ANN.
After each time step, the expected Q value is computed using
Equation 4, and then compared to the estimate that the function
approximator provides as its output Q(s, a; Θ) ≈ Q∗(s, a) by
forwarding the state s as its input. The difference between
the previous estimate of the approximator and the expectation
represents the TD error. This discrepancy is represented by
the actual loss function Li(Θi) that can be minimized by
performing a stochastic gradient descent on the parameters
Θ. The iterative process updates the current approximation of
Q∗(s, a) according to Equation 5:

∇ΘiLi(Θi) = (yi −Q(s, a; Θi))∇ΘiQ(s, a; Θi), (5)

where yi = r + γQµ(s′, µ(s′)); Θi−1) is in fact the Bellman
equation defining the target value which depends on a yet
another ANN that approximates the policy function µ(s) in
policy-gradient approaches such as [32]. The update to the
policy function approximator µΘ(s) is more straightforward
as it is possible to perform a gradient ascent on the respective
network parameters Θ in order to maximize the Qµ(s, a) as
shown in Equation 6.

max
θ

E
s∼D

[Qµ(s, µθ(s))] (6)

IV. MODEL ARCHITECTURE AND LEARNING ALGORITHM

In this section we propose a new model that combines the
learning approach of genetic algorithms with reinforcement
learning in order to improve the convergence of the latter.

The genetic algorithm, as a meta-learning component, is
used to learn a specific augmentation policy At(st, st+1, rt)
capable of altering the experiences stored in the agent’s replay
memory in a way that would lead to the maximization of
their cumulative reward gained in the process of reinforcement
learning.

For clarity, the proposed model is presented as two main
functional parts: the reinforcement learning evaluation phase

outlined in Figure 1 and evolution phase in which an opti-
mal augmentation policy is obtained through the use genetic
algorithm or GA techniques.

The evaluation part is defined as a temporal-difference rein-
forcement problem as Algorithm 1 where a reward function is
dynamically modified by the proposed AMR block represented
in the section (f) of Figure 1. Architecturally, the AMR block
(f) consists of a function approximator implemented by an
ANN, capable of outputting a single scalar value. The value
of the outputted scalar At determines the agents augmentation
policy, which, in turn is able to modify the reinforcement value
of a specific transition before storing it to the replay memory
sliding window structure in Figure 1 (a).

The architecture of the AMR neural network approximator
(f) consists of three layers: three input nodes fully connected
to a hidden layer of four nodes, in turn connected to two soft-
max nodes to produce the final classification. This ANN is able
to approximate the four parameters of the experience, respec-
tively given an input, as TD error, reinforcement rt, entropy
of the starting state st, and entropy of the next transitioning
state st+1, to a regression output layer that provides a scalar
augmentation value At(TDt, rt, H(st), H(st+1); ΘAMR) pa-
rameterized by its learnable weights ΘAMR.

The augmentation process alters the reward value of each
transition by an augmentation rate or β as shown in Equa-
tion 7.

rt := rt + βA∗t (7)

where

A∗t ≈ At(TDt, rt, H(st), H(st+1); ΘAMR) (8)

In order to perform the actual temporal-difference learning
the main learning loop in Figure 1 (b) samples a minibatch
of K experiences augmented by (f) from the replay memory
buffer (a). At each learning step, a loss function for the
augmented minibatch is minimized by performing a stochastic
gradient descent on the function approximator (d).r2

By altering the reward scalars rt of the transitions prior to
their memory storage the AMR block is able to dynamically
modify the amount of influence each transition exerts on
the learning process (b), which, in the context of Q-learning
approaches, can be represented by its TD-error.r2

TD-error of a specific transition, defined by Bellman-
optimality Equation 3 is a function of its immediate reward
scalar rt. Thus, by applying AMR dynamics to a specific
transition rt the Algorithm 1 is able to impose an indirect
importance advantage At > 0 or importance penalty At < 0
through Equation 7. The importance-altering dynamics of
AMR computational processes can mimic the properties of
the connectionist learning systems approaches [5], [12]–[14]
ability to alter the experiences stored in the memory in the
process of their consolidation.

The second component of the proposed architecture con-
stantly evolves the ANN’s weights of the AMR block used
in evaluation DDPG trials as a component of the integrated

RL-GA architecture, marked as b) in Figure 2, using a genetic
algorithm in order to improve the augmentation policy. There-
fore, learning the optimal augmentation policy for a specific
environment through generations of trials enables the agent to
increase their performance in DDPG trials by changing the
way they manage or ”consolidate” their experiences stored in
replay memory structure.

Both the evolutionary and reinforcement learning phase are
therefore implemented in the integrated architecture outlined
in Figure 2 with the reinforcement learning phase consisting
of n independent DDPG trials being represented as the b)
component of Figure 2, each DDPG trial being an independent
single instance of the architecture presented in Figure 1 and
defined as Algorithm 1.

At each of the k generations, the learning performance
of n = 50 DDPG agents (in Figure 2 b) component) were
evaluated during a total 200 reinforcement learning episodes
per trial. First, n genotypes represented by the helix shape
in c) section of Figure 2 were extracted from each of the n
AMR phenotypes assigned as an AMR−ANN in n DDPG
trials. A genotype was defined as the weights and biases of
the specific AMR − ANN . In d step of Figure 2 those
genotypes were ranked based on the DDPG trial performance
defined by the total cumulative reward sumrn received during
the reinforcement learning. A subset of the m = 20 best
performing genotypes were selected (in Figure 2 e)) in order to
undergo the evolutionary processes of uniform crossover and
mutation (Figure 2 f)) producing a new set of n genotypes (in
Figure 2 g)) that would be used as a basis for n AMR−ANN
phenotypes implemented in the next generation of n DDPG
trials. At time k = 0, the genotypes were generated randomly
(Figure 2 a)) and mutation rate, implemented in Figure 2 f),
was 0.25, and included adding a random scalar between 0.1
and −0.1 to the weights.

V. EXPERIMENTAL SETUP

A. Environment

The evaluation phase applied the proposed variations of the
DDPG learning algorithm to a variety of continuous control
tasks running on an efficient and realistic physics simulator as
a part of OpenAI Gym framework [51] and shown in Figure 3.

For the purpose of standardized benchmarking, all of the
presented algortihms and their modifications were imple-
mented using recently developed stable-baselines3 framework
[52] with the corresponding optimized hyperparameters given
by [53] for each of the learning environments. The standard-
ization of the baseline frameworks allowed us to perform a
benchmark the proposed AMR approach against state-of-the-
art algorithms commonly used for tasks requiring a continuous
action representation.

The considered environments range from a relatively sim-
ple 2D environments like LunarLanderContinuous-v2, with a
humble 8-dimensional state space, to a complex four-legged
3D robot such as AntBulletEnv-v0 [54], which boasts a total
of 111-dimensional states coupled with 8 possible continuous
actions. Different tasks of intermediate complexity like making

Fig. 1: Evaluation phase learning model architecture including the evolved augmented memory replay block or AMR: (a)
Replay memory; Main learning loop (b) which performs the actual learning by updating the critic Q-function approximator
ANN (d); Actor ANN approximator (e) providing a deterministic policy µ(s); Augmented Memory Replay block (f) consisting
of an ANN that approximates the augmentation parameter At, based on the properties of the experience. The augmentation
parameter At provides an augmentation policy which directly alters the raw experience stream of an agent (c) prior to its
storage in the replay memory (a)

a 2D animal robot run in HalfCheetahBulletEnv-v0 were
evaluated.

B. Function Approximation

An approximation of Q(s, a; Θ) ≈ Q∗(s, a) has been
implemented using an ANN with one hidden fully connected
layer of 50 neurons, able to take an agent’s state as input and
to produce as output the Q values of all the actions available
to the agent. The learning rate of a critic Q approximator α
is set to 0.002.

The actor function approximator of a(s; Θ) ≈ a∗(s) is
implemented using one hidden dense layer of 30 neurons
which outputs a deterministic action policy based on the
agent’s current state. The actor ANN has been trained using
a slightly higher learning rate of 0.001 compared to the critic
one.

The architecture of the AMR function approximator consists
of three layers: four input nodes connected to a fully connected

hidden layer of four nodes, in turn connected to a single
regression node able to produce an augmentation scalar as
output. This ANN is able to approximate four parameters of
the current agent’s experience, respectively given in input as
an absolute value of TD error, reinforcement, entropy of the
starting state st, entropy of the transitioning state st+1, to
a scalar value At that indicates how important the specific
experience is to the learning algorithm. In the process of
approximating the reward augmentation value At AMR neural
network exploits the input information about the reinforcement
reward that its augmenting together with an indicator of the
transition’s importance/potential for learning quantified by its
respective TD-error.

Additionally AMR relies on methods for representing tran-
sition importance that go beyond TD-error by including in
its input measures of transitioning states st, st+1 energies
quantified by their respective Shannon’s entropy levels. Thus
far, entropy of the observations has been used as an additional

DDPG
Trial 1

A
M

R
1

Σr1 Σr2 Σrn

1 2 n

RANKING OF BASED ON THE DDPG PERFORMANCE

L
O
O
P

F
O
R

A

T
O
T
A
L

O
F

K

G
E
N
E
R
A
T
I
O
N
S

DDPG
Trial 2

A
M

R
2

DDPG
Trial n

A
M

R
n

1 2 n

1 2 m

CROSSOVER + MUTATION

1 2 n

a)

b)

c)

d)

e)

f)

g)

Fig. 2: Integrated architecture of AMR implementing both evaluation RL phase in component b) and the evolution phase
defined over k generations; a) Random initialization of genotypes for k = 0; b) Performing n independent instances of DDPG
reinforcement learning defined by 1 and outlined in 1; c) Extracting the genotypes represented by a double-helix shape from
the n AMR−ANN phenotypes used in n DDPG trials and their performance represented by the mean cumulative primary
reinforcement

∑
rn obtained from a total of 6 evaluation modes performed in between agents reinforcement learning steps

as defined in subsection V-D; d) Ranking the obtained genotypes based on the DDPG performance or
∑
rn and selecting a

subset of m genotypes in e) that will undergo crossover and mutation in f) in order to form a new set of genotypes in g);
The new set of genotypes g) is then used to form a next population of DDPG trials forming a new generation. This process
is repeated for a total of k generations.

Algorithm 1 Evaluation phase of DDPG with Augmented
Memory

Initialize critic network Q(s, a|ΘQ), actor network µ(s|Θµ)
and augmentation network A(s, r|Θβ) with random weights
ΘQ, Θµ and Θβ

Initialize target network Q′ and µ′ with weights ΘQ′
← ΘQ

and Θµ′
← Θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Observe initial state s1

for t=1, T do
Select action at = µ(st|Θµ) + Nt according to the
current policy and exploration noise
Execute action at and observe reward rt and new state
st+1

Augment the reward rt ← rt+At(st, st+1, rt) accord-
ing to the augmentation network parameters Θβ

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of S transitions
(st, at, rt, st+1) from R
Set yi = ri + γQ′(si+1, µ

′(si+1|Θµ′
)|ΘQ′

)

Update critic by minimizing the loss L =
1

S

∑
i

(yi −

Q(si, ai|ΘQ′
))2

Update the actor policy using the sampled policy
gradient

∇ΘµJ ≈
1

S

∑
i

∇aQ(s, a|ΘQ)|s=si,a=µ(si)∇Θµµ(s|Θµ)|si

Update the networks
ΘQ′

← τΘQ + (1− τ)ΘQ′

Θµ′
← τΘµ + (1− τ)Θµ′

end for
end for

criterion in prioritized experience replay sampling in both
single H(st) form [55] and extended intrinsic-exploration one
implemented in the approach of [56] and defined as a level of
Kullback–Leibler divergence between the transitioning states
H(st+1 ‖ st).

In the case of the AMR approximator a single form of state-
energy criterion is provided directly by its H(st) input while
the latter is imposed implicitly through the inclusion of the
H(st+1) as a separate input.

C. Learning Parameters

All of the hyperparameters related to RL algorithms were
taken from environment-specific optimized values defined in
[53].During the evaluation phase presented in Figure 1, at each
learning step a batch of 32 experiences were replayed from the
fixed capacity memory buffer of 10000.

Learning steps per episode were limited to a maximum of
1000 learning steps. Reward discount factor γ was set to a
high 0.9 and soft replacement parameter τ was 0.01. In order

(a) LunarLanderContinuous-v2

(b) HalfCheetahBulletEnv-v0 (c) AntBulletEnv-v0

Fig. 3: Variety of OpenAI Gym environments considered in
evaluation. Ordered from low to high complexity.

to achieve action space exploration an artificially generated
noise is added to the deterministic action policy which is
approximated by the actor ANN. The noise is gradually
decreased or adjusted linearly from an initial scalar value 3.0
to 0.0 towards the end of the learning.

D. Evaluation of the agents performance

The agent enters evaluation mode every 25000 learning
steps. At each of the evaluation sequences the agent performs
actual real-time steps for a total of 25 episodes in the simulated
environment in order to evaluate the immediate primary reward
reinforcement which, in this case is not mediated by the AMR
process. The evaluation episodes are also characterized by a
zero amount of Gaussian exploration-supporting action noise,
which distinguishes them from exploration-greedy training
episodes. A single evaluation sequence score is defined as
a cumulative total primary reinforcement received over the
course of its 25 evaluation episodes.

The reported final evaluation scores of agents, are formed
by taking an unweighted arithmetic mean of a total of 6 single
evaluation sequence scores performed in between the training
episodes.

The agent evaluation returns are averaged after an agent
reaches 6 ·25000 learning steps, at which point the agent con-
cludes its independent, learning and evaluation trial detailed
in Figure 1.

E. Experimental Results

The proposed integrated algorithm in Figure 2 evolved the
AMR’s neural network weights ΘAMR trough a number of
generations. The evolutionary impact on agent performance
during the evolution phase has been characterized by the
changes in approximate distributions of three variables (av-
erage cumulative return, standard deviation of that return and
the average episode duration in frames) across the total of
K generation populations. The evolution of population per-
formance has been reported in Figure 4 a) as the distribution
graphs representing the average agent return (x axis) over K
number of generations (y axis) for each of the considered
environments: AntBulletEnv-v0, HalfCheetahBulletEnv-v0 and
LunarLanderContinuous-v2.r2

Figure 4 a) also showcases how the different characteristics
of the environments give rise to a different convergence
dynamics of the evolutionary algorithm itself; We can no-
tice that the AntBulletEnv-v0 starts with a agent population
yielding a rather disperse and uniform reward distribution
at the initial generation 1 for K = 0. As the evolutionary
algorithm converges, this initial dispersion is replaced by a
strong central tendency visible in the intermediary generations
(7 − 9); The populations around this mark tend to include
agent phenotypes that are consistent in their high reward yield
and can be characterized by the absence of low performing
outlier phenotypes. During the subsequent generations (> 9),
the center of the trend is moved to a higher reward yield
at the cost of a slight dispersion increase: the populations
of the final generations tend to favor further exploration
of the genotype space producing the best performing agent
phenotypes yielding rewards well above 600, at a cost of
including, to some extent, the low performing ones.r2

The effect of the AMR phenotype on the initial per-
formance distribution proved to be quite different when
applied to diverse environments; Contrary to the uniform
nature of the AntBulletEnv-v0 initial performance distribu-
tion, the first generations for both HalfCheetahBulletEnv-v0
and LunarLanderContinuous-v2 environments had a dominant
central tendency towards producing low performing agents.
The subsequent generations of HalfCheetahBulletEnv-v0 and
LunarLanderContinuous-v2 show a more rapid tendency shift
towards the higher return cluster. The differences in reported
evolutionary dynamics show that the direct impact of the aug-
mentation on the agents immediate performance induced by
the AMR phenotype is higher for the HalfCheetahBulletEnv-
v0 and LunarLanderContinuous-v2 environment types.

The b) row of Figure 4 reports the evolutionary dynamics
of the additional characterizing variable represented by the
standard deviation of agent’s returns. Although the diversity
of the agent rewards, here represented by their STD, depends
hugely on the reward function implementation for the specific
environment, giving rise to different value ranges, the relative
environment-specific changes in the STD variable distributions
can be descriptive of the evolutionary process dynamics.

Figure 4 b) shows that the evolutionary process resulted
in a gradual increase of the variance of received rewards,
supporting the exploration of the continuous reward space

represented by the specific agent’s reinforcement function.
The evolutionary disposition for exploratory behavior can

also be seen along the changes in distributions of a variable
representing an average episode length, measured in learning
steps and outlined in the c) section of Figure 4, as the prefer-
ence for longer lasting episodes increments over generations.

r2

F. Evaluation Results

Best performing evolved genotypes for each of the environ-
ments have been benchmarked against vanilla DDPG variant
and other state-of-the-art RL algorithms such as proximal
policy optimization [57] PPO and a variation of asynchronous
advantage actor-critic [58] A2C. The evaluation benchmark
was performed over a total of 1200 independent trials for
each of the configurations of algorithm/environment. The
distributions of the three characterizing variables, namely,
average agent return, STD of the agent returns and average
episode duration, are reported along the a), b)andc) rows of
Figure 5, respectively. The evaluation distributions outlined in
Figure 5 are accompanied by the Tables I, II, and III displaying
their mean, minimum, and maximum values of the score
given by the corresponding average return variable. Along
with the distributions visualizations in Figure 5, the summary
in Tables I, II, and III provides an account of performance
differences obtained by the different algorithms facing the
evaluation benchmarks. r2

From the benchmark summary showcased along the Ta-
bles I, II, and III, we can notice that the most complex setup
(i.e. AntBulletEnv-v0) improved its learning performance the
most when using the proposed AMR approach when compared
to the baseline vanilla DDPG approach, which did not use
memory augmentation.

As evident from the mean scores reported in Table II
the AMR evolutionary approach improves the Ant’s quad-
legged robot learning about walking by double compared to
vanilla DDPG, significantly improves over PPO and provides a
reasonable improvement over A2C algorithm. The augmented
approach, also, improves the vanilla DDPG maximum reported
score of a single agent by more than double. This high increase
in agent’s performance under augmentation is accompanied by
the more extreme minimum scoring agent, also observable in
Figure’s 5 a) distribution view and it is consistent with the
AMR’s evolved preference for exploration over exploitation.
Under the exploration tendency, the augmented AntBulletEnv-
v0) agents performed the longest learning episodes compared
to their non-augmented counterparts as seen in the Figure’s 5
c) biased distributions.r2

AMR algorithm have also showed a significant improve-
ment in LunarLanderContinuous-v2 setup: the simplest of the
benchmarked environments. During the benchmarks the pro-
posed evolutionary approach made the 2D lunar craft improve
its landing performance as it produced a significant increase
in agent’s total cumulative score. The augmented approach,
while facing a far less demanding LunarLanderContinuous-v2
environment outperformed all of the considered algorithms in

Ant HalfCheetah LunarLander

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Average Duration of Episodes in Learning Steps over Evolving Generations

Ant HalfCheetah LunarLander

0 50 100 150 0 200 400 600 100 200 300

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Standard Deviation of Agent Returns Received over Evolving Generations

Ant HalfCheetah LunarLander

0 200 400 600 −1000 0 1000−600 −400 −200 0 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Average Agent Return Received over Evolving Generations

a)

b)

c)

Fig. 4: Changes in the three characterizing variable distributions measured in agent populations evolved over the first K
generations for each of the considered environments designated in columns (on the ordinates); a) Average return; b) Standard
deviation of received returns and c) Average episode duration measured in frames.

Ant HalfCheetah LunarLander

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

A2C

PPO

DDPG−AMR

DDPG

Average Duration of Evaluation Episodes in Learning Steps

Ant HalfCheetah LunarLander

0 100 200 300 400 0 200 400 600 0 100 200 300 400

A2C

PPO

DDPG−AMR

DDPG

Standard Deviation of Agent Returns Received During Evaluation Phase

Ant HalfCheetah LunarLander

0 300 600 900 −1000 −500 0 500 1000 −600 −400 −200 0 200

A2C

PPO

DDPG−AMR

DDPG

Average Agent Return Received During Evaluation Phase

a)

b)

c)

Fig. 5: Comparison of characterizing variables distributions obtained over a total of 1200 independent evaluation trials for each
of the benchmarked algorithm/environment combination; a) Average return; b) Standard deviation of received returns and c)
Average episode duration measured in frames.

both the mean and minimum score values while keeping the
maximum score comparable with its vanilla DDPG baseline.

Although not as relevant as in AntBulletEnv-v0 and
LunarLanderContinuous-v2 setups, the AMR approach was
able to show some improvement over the baselines in the mean
agent scores over the HalfCheetahBulletEnv-v0 environment
as summarised in Table III. While HalfCheetahBulletEnv-v0
tends to move towards the direction of a relative increase of
the reward diversity during the evolution stage as noticeable
from Figure’s 5 b) the evolutionary backed exploration
tendency is not as prominent as in the case of AntBulletEnv-
v0 and LunarLanderContinuous-v2 setups; The distinguishing
characteristics of HalfCheetahBulletEnv-v0 also create an
environment dynamics that are unable to satisfy, in all trialed
cases, its end-of-episode criterion for each of the performed
episodes, up until the maximum episode length which is
subject to a hard limit of 1000 steps. This characteristic,
specific to HalfCheetahBulletEnv-v0 accounts for the average
episode duration variable to be constant across each of the
evolved generations of agents in Figure 5 c), taking the value
of the imposed hard limit for each of the episodes.We can also
notice the difference in score variance between the setups

which can be attributed to distinctive robot/environment
characteristics; while LunarLanderContinuous-v2 shows
relatively low variance in its scores, other settings like
AntBulletEnv-v0 and HalfCheetahBulletEnv-v0 exhibit a very
high variance.r2r2

TABLE I: Summary of the evaluation benchmarks results
reported in Figure 5 comparing agent performances of the
proposed DDPG + AMR approach (using a best performing
evolved AMR genotype) against vanilla DDPG and other
state-of-the-art RL algorithms over LunarLanderContinuous-
v2 environment. The summary is based on the mean, minimum
and maximum values of the performance measure distribution
in a) section of Figure 5. Best performances are highlighted
in bold.

RL Algo. Mean Score Min Score Max Score

DDPG + AMR 50.40 -160.60 185.54
DDPG 33.07 -195.78 192.99
PPO -109.97 -184.72 -63.90
A2C -120.48 -581.19 94.51

TABLE II: Summary of the evaluation benchmarks results
reported in Figure 5 comparing agent performances of the
proposed DDPG + AMR approach (using a best performing
evolved AMR genotype) against vanilla DDPG and other state-
of-the-art RL algorithms over AntBulletEnv-v0 environment.
The summary is based on the mean, minimum and maximum
values of the performance measure distribution in a) section
of Figure 5. Best performances are highlighted in bold.

RL Algo. Mean Score Min Score Max Score

DDPG + AMR 610.02 53.24 1107.89
DDPG 302.68 148.17 453.31
PPO 316.99 1.99 615.31
A2C 575.32 185.36 771.15

TABLE III: Summary of the evaluation benchmarks results
reported in Figure 5 comparing agent performances of the
proposed DDPG + AMR approach (using a best performing
evolved AMR genotype) against vanilla DDPG and other
state-of-the-art RL algorithms over HalfCheetahBulletEnv-v0
environment. The summary is based on the mean, minimum
and maximum values of the performance measure distribution
in a) section of Figure 5. Best performances are highlighted
in bold.

RL Algo. Mean Score Min Score Max Score

DDPG + AMR 345.52 -970.91 964.55
DDPG 295.98 -525.33 841.86
PPO -665.81 -1295.71 49.40
A2C 287.97 -807.71 1025.74

VI. DISCUSSION

The presented approach implements a biologically inspired
mechanism that enables artificial learning agents to better
adapt to a specific environment by selectively modifying the
relevance of the perceived memories used by the RL for re-
learning. An agent implementing an AMR neural network is
able to evolve in few generations its memory augmentation
criteria in order to dynamically create a secondary adaptive
critic reinforcer that is best adapted to the faced environment.

The secondary AMR reinforcer enables the agent to explore
its action and state space more efficiently by augmenting
the replayed memories that contain deterministic state-action
choices that are predicted to have a greater impact on its
learning performance during the training phase.

Although during its training episodes the agent is maximiz-
ing its expected return of a compound reinforcement signal
represented by the sum of the primary reinforcement given by
the environment and a secondary, augmenting reinforcement
signal provided by AMR, it yields a direct improvement in
performance during the evaluation episodes as well.

This relationship is possible because the secondary rein-
forcement signal is in fact a function of the primary external
one. This creates an adaptive temporal relationship or feedback
loop between the two reinforcers [20].

Augmenting memory with a meta-learned environment-
specific augmentation policy enables the emergence of an
artificial cognition as an intermediary dynamic filtering mech-
anism in learning agents, which, in all the benchmarked
environments, have evolved a tendency for exploration as a
reward maximization strategy. The strategy was consistent
with respect to both complex hyper-realistic control problems
modelled over three-dimensional physics simulator, and the
game-like, highly idealized problems constrained to a two-
dimensional plane.r2

VII. REFERENCES

REFERENCES

[1] G. A. Carpenter and S. Grossberg, “The art of adaptive pattern recogni-
tion by a self-organizing neural network,” Computer, vol. 21, no. 3, pp.
77–88, 1988.

[2] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[3] C. Chen and S. Tonegawa, “Molecular genetic analysis of synaptic
plasticity, activity-dependent neural development, learning, and memory
in the mammalian brain,” Annual review of neuroscience, vol. 20, no. 1,
pp. 157–184, 1997.

[4] P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous
system,” Nature, vol. 407, no. 6807, pp. 963–970, 2000.

[5] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there
are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of
learning and memory.” Psychological review, vol. 102, no. 3, p. 419,
1995.

[6] P. Maquet, “The role of sleep in learning and memory,” science, vol.
294, no. 5544, pp. 1048–1052, 2001.

[7] B. Rasch and J. Born, “Maintaining memories by reactivation,” Current
opinion in neurobiology, vol. 17, no. 6, pp. 698–703, 2007.

[8] R. Stickgold, “Sleep-dependent memory consolidation,” Nature, vol.
437, no. 7063, pp. 1272–1278, 2005.

[9] S. Diekelmann and J. Born, “The memory function of sleep,” Nature
Reviews Neuroscience, vol. 11, no. 2, p. 114, 2010.

[10] D. Marr, D. Willshaw, and B. McNaughton, “Simple memory: a theory
for archicortex,” in From the Retina to the Neocortex. Springer, 1991,
pp. 59–128.

[11] B. L. Mcnaughton, B. Leonard, and L. Chen, “Cortical-hippocampal
interactions and cognitive mapping: A hypothesis based on reintegration
of the parietal and inferotemporal pathways for visual processing,”
Psychobiology, vol. 17, no. 3, pp. 230–235, 1989.

[12] A. S. Gupta, M. A. van der Meer, D. S. Touretzky, and A. D. Redish,
“Hippocampal replay is not a simple function of experience,” Neuron,
vol. 65, no. 5, pp. 695–705, 2010.

[13] A. A. Carey, Y. Tanaka, and M. A. van Der Meer, “Reward revaluation
biases hippocampal replay content away from the preferred outcome,”
Nature neuroscience, pp. 1–10, 2019.

[14] R. A. Swanson, D. Levenstein, K. McClain, D. Tingley, and G. Buzsáki,
“Variable specificity of memory trace reactivation during hippocampal
sharp wave ripples,” Current Opinion in Behavioral Sciences, vol. 32,
pp. 126–135, 2020.

[15] N. Dumay, “Sleep not just protects memories against forgetting, it also
makes them more accessible,” Cortex, vol. 74, pp. 289–296, 2016.

[16] T. Schreiner and B. Rasch, “To gain or not to gain–the complex role of
sleep for memory,” Cortex, vol. 101, pp. 282–287, 2018.

[17] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
DTIC Document, Tech. Rep., 1993.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[20] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[21] R. C. O’Reilly, “The leabra model of neural interactions and learning
in the neocortex,” Ph.D. dissertation, PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1996.

[22] R. C. O’reilly and J. L. McClelland, “Hippocampal conjunctive encod-
ing, storage, and recall: Avoiding a trade-off,” Hippocampus, vol. 4,
no. 6, pp. 661–682, 1994.

[23] R. C. O’reilly, K. A. Norman, and J. L. McClelland, “A hippocampal
model of recognition memory,” in Advances in neural information
processing systems, 1998, pp. 73–79.

[24] R. C. O’reilly and Y. Munakata, Computational explorations in cognitive
neuroscience: Understanding the mind by simulating the brain. MIT
press, 2000.

[25] J. W. Rudy and R. C. O’Reilly, “Conjunctive representations, the
hippocampus, and contextual fear conditioning,” Cognitive, Affective,
& Behavioral Neuroscience, vol. 1, no. 1, pp. 66–82, 2001.

[26] K. A. Norman and R. C. O’Reilly, “Modeling hippocampal and neocor-
tical contributions to recognition memory: a complementary-learning-
systems approach.” Psychological review, vol. 110, no. 4, p. 611, 2003.

[27] S. Káli and P. Dayan, “Off-line replay maintains declarative memories in
a model of hippocampal-neocortical interactions,” Nature neuroscience,
vol. 7, no. 3, pp. 286–294, 2004.

[28] K. A. Norman, E. L. Newman, and A. J. Perotte, “Methods for reducing
interference in the complementary learning systems model: oscillating
inhibition and autonomous memory rehearsal,” Neural Networks, vol. 18,
no. 9, pp. 1212–1228, 2005.

[29] D. Kumaran, D. Hassabis, and J. L. McClelland, “What learning systems
do intelligent agents need? complementary learning systems theory
updated,” Trends in Cognitive Sciences, vol. 20, no. 7, pp. 512–534,
2016.

[30] A. G. Barto, “Intrinsic motivation and reinforcement learning,” in Intrin-
sically motivated learning in natural and artificial systems. Springer,
2013, pp. 17–47.

[31] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[33] M. Hausknecht and P. Stone, “Deep reinforcement learning in parame-
terized action space,” arXiv preprint arXiv:1511.04143, 2015.

[34] M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and
P. Stone, “Half field offense: An environment for multiagent learning
and ad hoc teamwork,” in AAMAS Adaptive Learning Agents (ALA)
Workshop, 2016.

[35] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. J. Ho,
and P. Abbeel, “Evolved policy gradients,” in Advances in Neural
Information Processing Systems, 2018, pp. 5400–5409.

[36] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[37] T. Erez, Y. Tassa, and E. Todorov, “Infinite horizon model predictive
control for nonlinear periodic tasks,” Manuscript under review, vol. 4,
2011.

[38] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[39] B. Dai, A. Shaw, N. He, L. Li, and L. Song, “Boosting the actor with
dual critic,” arXiv preprint arXiv:1712.10282, 2017.

[40] D. Pacella, M. Ponticorvo, O. Gigliotta, and O. Miglino, “Basic emotions
and adaptation. a computational and evolutionary model,” PLoS one,
vol. 12, no. 11, p. e0187463, 2017.

[41] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically motivated
reinforcement learning: An evolutionary perspective,” IEEE Transac-
tions on Autonomous Mental Development, vol. 2, no. 2, pp. 70–82,
2010.

[42] M. Schembri, M. Mirolli, and G. Baldassarre, “Evolution and learning
in an intrinsically motivated reinforcement learning robot,” in European
Conference on Artificial Life. Springer, 2007, pp. 294–303.

[43] M. Persiani, A. M. Franchi, and G. Gini, “A working memory model
improves cognitive control in agents and robots,” Cognitive Systems
Research, vol. 51, pp. 1–13, 2018.

[44] M. Ramicic and A. Bonarini, “Selective perception as a mechanism
to adapt agents to the environment: An evolutionary approach,” IEEE
Transactions on Cognitive and Developmental Systems, 2019.

[45] M. G. Mattar and N. D. Daw, “Prioritized memory access explains
planning and hippocampal replay,” Nature neuroscience, vol. 21, no. 11,
pp. 1609–1617, 2018.

[46] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM Sigart Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[47] M. Khamassi and B. Girard, “Modeling awake hippocampal reactiva-
tions with model-based bidirectional search,” Biological Cybernetics,
pp. 1–18, 2020.

[48] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[49] D. Mareschal and S. Blakeman, “A complementary learning systems
approach to temporal difference learning,” Neural Networks, 2019.

[50] S. Blakeman and D. Mareschal, “A complementary learning systems
approach to temporal difference learning,” Neural Networks, vol. 122,
pp. 218–230, 2020.

[51] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[52] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/
stable-baselines3, 2019.

[53] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

[54] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[55] M. Ramicic and A. Bonarini, “Entropy-based prioritized sampling in
deep q-learning,” in Image, Vision and Computing (ICIVC), 2017 2nd
International Conference on. IEEE, 2017, pp. 1068–1072.

[56] ——, “Towards learning agents with personality traits: Modeling open-
ness to experience,” Cognitive Systems Research, vol. 55, pp. 124–134,
2019.

[57] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[58] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

	 Introduction
	Related Work
	Computational Approaches of Complementary Learning Systems
	Adaptive Critic: Generating an Intrinsic Reward Signal
	Reinforcement Learning
	Extending the DDPG

	Theoretical Background
	Temporal-difference learning
	Facing continuous action spaces
	Function approximation

	Model Architecture and Learning Algorithm
	Experimental Setup
	Environment
	Function Approximation
	Learning Parameters
	Evaluation of the agents performance
	Experimental Results
	Evaluation Results

	Discussion
	References
	References

