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The virtual element method is well suited to the formulation of arbitrarily regular
Galerkin approximations of elliptic partial differential equations of order 2p1, for any
integer p1 ≥ 1. In fact, the virtual element paradigm provides a very effective design

framework for conforming, finite dimensional subspaces of Hp2 (Ω), Ω being the compu-
tational domain and p2 ≥ p1 another suitable integer number. In this review, we first
present an abstract setting for such highly regular approximations and discuss the math-

ematical details of how we can build conforming approximation spaces with a global
high-order regularity on Ω. Then, we illustrate specific examples in the case of second-

and fourth-order partial differential equations, that correspond to the cases p1 = 1

and 2, respectively. Finally, we investigate numerically the effect on the approximation
properties of the conforming highly-regular method that results from different choices
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of the degree of continuity of the underlying virtual element spaces and how different

stabilization strategies may impact on convergence.

Keywords: Virtual element methods; arbitrarily regular conforming approximation

spaces; second- and higher-order elliptic PDEs.
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1. Introduction

In the recent years, there has been an intensive research on numerical approxima-

tions of partial differential equations (PDEs) that can work on unstructured polyg-

onal and polyhedral (polytopal) meshes. Such research activity has led to the design

of several families of numerical discretizations for PDEs, as, for example, the polyg-

onal/polyhedral finite element method;67 the mimetic finite difference method;22

the virtual element method (VEM);17 the discontinuous Galerkin method on polyg-

onal/polyhedral grids;7,36 the hybrid discontinuous Galerkin method;44 and the

hybrid high–order method.47 Roughly speaking, all these methods are Galerkin-

type projection methods where the solution of a PDE is approximated in a finite-

dimensional space that is built upon an underlying mesh made of arbitrarily-shaped

polytopal elements. In this sense, all such methods can be considered as a general-

ization of the finite element method that is formulated on classical simplicial and

quadrilateral meshes.

In particular, the virtual element method, which is the focus of our paper, has

been proven to be very successful in numerical modeling of scientific and engi-

neering applications. The conforming VEM was first developed for second-order

elliptic problems in primal formulation,17,20 and then in mixed formulation19,34 and

nonconforming formulation.15 A non-exhaustive list of applications includes the

numerical approximation of underground flows and discrete fracture networks;29,30

propagation and scattering of time-harmonic waves;57,66 topology optimization

problems;6,40 contact mechanics and elasto-plastic deformation problems;70 phase-

field models of isotropic brittle fractures;2 the Schrödinger equation;37 obstacle68

and minimal surface problems;5 nonlocal reaction–diffusion systems describing the

cardiac electric field;3 cracks in materials;31 structural mechanics problems;13,14

elastic wave propagation phenomena.8,64,65 The major reason of this success is

that the VEM offers a great flexibility in designing approximation spaces featur-

ing important properties other than just supporting polytopal meshes. Indeed, the

VEM features great flexibility in dealing with internal constraints (e.g. locking

phenomena) and in designing ad-hoc approximation spaces that preserve funda-

mental properties of the underlying physical and mathematical models (e.g. incom-

pressibility constraint). It is worth mentioning the construction of virtual element

spaces forming de Rham complexes for the Stokes equations,24 the Navier–Stokes

equations25 and the Maxwell equations,18 where the numerical approximation of

the velocity field or the magnetic flux field is pointwise divergence free. Another

remarkable example is provided by the VEM for Helmholtz problems58 based on
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non-conforming approximation spaces of Trefftz functions, i.e. functions that belong

to the kernel of the Helmholtz operator.

In this paper, we are interested in the construction of virtual element spaces with

global arbitrarily high smoothness (regularity). We review the related literature in

more detail in the next section as it is the central topic of the present study. High

regularity of the numerical approximation is of primary importance when dealing

with high-order differential problems, i.e. problems involving partial differential

equations of order 2p1, p1 ≥ 1, and offers clear advantages even for p1 = 1, i.e. in

the context of second-order differential equations. Indeed, global smoothness can

be useful to directly compute physical quantities (such as fluxes, strains, stresses)

without resorting to post-processing as in classical C0-continuous finite element

method (FEM), to develop anisotropic error estimators based on the Hessian or to

devise better eigenvalue approximation (studies in isogeometric analysis have shown

that highly regular discrete spaces may give a better approximation of the high end

of the spectrum). More precisely, the virtual element framework allows us to design

finite-dimensional subspaces of Hp2(Ω) for some suitable integer number p2 ≥ 1.

Here, the integer p2 determines the global regularity of the virtual element functions

defined on the computational domain Ω. The value of p2 obviously depends on the

problem and the numerical approximation at hand and we will always assume that

p2 ≥ p1.

In the “classical” conforming FEM, the finite-dimensional spaces are typically

only C0-continuous,42 and the definition of more regular approximation spaces is

usually considered a difficult task from both the theoretical and computational

viewpoints. The major difficulty in the formulation of a C1-regular FEM relies in

the explicit construction of a set of basis functions with such global regularity.12,28,43

More recent results on the construction of highly-regular finite element spaces can

be found, e.g. in Refs. 71, 72, 51 and 50. The remarkable aspect that makes the

VEM so appealing in this respect is that the formulation of such arbitrary reg-

ular approximations and their implementation are relatively straightforward. The

crucial point here is that in the virtual element setting we do not need to know

explicitly the shape functions spanning the virtual element space. All the virtual

element functions are indeed virtual in the sense that they are implicitly defined

as the solution of a local partial differential equation inside each mesh element.

Consequently, such functions are not explicitly known, with the noteworthy excep-

tion of some subset of polynomials. Instead, they are uniquely defined by a set

of values dubbed the degrees of freedom and these values are the only knowledge

that we really need to formulate and implement the numerical scheme. This feature

makes the construction of arbitrary regular approximations for any kind of partial

differential equations much simpler and almost immediate.

Our first goal in this study is to provide a comprehensive overview of the state-

of-the-art of highly regular conforming virtual element approximations of PDEs of

order 2p1, p1 ≥ 1. Our second aim is to investigate the influence of different stabiliza-

tion strategies on the performance of highly-regular virtual element discretizations
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in terms of the condition number of the resulting linear system of equations and

accuracy of the approximation scheme. For the numerical validation, we focus on

two model problems: the Poisson equation and the biharmonic equation in two spa-

tial dimensions. In the next subsection, we provide an overview of the literature

related to arbitrarily regular VEM discretizations.

1.1. Background material on arbitrarily regular virtual element

formulations

The first work on a C1-regular conforming VEM addressed the classical plate bend-

ing problem.35 In such a work, a C1-regular virtual element method is proposed

and analyzed for the numerical discretization of the Kirchhoff–Love model for thin

plates. The approximation error is theoretically proved to decay in the energy norm,

i.e. the H2 norm, with the optimal rate r − 1, r ≥ 2, if the local virtual element

spaces contain the space of polynomials of degree r. Optimal errors estimates in

both H1 and L2 norms have been derived later using duality arguments.41 Suc-

cessively, an arbitrarily regular virtual element approximation was developed for

second-order elliptic problems in two dimensions by using similar concepts26 and

then applied to the design of residual-based a-posteriori error estimators.27 A low-

order variant of this method was considered for the semi-discrete approximation of

the two-dimensional nonlinear Cahn–Hilliard problem.4 Such VEM needs only three

degrees of freedom per mesh vertex and turns out to be a new discretization also

on triangular grids. Recently, highly regular virtual element spaces have also been

considered for the numerical resolution of the von Kármán equation modeling the

deformation of very thin plates.55 Here, the model under consideration is a fourth-

order system of nonlinear partial differential equations where the unknowns describe

the transverse displacement and the boundary stresses of the plate. The resulting

conforming formulation is shown to be well-posed through a Banach fixed-point

argument provided that the mesh size is small enough, and optimal errors bounds

are proved when the error is measured in the H2 norm. Interesting applications

of highly-regular conforming VEM can be also found in the context of geostrophic

equations61 and fourth-order subdiffusion equations.54 Highly-regular conforming

VEMs have been recently proposed and analyzed for general polyharmonic bound-

ary value problems10 of the form (−∆)p1u = f , p1 ≥ 1, in two dimensions. The

virtual element space of this method contains polynomials of degree r ≥ 2p1 − 1,

features Hp1 global regularity and guarantees optimal approximation bounds in

suitable norms, i.e. with the above introduced notation it corresponds to the choice

p2 = p1. This approach is an extension of the known virtual element discretization of

second- and fourth-order problems since the approximation spaces for p1 = p2 = 1

and p1 = p2 = 2 coincide with the conforming virtual element spaces for the Poisson

equation17 and the biharmonic equation,35 respectively.

All the previously mentioned works focus onto two-dimensional mathematical

models. The first highly regular VEM in the three-dimensional setting addresses
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the fourth-order linear elliptic equation21 (see also Ref. 33). The lowest-order case

requires a virtual element space locally including quadratic polynomials, i.e. r = 2.

The degrees of freedom are the values of the virtual element functions and their

gradients at the mesh vertices. Recently, highly-regular conforming VEM in any

dimension has been proposed in Ref. 53.

A highly regular virtual element method has also been designed for solving

the eigenvalue problem modeling the two-dimensional plate vibration problem of

Kirchhoff plates.60 For the resulting spectral problem, the lowest-order H2(Ω)-

conforming VEM provides the correct spectral approximation and optimal-order

error estimates are derived for the approximation of the eigenvalues and the eigen-

functions. Along the same line, a fourth-order spectral problem derived from the

transmission eigenvalue problem is considered in Ref. 62. Its variational formula-

tion is written in H2(Ω)×H1(Ω) and the resulting virtual element approximation

is H2(Ω) × H1(Ω)-conforming. Employing the classical approximation theory for

compact non-self-adjoint operators, it is shown that the resulting VEM provides

a correct approximation of the spectrum, and the eigenvalues and eigenfunctions

are approximated with the expected (optimal) rates. The fourth-order plate buck-

ling eigenvalue problem has recently been addressed.63 Here, a C1-regular virtual

element method of arbitrary order r ≥ 2 is used to approximate the buckling coeffi-

cients and modes. This virtual element space is an extension of the approximation

space introduced in Refs. 35 and 4. In view of the Babuška–Osborn abstract spec-

tral approximation theory,16 this VEM provides a correct approximation of the

spectrum. Optimal-order error estimates for the buckling modes and the buckling

coefficients are derived.

Finally, it is worth mentioning that in the context of fourth- or higher-order

problems, alternative strategies based on non-conforming approaches are also viable

and have been addressed in the recent literature. For example, for the biharmonic

problem we find C0 non-conforming73 and fully non-conforming9,74 virtual ele-

ment approximations, and for higher-order PDEs in Rn we find non-conforming

VEM.39,52 A unified general framework including the lowest-order conforming

VEM35 and non-conforming VEM9,73,74 has also been proposed and analyzed for

the Kirchhoff plate contact problem with friction.69

1.2. Outline of the paper

The remaining part of the paper is organized as follows. In Sec. 2, we introduce the

continuous problem and its weak formulation. In Sec. 3, we introduce the virtual

element discretization and recall the main abstract convergence result. In Sec. 4, we

present the conforming virtual element approximation with higher-order regularity

and recall the main theoretical results for polyharmonic problems.10 Moreover,

employing the ideas of Ref. 26, we extend to the case r ≥ p2 the construction of

lower order spaces as considered in Ref. 10. Section 5 is devoted to present numerical

experiments for second- and fourth-order elliptic PDEs. We assess the convergence
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properties of the VEM versus the mesh size and the degree of continuity of the

underling virtual element space for different possible choices of the stabilization. We

also investigate numerically how these choices impact on the condition number of

the resulting linear system of equations. Finally, in Sec. 6, we draw our conclusions.

2. The Continuous Problem

In this section, we introduce the model problem under investigation together with

its weak formulation. Let Ω ⊂ R
2 be an open, bounded, convex domain with

polygonal boundary Γ. For any integer p1 ≥ 1, we introduce the conforming virtual

element method for the approximation of the following problem:

(−∆)p1u = f in Ω, (2.1a)

∂jnu = 0 for j = 0, . . . , p1 − 1 on Γ, (2.1b)

where ∂jnu is the normal derivative of order j of the function u with useful conven-

tional notation that ∂0
nu = u. Let

V ≡ Hp1
0 (Ω) = {v ∈ Hp1(Ω) : ∂jnv = 0 on Γ, j = 0, . . . , p1 − 1}.

Denoting the duality pairing between V and its dual V ′ by
〈
·, ·
〉
, the variational

formulation of the polyharmonic problem (2.1) reads as: Find u ∈ V such that

ap1(u, v) =
〈
f, v
〉
∀ v ∈ V, (2.2)

where, for any nonnegative integer `, the bilinear form is given by:

ap1(u, v) =


∫

Ω

∇∆`u · ∇∆`vdx for p1 = 2`+ 1,∫
Ω

∆`u∆`v dx for p1 = 2`.

(2.3)

Whenever f ∈ L2(Ω) we have〈
f, v
〉

= (f, v) =

∫
Ω

fv dx, (2.4)

where (·, ·) denotes the L2-inner product. The existence and uniqueness of the

solution to (2.2) follows from the Lax–Milgram Theorem because of the continuity

and coercivity of the bilinear form aPp1(·, ·) with respect to ‖ · ‖V = | · |p1,Ω, which

is a norm on Hp1
0 (Ω). Moreover, whenever ∂Ω ∈ Ck, for k ≥ 2p1, from Corollary

2.21 in Ref. 48 we know that u ∈ Hk(Ω) ∩Hp1
0 (Ω) if f ∈ Hk−2p1(Ω), and it holds

that ||u||k ≤ C||f ||k−2p1 . In the case of a bounded, convex, polygonal domain, it is

expected that similar results hold depending on the values of the internal angles

(cf. Ref. 32 for the biharmonic case, i.e. p1 = 2). In the following, we denote the

coercivity and continuity constants of ap1(·, ·) by α and M , respectively.
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Let P be a polygonal element and denote by aPp1(·, ·) the restriction of ap1(·, ·)
to P. For an odd p1, i.e. p1 = 2` + 1, a repeated application of the integration by

parts formula yields

aPp1(u, v) =−
∫
P

∆p1u v dx+

∫
∂P

∂n(∆`u) ∆`v ds

+
∑̀
i=1

(∫
∂P

∂n(∆p1−iu) ∆i−1v ds−
∫
∂P

∆p1−iu ∂n(∆i−1v) ds

)
,

(2.5)

while, for an even p1, i.e. p1 = 2`, we have

aPp1(u, v) =

∫
P

∆p1u v dx

= −
∑̀
i=1

(∫
∂P

∂n(∆p1−iu) ∆i−1v ds−
∫
∂P

∆p1−iu ∂n(∆i−1v) ds

)
.

(2.6)

The above formulas will be crucial to prove the unisolvence of the degrees of free-

dom of the virtual element spaces and to show the computability of the elliptic

projections (cf. Sec. 3).

3. The Discrete Problem and Abstract Convergence Result

In this section, we present the discrete counterpart of formulation (2.2) and recall

the abstract convergence result. Let {Ωh}h be a sequence of decompositions of Ω

where each mesh Ωh is a collection of nonoverlapping polygonal elements P with

boundary ∂P, and let Eh be the set of edges e of Ωh. Each mesh is labeled by

h, the diameter of the mesh, defined as usual by h = maxP∈Ωh
hP, where hP =

supx,y∈P|x− y|. We denote the set of vertices in Ωh by Vh. The symbol hv denotes

the average of the diameters of the polygons sharing the vertex v. For functions in

ΠP∈Ωh
Hp1(P), we define the seminorm ||v||2h =

∑
P∈Ωh

aPp1(v, v).

The formulation of the virtual element method for the approximation of the

solution to the elliptic problem (2.2) with arbitrarily smooth functions only requires

three mathematical objects:

(1) for p2 ≥ p1 ≥ 1 the finite-dimensional conforming virtual element space

V p2,p1h,r ⊂ Hp1
0 (Ω) ∩Hp2(Ω) ⊂ V ;

(2) the bilinear form ap1,h(·, ·);
(3) the linear functional 〈fh, ·〉.

Note that the space V p2,p1h,r is made of globally Hp2(Ω) functions and, endowed with

suitable degrees of freedom, will be employed to solve elliptic problems of order

p1 ≤ p2.
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Using such objects, we formulate the VEM as: Find uh ∈ V p2,p1h,r such that

ap1,h(uh, vh) =
〈
fh, vh

〉
∀ vh ∈ V p2,p1h,r . (3.1)

The well-posedness of (3.1), which implies existence and uniqueness of the solution

uh, is a consequence of the Lax–Milgram lemma. An abstract convergence result is

available, which depends only on the following assumptions:

(H1) for each h and an assigned integer number r ≥ p2 we are given:

(1) the global virtual element space V p2,p1h,r with the following properties:

— V p2,p1h,r is a finite-dimensional subspace of Hp1
0 (Ω) ∩Hp2(Ω) ⊂ V ;

— its restriction V p2,p1h,r (P) to any element P of a given mesh Ωh, called

the local (elemental) virtual element space, is a finite-dimensional

subspace of Hp2(P);

— Pr(P) ⊂ V p2,p1h,r (P) where Pr(P) is the space of polynomials of degree

up to r defined on P;

(2) the symmetric bilinear form ap1,h : V p2,p1h,r × V p2,p1h,r → R admitting the

decomposition

ap1,h(uh, vh) =
∑
P∈Ωh

aPp1,h(uh, vh) ∀uh, vh ∈ V p2,p1h,r ,

where each local summation term aPp1,h(·, ·) is also a symmetric bilinear

form;

(3) an element fh of the dual space (V p2,p1h,r )
∗

of V p2,p1h,r , which allows us to

define the continuous linear functional
〈
fh, ·

〉
.

(H2) for each h and each mesh element P ∈ Ωh, the local symmetric bilinear form

aPp1,h(·, ·) possesses the two following properties:

(i) r-Consistency: for every polynomial q ∈ Pr(P) and virtual element

function vh ∈ V p2,p1h,r (P) it holds

aPp1,h(vh, q) = aPp1(vh, q); (3.2)

(ii) Stability: there exist two positive constants α∗, α
∗ independent of h

and P such that for every vh ∈ V p2,p1h,r (P) it holds

α∗a
P
p1(vh, vh) ≤ aPp1,h(vh, vh) ≤ α∗aPp1(vh, vh). (3.3)

It is easy to check that ap1,h(·, ·) is coercive and continuous. Let Pr(Ωh) denote the

space of piecewise (possibly discontinuous) polynomials defined over the mesh Ωh.

The following abstract convergence result holds.

Theorem 3.1. Let u be the solution of the variational problem (2.2). Then, for

every virtual element approximation uI in V p2,p1h,r and any piecewise polynomial

approximation uπ ∈ Pr(Ωh) of u we have

||u− uh||v ≤ C
(
||u− uI ||v + ||u− uπ||h + ||fh − f ||(V p2,p1

h,r )
∗

)
, (3.4)
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where C is a constant independent of h that may depend on α, M, α∗, α
∗, and r,

and

||f − fh||(V p2,p1
h,r )

∗ = sup
vh∈V

p2,p1
h,r \{0}

〈
f − fh, vh

〉
||vh||v

(3.5)

is the approximation error of the right-hand side given in the norm of the dual space

(V p2,p1h,r )
∗
.

Proof. We report here the proof for completeness.10 First, an application of the

triangular inequality implies that

||u− uh||v ≤ ||u− uI ||v + ||uI − uh||v. (3.6)

Let δh = uh − uI and recall that α is the coercivity constant of ap1(·, ·). Starting

from the definition of || · ||v, we find that

α∗α||δh||2v≤α∗ap1(δh, δh)
[
use (3.3)

]
≤ ap1,h(δh, δh)

[
use δh = uh − uI

]
≤ ap1,h(δh, uh)− ap1,h(δh, u

I)
[
use (3.1)

]
≤
〈
fh, δh

〉
−
∑

P∈Ωh
aPp1,h(δh, u

I) [add ±uπ
]

≤
〈
fh, δh

〉
−
∑

P∈Ωh

(
aPp1,h(δh, u

I − uπ) + aPp1,h(δh, uπ)
) [

use (3.2)
]

≤
〈
fh, δh

〉
−
∑

P∈Ωh

(
aPp1,h(δh, u

I − uπ) + aPp1(δh, uπ)
)

[add ±u
]

≤
〈
fh, δh

〉
−
∑

P∈Ωh

×
(
aPp1,h(δh, u

I − uπ) + aPp1(δh, uπ − u) + aPp1(δh, u)
) [

use (2.2)
]

=
〈
fh − f, δh

〉
−
∑

P∈Ωh

(
aPp1,h(δh, u

I − uπ) + aPp1(δh, uπ − u)
)
.

Then, we use (3.3), add and subtract u, use the continuity of aPp1 , sum over all the

elements P, divide by ||δh||v, take the supremum of the right-hand side error term

on V p2,p1h,r \{0}, and obtain

αα∗||δh||v ≤ sup
vh∈V

p2,p1
h,r \{0}

|
〈
fh − f, vh

〉
|

||vh||v
+M

(
α∗||uI − u||v + (1 + α∗)||u− uπ||h

)
,

(3.7)

where M is the continuity constant of ap1(·, ·). The assertion of the theorem follows

by substituting (3.7) in (3.6) and suitably defining the constant C.

From the proof of Theorem 3.1 it follows that the constant C appearing in

(3.4) scales as M
α
α∗

α∗
, where α and M are the coercivity and continuity constants of

ap1(·, ·) (in this case α = M = 1) whereas α∗ and α∗ are the constants of (H2), see

(3.3). We point out that α∗ and α∗ might depend on the polynomial approximation

degree r, see e.g. Ref. 11 for the case p1 = 1.
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4. The Virtual Element Spaces of Higher-Order Continuity

4.1. Preliminaries

The “degrees of freedom tuples” are a very effective way to characterize the set of

degrees of freedom (dofs) that uniquely identify the virtual element functions as

members of a finite dimensional subspace of a Ck-regular virtual element space.

Our degrees of freedom tuple, abbreviated as “dofs-tuple”, is a generalization of

the similar concept that was originally introduced for the degrees of freedom of a

nonconforming virtual element space.46 Our dofs-tuple is an array Mk ∈ Z2(k+1)+1

defined by

Mk =
( (
dv0, . . . d

v
k

)
,
(
de0, . . . , d

e
k

)
, di0

)
. (4.1)

The integer variables
(
dvj
)

and
(
dej
)
, for j = 0, . . . , k, respectively encode the infor-

mation associated with the mesh vertices and mesh edges; the last integer variable

di0 encodes the information associated with the interior of the mesh elements P.

The subscript j = 0 in dv0, de0, and di0 indicates that these variables refer to the

virtual element function. The subscript values j = 1, . . . , k in dvj and dej denote the

reference to the partial derivatives Dν = ∂|ν|/∂xν1∂yν2 of order |ν| = ν1 + ν2 = j

of the virtual element function (ν = (ν1, ν2) being a multi-index). The vertex vari-

ables dvj can only take the values −1 or 0, while the edge variables dej and the

elemental variable di0 either take the value −1 or a nonnegative integer value. If the

entry is equal to −1, the corresponding term is not used as a degree of freedom.

If dvj = 0, the jth order partial derivatives evaluated at the mesh vertices are in

the set of degrees of freedom (with the usual convention that Dνvh(v) = vh(v) for

ν = (0, 0), i.e. j = 0). If dvj = −1, the corresponding jth-order partial derivatives

at the vertices are not degrees of freedom; this is typical of nonconforming methods

(cf. Ref. 46). A nonnegative value of de0 and di0 defines the maximum order of the

polynomial moments used in the definition of the degrees of freedom associated

with the elemental edges e ∈ ∂P and the interior of the element P.

By using the dofs-tuple Mk, we define the following set of values of a function

v ∈ Hk+1(P):

(D1) h
|ν|
v Dνvh(v) at all vertices v of the polygonal boundary ∂P, for every multi-

index ν = (ν1, ν2) such that |ν| = j if dvj = 0, j = 0, . . . , k;

(D2) h−1+j
e

∫
e

q∂jnvh ds for any q ∈ Pdej (e), j = 0, . . . , k and any edge e of ∂P;

(D3) h−2
P

∫
P
qhvh dx for any q ∈ Pdi0(P).

4.2. Local and global spaces

For p2 ≥ p1 ≥ 1 we first consider the case r ≥ 2p2 − 1, while the lower order case

p2 ≤ r ≤ 2p2 − 1 will be addressed in Sec. 4.3. The local virtual element space on
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element P is defined by

V p2,p1h,r (P) =
{
vh ∈ Hp2(P) : ∆p2vh ∈ Pr−2p1(P), ∂invh ∈ Pr−i(e),

i = 0, . . . , p2 − 1 ∀ e ∈ ∂P
}
, (4.2)

with the conventional notation that Pr(P) = {0} if r < 0. The virtual element

space V p2,p1h,r (P) contains the space of polynomials Pr(P), for r ≥ 2p2 − 1.

We take k = p2 − 1 in (4.1) and endow the local space V p2,p1h,r (P) with the

dofs-tuple Mp2−1 = Mp2−1(p1), which depends on the parameter p1 by setting

dvj = 0 j = 0, . . . , p2 − 1,

dej = r − 2p2 + j j = 0, . . . , p2 − 1,

di0 = r − 2p1.

Employing (2.5)–(2.6) it is possible to prove that the degrees of freedom (D1)–

(D3) defined through the dofs-tuple Mp2−1(p1) are unisolvent in V p2,p1h,r (P), see

Ref. 10. The particular choice of di0 is essential for the computability of the elliptic

projection with respect to aPp1(·, ·), which is a scalar product in Hp1
0 (Ω) ∩Hp2(Ω)

cf. Remark 4.3.

Building upon the local spaces V p2,p1h,r (P) for all P ∈ Ωh, the global conforming

virtual element space V p2,p1h,r is defined on Ω as

V p2,p1h,r =
{
vh ∈ Hp1

0 (Ω) ∩Hp2(Ω) : vh|P ∈ V p2,p1h,r (P) ∀P ∈ Ωh

}
. (4.3)

The set of global degrees of freedom inherited by the local degrees of freedom

defined by Mp2−1(p1) are

• h|ν|v Dνvh(v), |ν| ≤ p2 − 1 for every interior vertex v of Ωh;

• h−1+j
e

∫
e
q∂jnvh ds for any q ∈ Pr−2p2+j(e) j = 0, . . . , p2 − 1 and every interior

edge e ∈ Eh;

• h−2
P

∫
P
qvh dx for any q ∈ Pr−2p1(P) and every P ∈ Ωh.

We remark that the associated global space is made of Hp2(Ω) functions. Indeed,

the restriction of a virtual element function vh to each element P belongs to Hp2(P)

and glues with Cp2−1-regularity across the internal mesh faces.

Remark 4.1. (Examples) We report some relevant examples from the virtual ele-

ment literature that are included in the above abstract framework:

• for p1 = p2 = 1, we obtain the C0-conforming virtual element space for the

Poisson equation;17

• for p2 = p1 = 2 we obtain the conforming virtual element space for the biharmonic

equation;4,35

• for p1 = 1 and p2 = 2 we obtain the C1-conforming virtual element space for the

Poisson equation;26
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• for p1 = 1 and p2 = 3 we obtain the C2-conforming virtual element space for the

Poisson equation.26

4.3. Lower-order virtual spaces

Following Ref. 26, lower-order elemental spaces can be defined that contains the

subspace of polynomials of degree up to r with p2 ≤ r ≤ 2p2 − 2:

V p2,p1h,r (P) =
{
vh ∈ Hp2(P) : ∆p2vh ∈ Pr−2p1(P), ∂invh ∈ Pαi

(e),

i = 0, . . . , p2 − 1 ∀ e ∈ ∂P
}
, (4.4)

where αj = max{2p2 − 1− 2j, r − j}. Let βj = αj −min{2p2 − 1− 2j, r − j} − 1.

For r = 2p2 − 1 − k with k = 1, . . . , p2 − 1, the virtual element functions in

the elemental space (4.4) are uniquely identified by the degrees of freedom of the

dofs-tuple Mp2−1(p1) by setting

dvj = 0 j = 0, . . . , p2 − 1,

dej = −1 j = 0, . . . , k,

dej = βj j = k + 1, . . . , p2 − 1,

di0 = r − 2p1.

Equivalently,

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p2 − 1 for any vertex v of ∂P;

(D2) h−1+j
e

∫
e

q∂jnvh ds for any q ∈ Pβj (e) and edge e of ∂P, j = k+ 1, . . . , p2− 1;

(D3) h−2
P

∫
P
qvh dx for any q ∈ Pr−2p1(P) and every P ∈ Ωh.

Note that αj = 2p2 − 1 − 2j for j = 0, . . . , k and the degrees of freedom (D1)

are sufficient to uniquely identify ∂jnvh|e ∈ P2p2−1−2j(e) for j = 0, . . . , p2 − 1; this

motivates the choice dej = −1, j = 0, . . . , k. The degrees of freedom (D2) are added

to ensure ∂jnvh|e ∈ Pr−j(e) whenever αj = r − j > 2p2 − 1− 2j.

The above set of degrees of freedom is unisolvent in V p2,p1h,r (P) and allows for

the computability of the elliptic projection Πp1,P
r with respect to aPp1(·, ·). The global

virtual element space V p2,p1h,r is built as in the previous section and is made of Hp2

functions.

Remark 4.2. The virtual space V p2,p1h,r (P) in (4.4) for r = 2p2 − 2 has been first

introduced in the work of Ref. 10, while the virtual element spaces for p2 ≤ r <

2p2 − 2 are new. The proofs of the dofs-unisolvence and of the computability of

Πp1,P
r follow using the arguments of Ref. 10. In the lowest order case (r = p2) the

local virtual element space V p2,p1h,r (P) does not employ the dofs defined in (D2), so

the corresponding dofs-tuple is equal to

Mp2−1(p1) = (0, . . . , 0,−1, . . . ,−1, di0).



January 14, 2022 13:5 WSPC/103-M3AS 2150062

A review on arbitrarily regular conforming VEMs for second- and higher-order elliptic PDEs 2837

In particular, for p1 = p2 = 2 and r = 2 we obtain the space introduced in Ref. 4

for the conforming approximation of the Cahn–Hilliard equation. For p1 = 1 and

r ≥ p2 ≥ 2 we obtain the spaces introduced in Ref. 26 for the virtual element approx-

imation of the Laplace problem with arbitrary regularity. The space V p2,p1h,p2
(P) with

p1 = 1, 2 will be employed in Sec. 5 to perform numerical tests. Finally, we note

that r ≥ 2p2 − 1 implies αj = r − j and (4.4) reduces to (4.2).

4.4. Projection operators and discrete bilinear forms

The choice of di0 in the dofs-tuple Mp2−1(p1) is crucial for the computability of the

elliptic projection Πp1,P
r : V p2,p1h,r (P)→ Pr(P), with respect to aPp1(·, ·). This fact will

become clear in the discussion (see Remark 4.3). To define the elliptic projection

we need the vertex average projector Π̂P : V p2,p1h,r (P) → P0(P), which projects any

(smooth enough) function defined on P onto the space of constant polynomials. Let

ψ be a continuous function defined on P. The vertex average projection of ψ onto

the constant polynomial space is given by

Π̂Pψ =
1

NP

∑
v∈∂P

ψ(v). (4.5)

The elliptic projection Πp1,P
r : V p2,p1h,r (P) → Pr(P) is the solution of the finite-

dimensional variational problem

aPp1(Πp1,P
r vh, q) = aPp1(vh, q) ∀ q ∈ Pr(P), (4.6)

Π̂PDνΠp1,P
r vh = Π̂PDνvh |ν| ≤ p1 − 1. (4.7)

Employing (2.5)–(2.6), in Ref. 10 it is shown that such operator has two impor-

tant properties:

(i) it is polynomial-preserving in the sense that Πp1,P
r q = q for every q ∈ Pr(P);

(ii) the polynomial projection Πp1,P
r vh is computable using only the degrees of free-

dom of vh ∈ V p2,p1h,r (P) that are specified by the dofs-tuple Mp2−1(p1).

It is worth mentioning that the conditions in (4.7) can be replaced, for instance, by∫
∂P

(Πp1,P
r vh − vh)q ds = 0 ∀ q ∈ Pp1−1(P).

This latter equation has the technical advantage of allowing for the application to

(I −Πp1,P
r )|P of Poincaré type inequalities, which can be useful in proving approx-

imation properties of Πp1,P
r in lower order norms.

Remark 4.3. (On the role of di0 in the computability of Πp1,P
r ) We report a simple,

but instructive example to clarify that the computability of Πp1,P
r is related to

the interplay between the parameter p1 (dictating the scalar product employed in

the definition of the elliptic projection) and the degrees of freedom specified by

dofs-tuple Mp2−1(p1).
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For p1 = 1 and p2 = 2, vh ∈ V p2,p1h,r (P) and q ∈ Pr, we have that

aPp1(vh, q) =

∫
P

∇vh · ∇q dx = −
∫
P

vh∆q dx +

∫
∂P

vh∂nq ds.

As ∆q ∈ Pr−2, the first term in the last equality on the right is computable in

view of the choice of the degrees of freedom (D3) with di0 = r − 2p1 = r − 2. The

computability of the second term follows from the fact that the trace of vh on each

edge of P is a polynomial that can be computed explicitly by interpolating the

values in (D1) and (D2).

Now, we introduce the symmetric bilinear form ah : V p2,p1h,r ×V p2,p1h,r → R, which

is written as the sum of local terms

ap1,h(uh, vh) =
∑
P∈Ωh

aPp1,h(uh, vh), (4.8)

where each local term aPp1,h : V p2,p1h,r (P) × V p2,p1h,r (P) → R is a symmetric bilinear

form. We set

aPp1,h(uh, vh) = aPp1(Πp1,P
r uh,Π

p1,P
r vh) + SP(uh −Πp1,P

r uh, vh −Πp1,P
r vh), (4.9)

where the stabilization form SP : V p2,p1h,r (P)×V p2,p1h,r (P)→ R is a symmetric positive

definite bilinear form such that

σ∗a
P
p1(vh, vh) ≤ SP(vh, vh) ≤ σ∗aPp1(vh, vh) ∀ vh ∈ V p2,p1h,r (P) with Πp1,P

r vh = 0,

(4.10)

for two positive constants σ∗, σ
∗ that are independent of h (and P). A possible proof

of the validity of (4.10) for the so-called “dofi–dofi” stabilization in the context of

arbitrarily regular conforming VEM can be found in Ref. 53 (for the case p1 = 2 see

also Refs. 23, 38). The bilinear form ah,P(·, ·) has the two fundamental properties

of r-consistency and stability, cf. (3.2) and (3.3).10

4.5. Discretization of the load term

We set 〈
fh, vh

〉
=
∑
P∈Ωh

∫
P

fhvh dxdy, (4.11)

where, for P ∈ Ωh, fh is defined distinguishing two cases

(a) fh|P = Π0,P
r−2p1

f, if p2 + 2p1 − 1 ≤ r, (4.12)

(b) fh|P = Π0,P
r−p1f, if p2 ≤ r ≤ p2 + 2p1 − 2. (4.13)

Before discussing the two cases (a) and (b) separately, we make the following useful

remark. We note that, if r ≥ 2p1 and we choose fh as the piecewise polynomial

approximation of f on Ωh given by (4.12), the right-hand side of (4.11) is fully com-

putable by using only the degrees of freedom (D3), thus by-passing the enhanced

approach.1
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We next discuss the case (a). We choose fh as in (4.12) and we observe that

r − 2p1 ≥ p2 − 1 (that is r ≥ 3p1 − 1, since p2 ≥ p1). Thus, using the definition of

the L2-orthogonal projection, from (4.11), we find that〈
fh, vh

〉
=
∑
P∈Th

∫
P

Π0,P
r−2p1

f vh dxdy =
∑
P∈Th

∫
P

Π0,P
r−2p1

fΠ0,P
p1−1vh dxdy (4.14)

which, in combination with standard approximation results and recalling that vh ∈
V p2,p1h,r ⊂ Hp1

0 (Ω) ∩Hp2(Ω), yields the following estimate:〈
f − fh, vh

〉
. hr−p1+1|vh|p1 |f |r−2p1+1.

In particular, for p1 = p2 ≥ 2 it is enough to choose r ≥ 3p1 − 1 (the case

p1 = p2 = 2 and r ≥ 5 has been originally treated in Ref. 35).

We next discuss the case (b). We consider (4.11) with fh defined as in (4.13).

We first observe that the computability of (4.11) is ensured by resorting to the local

enhancement space that is defined, with an abuse of notation, as follows

V p2,p1h,r (P) :=

{
vh ∈ Ṽ p2,p1h,r (P) :

∫
P

Πp1,P
r−p1vhq dx =

∫
P

Π0,P
r−p1vhq dx

∀ q ∈ Pr−p1\Pr−2p1(P)

}
,

where we introduced the “extended” virtual element space on element P defined

by Ṽ p2,p1h,r (P) = {vh ∈ Hp2(P) : ∆p2vh ∈ Pr−p1(P), ∂invh ∈ Pr−i(e), i = 0, . . . , p2 −
1 ∀ e ∈ ∂P}. Due to the bound on r, we have r−2p1 ≤ p2−2, and Pr−p1 \Pr−2p1(P)

denotes the space of homogeneous polynomials of degree ` with r − 2p1 + 1 ≤
` ≤ r − p1 defined on P. Similarly to the previous case, using the definition of the

L2-orthogonal projection we find that〈
fh, vh

〉
=
∑
P∈Th

∫
P

Π0,P
r−p1f vh dxdy =

∑
P∈Th

∫
P

Π0,P
r−p1f Π0,P

0 vh dxdy (4.15)

which yields 〈
f − fh, vh

〉
. hr−p1+1|vh|p1 |f |r−p1+1.

We underline that in this paper we have decided to employ the enhancement

approach as it represents a powerful and unifying framework to treat the approxi-

mation of the right-hand side. It is worth mentioning that in the case p2 = p1 = 2

and r − 2p1 ≤ 0 the enhancement approach can be avoided by employing ad-hoc

arguments.35 For arbitrary values of p1 and p2, the use of the enhancement approach

might be avoided using arguments similar to those employed in Ref. 52.

4.6. Error analysis

In this section, we recall some convergence results for the approximation of (2.1). In

particular, employing Theorem 3.1 together with standard approximation results
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(see, e.g. Ref. 20) and the approximation properties of the right-hand side contained

in Sec. 4.5, the following convergence result in the energy norm holds.10

Theorem 4.4. Let u ∈ Hp1
0 (Ω) ∩ Hr+1(Ω) be the solution of the polyharmonic

problem (2.1) and let uh ∈ V p2,p1h,r be the solution of the virtual element method (3.1).

Assume f ∈ Hs(Ω) where s = r−(p1−1) if p2 ≤ r ≤ p2+2p1−2 and s = r−(2p1−1)

if r ≥ p2 + 2p1 − 1. Then, it holds that

||u− uh||v ≤ Chr−(p1−1)
(
|u|r+1 + |f |s

)
. (4.16)

Proof. The assertion follows from the abstract convergence result stated in Theo-

rem 3.1 and estimating each term on the right-hand side of (3.4) separately based

on employing classical interpolation bounds and the approximation properties of

the right-hand side discussed in Sec. 4.5.

We remark that in this paper we focus on error bounds in the energy norm;

convergence estimates in lower-order norms can be established provided that clas-

sical duality arguments can be used and that the polynomial approximation order

r is sufficient large.10,41

5. Numerics

We investigate the behavior of the two-dimensional, highly-regular, conforming vir-

tual element approximations that we introduced in the previous sections when

applied to the numerical resolution of the Poisson (p1 = 1) and biharmonic (p1 = 2)

equations.

According to the notation introduced in Sec. 3, we recall that the finite-

dimensional virtual element space V p2,p1h,r is a subspace of Hp2
0 (Ω). Moreover, the

local Virtual Element space V p2,p1h,r (P), i.e. the restriction of V p2,p1h,r to any element

P ∈ Ωh, is a finite-dimensional subspace of Hp2(P) containing the space of polyno-

mials of degree up to r defined on P.

Throughout the section, the computational domain is the unit square, the load-

ing term f is set up in accordance with the exact solution

u(x, y) = (1− x)2x2 (1− y)2y2,

and the boundary conditions are chosen accordingly.

We consider four different mesh families: quadrilateral meshes QUAD, triangular

meshes TRI, central Voronoi tessellations CVT and hexagonal meshes HEX. An

example of a mesh of each family is shown in Fig. 1; the corresponding number of

elements of the refined meshes is shown in Table 1.

To illustrate the two stabilization strategies that we are going to test in practice,

we rewrite Eq. (4.9) in matrix form, i.e.

AP = MP + SP, (5.1)
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(a) Quadrilateral (QUAD) mesh (b) Triangular (TRI) mesh

(c) CVT (CVT) mesh (d) Exagonal (HEX) mesh

Fig. 1. Examples of polygonal meshes used in the numerical tests of Sec. 5: a quadrilateral

(QUAD), triangular (TRI), central Voronoi CVT, and hexagonal (HEX) mesh.

Table 1. Number of elements of the sequences of
meshes versus the inverse of the mesh sixe h.

1/h 8 16 32 64 128

QUAD 64 256 1024 4096 16,384
TRI 212 870 3486 14,080 56,932

CVT 64 256 1024 4096 16,384

HEX 212 870 3486 14,080 56,932

where AP is the elemental stiffness matrix, MP is the consistency matrix associ-

ated with aPp1(Πp1,P
r uh,Π

p1,P
r vh) and SP is the stabilization matrix associated with

SP(uh −Πp1,P
r uh, vh −Πp1,P

r vh). The matrix SP has the following structure:

SP = αstab

(
I− DQ)TU(I− DQ), (5.2)

where αstab is a scalar factor ensuring that matrices MP and SP have the same scaling

with respect to h and I is the identity matrix. Moreover, in (5.2), Q is the matrix

representation of the polynomial projection operator Πp1,P
r , i.e. the matrix whose
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columns are the coefficients of the projection of the canonical basis functions with

respect to a given polynomial basis of Pr(P); D is the matrix collecting the degrees

of freedom of such polynomial basis on its column; and, finally, U is a suitable

matrix that allows us to change the Virtual Element stabilization. In particular, we

consider the following two possible choices of U given in

• U = I, which is sometimes called in the virtual element jargon the “dofi–dofi

stabilization”;

• U = D⊥ = I− D(DTD)−1DT .

In the second choice above, we use the symbol D⊥ to outline the fact that this

matrix operator is the orthogonal projector onto the complement of the vector space

spanned by the columns of D (so, we can call it the “D-perp stabilization”). Since

D is a maximum rank matrix by definition, the square matrix DTD is a square non-

singular matrix, and thus the matrix U is well-defined. Other possible stabilization

strategies for the VEM can be designed according to Refs. 45 and 56.

In the solution of the Poisson equation ( i.e. p1 = 1, cf. Sec. 5.1) we take

αstab = Trace(MP)/Ndofs, where Ndofs is the number of rows (or columns) of matrix

MP, i.e. the local number of degrees of freedom. In the solution of the biharmonic

equation (i.e. p1 = 2, cf. Sec. 5.2), the factor α must scale as h−2, and the choice is

not unique. To our purpose, we consider three different choices of this parameter,

which we will detail in Sec. 5.2.

In each test case, we compare the condition number of the stiffness matrix and

the accuracy of the resulting approximation by measuring the error in the energy

norm and in the L2-norm (Poisson equation) and in the energy norm and in the

L∞-norm (biharmonic equation). We point out that the experimental estimation

of the condition number of the global stiffness matrix A has been obtained by

exploiting the analogies between the Lanczos technique and the Conjugate Gradient

method. Indeed, within the Conjugate Gradient algorithm we can build a suitable

tridiagonal matrix whose extreme eigenvalues converge to the extreme eigenvalues

of A, see Secs. 9.3 and 10.2 in Ref. 49 for more details. The approximation error

is evaluated by computing eh = u − Πp1
r uh, and its energy norm is provided by(

ap1,h(eh, eh))1/2. Finally, it is informative to say that we carried out all the tests

of this section by using our in-house C++ and MATLAB59 implementations.

5.1. Poisson equation

We recall that, for fixed p2 ≥ p1, k = p2 − 1 denotes the regularity of the global

virtual element space, and that r denotes the degree of the polynomials contained in

each elemental approximation space. We carried out the calculations corresponding

to the two following test cases (TCs):

• TC 1: (k = 0, r = 2), (k = 1, r = 2);

• TC 2: (k = 0, r = 3), (k = 1, r = 3), (k = 2, r = 3).
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Fig. 2. (Color online) Poisson equation, test case TC1. Plots of the error curves versus the mesh

size parameter h for the discretization using the (reduced) virtual element space of Sec. 4.3 with
p1 = 1, p2 = 1, 2, r = 2 on different polygonal mesh families and stabilization terms (ddt and ddm

in the legend refer to U = I and U = D⊥ in (5.2), respectively). The errors are measured using the

energy norm (left) and the L2-norm (right), and are expected to scale proportionally to h2.
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Fig. 3. (Color online) Poisson equation, test case TC2. Plots of the error curves versus the mesh

size parameter h for the discretization using the (reduced) virtual element space of Sec. 4.3 with
p1 = 1, p2 = 1, 2, 3, r = 3 on different polygonal mesh families and stabilization terms (ddt and

ddm in the legend refer to U = I and U = D⊥ in (5.2), respectively). The errors are measured using

the energy norm (left) and the L2-norm (right), and are expected to scale proportionally to h3

and h4, respectively.
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For both test cases, we consider the four different mesh families shown in Fig. 1

and the two possible choices of the stabilizing bilinear form discussed above, i.e.

by choosing U = I and U = D⊥ in (5.2). In every calculation, we measure the

error in the energy norm (H1-norm) and in the L2-norm, and we evaluate the

condition number of the stiffness matrix. The plots of the error curves versus h

(loglog scale) are shown in Figs. 2 and 3. The computed condition numbers are

reported in Tables 2 and 3. We observe that the two different stabilizations seem to

provide comparable results concerning the condition numbers, which is exhibiting

the expected growth O(h−2), although the choice U = D⊥ seems to provide lower

condition numbers for the VEM with higher regularity.

The behavior of the error curves is also very similar for all these variants of

the VEM, the error curves being very closed in almost every plot and overlapping

to the point that they cannot easily be distinguished. Optimal convergence rates

are seen in every plot. We recall that the error in energy norm is expected to

decrease proportionally to hr for h → 0 for all values of the polynomial order

(order of accuracy of the method) r here considered. Instead, the error in the

L2-norm is expected to reduce as h2 for r = 2 and h4 for r = 3, as we do not

Table 2. Poisson equation. Comparison of the com-

puted condition number estimates obtained with the
different stabilization strategies, different regularity

k = 0, 1 and polynomial order r = 2.

C0 −P2 C1 −P2

1/h U = I U = D⊥ U = I U = D⊥

QUAD meshes

8 1.24e+3 4.55e+2 2.38e+3 3.04e+2

16 4.99e+3 1.83e+3 1.04e+4 1.29e+3

32 2.00e+4 7.35e+3 4.31e+4 5.28e+3
64 8.01e+4 2.94e+4 1.75e+5 2.13e+4

128 3.21e+5 1.18e+5 7.05e+5 8.59e+4

TRI meshes

8 9.97e+3 1.37e+3 1.59e+4 1.09e+3

16 4.27e+4 5.97e+3 7.49e+4 5.14e+3

32 1.69e+5 2.37e+4 3.27e+5 1.99e+4
64 6.80e+5 9.45e+4 1.31e+6 8.26e+4

128 2.79e+6 3.89e+5 5.50e+6 3.34e+5

CVT meshes

8 1.53e+3 6.37e+2 1.95e+3 3.69e+2
16 6.32e+3 2.62e+3 8.97e+3 1.51e+3
32 2.70e+4 1.04e+4 3.97e+4 6.22e+3

64 1.02e+5 4.15e+4 1.65e+5 2.47e+4
128 4.14e+5 1.64e+5 6.62e+5 9.82e+4

HEX meshes

8 8.88e+3 2.23e+3 1.10e+4 1.26e+3

16 4.08e+4 9.72e+3 5.44e+4 3.70e+3
32 2.22e+5 3.88e+4 2.42e+5 2.21e+4

64 8.79e+5 1.64e+5 1.23e+6 9.02e+4
128 5.57e+6 6.65e+5 5.01e+6 3.73e+5
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Table 3. Poisson equation. Comparison of the condition number estimates

obtained with the different stabilization strategies, different regularity k = 0, 1, 2
and polynomial order r = 3. The acronym “n.a.” stands for “not available” since

the resulting stiffness matrix was too badly-conditioned to estimate the condition
number.

C0 −P3 C1 −P3 C2 −P3

1/h U = I U = D⊥ U = I U = D⊥ U = I U = D⊥

QUAD meshes

8 3.74e+4 1.32e+6 7.67e+6 6.70e+3 8.41e+6 3.25e+3

16 1.49e+5 5.26e+6 2.90e+7 2.50e+4 5.52e+7 1.98e+4

32 5.96e+5 2.10e+7 1.16e+8 9.92e+4 2.50e+8 8.93e+4
64 2.38e+6 8.41e+7 4.66e+8 3.97e+5 1.05e+9 3.72e+5

128 9.53e+6 3.36e+8 1.87e+9 1.59e+6 4.30e+9 1.52e+6

TRI meshes

8 4.88e+5 1.26e+8 2.74e+9 1.72e+5 5.91e+9 1.05e+5

16 2.43e+6 6.87e+8 1.56e+10 8.01e+5 5.39e+10 6.53e+5
32 1.15e+7 3.73e+9 9.67e+10 3.75e+6 3.60e+11 3.74e+6

64 4.14e+7 1.25e+10 n.a. 1.35e+7 n.a. 1.27e+7

128 2.15e+8 7.39e+10 n.a. 6.82e+7 n.a. 6.82e+7

CVT meshes

8 8.79e+4 4.98e+6 3.31e+7 2.14e+4 3.83e+7 1.34e+4

16 3.91e+5 2.22e+7 1.95e+8 1.05e+5 2.91e+8 8.55e+4
32 1.56e+6 8.23e+7 8.29e+8 3.65e+5 1.50e+9 3.27e+5

64 8.03e+6 3.45e+8 7.62e+9 2.20e+6 1.51e+10 2.08e+6

128 2.69e+7 n.a. n.a. 7.85e+6 5.00e+10 7.55e+6

HEX meshes

8 8.94e+5 1.87e+8 3.07e+8 1.24e+5 9.13e+8 9.65e+4
16 4.82e+6 1.50e+9 1.80e+9 6.50e+5 6.37e+9 5.75e+5

32 2.56e+7 8.47e+9 1.87e+10 3.55e+6 1.65e+10 3.33e+6

64 8.98e+7 1.99e+10 8.91e+10 1.57e+7 2.58e+11 1.51e+7
128 n.a. 1.05e+11 3.24e+11 5.67e+7 n.a. 5.53e+7

adopted the modified, e.g. “enhanced”, version of the VEM,1 which makes a better

approximation to the solution possible for the low order case r = 2. This loss of

an order of convergence is a well-known phenomenon and has been discussed in a

previous paper.26

Table 4. Biharmonic equation, QUAD meshes. Comparison of
the condition numbers obtained with the different stabilization
strategies.

αstab = Trace(MP)/3 αstab = 1/|P|
1/h Ndofs U = I U = D⊥ U = I U = D⊥

8 243 5.77e+2 1.93e+2 3.41e+2 2.08e+3

16 867 7.68e+3 2.47e+3 3.96e+3 2.28e+3

32 3267 1.15e+5 3.65e+4 5.50e+4 3.09e+4
64 12,675 1.81e+6 5.72e+5 8.42e+5 4.69e+5

128 49,923 2.88e+7 9.11e+6 1.33e+7 7.40e+6
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Fig. 4. (Color online) Biharmonic equation. Plots of the error curves versus the mesh size h on

different polygonal mesh families and stabilization terms. (ddm and ddt in the legend refer to U = I
and U = D⊥ in (5.2), respectively) The errors are measured using the H2-norm (left panels) and
the L∞-norm (right panel), and are expected to scale proportionally to h and h2 , respectively.
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5.2. Biharmonic equation

In this section, we solve the two-dimensional biharmonic equation using the con-

forming C1 virtual element approximation corresponding to the parameters choice

p2 = p1 = r = 2. We consider the two stabilization strategies for U = I and U = D⊥

and the three possible choices of the parameter αstab that are given by

• αstab = Trace(MP)/3;

• αstab = 1/|P|;
• αstab = 1/h2.

In Table 4 and Fig. 4 (first row from top), we report the computed condi-

tion number estimates and the error curves for the family of quadrilateral meshes

(QUAD). Note that |P| = h2, so the stabilizations for these two corresponding

choices of αstab coincide and only one set of results is shown. All the stabilizations

considered seem comparable in terms of the condition number of the resulting lin-

ear system of equations, exhibiting the expected growth O(h−4). Also they seem

comparable in terms of accuracy, since the convergence rate is the same (1 for

the H2 norm and 2 for the L∞ norm). However, the stabilization with U = I and

αstab = Trace(MP)/3 yields the best accuracy.

In Table 5 and Fig. 4 (second row), we report the results obtained on triangu-

lar meshes (TRI). Again all stabilizations considered exhibit the same behavior in

terms of condition number growth and convergence rate, when refining the mesh.

Differently from the case of quadrilateral meshes, the best accuracy is obtained

using the stabilization with U = I and αstab = 1/h2. Tables 6, 7 and Fig. 4 (third

and fourth rows) report then the results obtained on CVT and HEX meshes. In these

Table 5. Biharmonic equation, TRI meshes. Comparison of the condition number esti-
mates obtained with the different stabilization strategies.

αstab = Trace(MP)/3 αstab = 1/|P| αstab = 1/h2

1/h Ndofs U = I U = D⊥ U = I U = D⊥ U = I U = D⊥

8 369 2.34e+3 6.43e+2 1.46e+3 5.50e+2 9.68e+2 4.96e+2
16 1404 5.27e+4 1.31e+4 3.16e+4 1.08e+4 1.90e+4 9.52e+3

32 5424 9.46e+5 2.01e+5 5.96e+5 1.71e+5 3.10e+5 1.48e+5

64 21,507 1.39e+7 3.35e+6 8.76e+6 2.75e+6 4.92e+6 2.40e+6
128 86,169 3.30e+8 6.42e+7 2.17e+8 5.53e+7 9.97e+7 4.70e+7

Table 6. Biharmonic equation, CVT meshes. Comparison of the condition number esti-

mates obtained with the different stabilization strategies.

αstab = Trace(MP)/3 αstab = 1/|P| αstab = 1/h2

1/h Ndofs U = I U = D⊥ U = I U = D⊥ U = I U = D⊥

8 474 6.42e+2 1.95e+2 3.22e+2 1.87e+2 3.40e+2 1.75e+2

16 1704 8.66e+3 2.82e+3 4.32e+3 2.09e+3 3.97e+3 2.11e+3
32 6438 1.55e+5 4.14e+4 6.77e+4 2.99e+4 6.52e+4 3.05e+4

64 24,921 2.90e+6 6.70e+5 1.06e+6 4.98e+5 9.74e+5 4.52e+5
128 98,724 4.53e+7 1.14e+7 1.99e+7 8.43e+6 1.56e+7 8.00e+6
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Table 7. Biharmonic equation, HEX meshes. Comparison of the condition number esti-

mates obtained with the different stabilization strategies.

αstab = Trace(MP)/3 αstab = 1/|P| αstab = 1/h2

1/h Ndofs U = I U = D⊥ U = I U = D⊥ U = I U = D⊥

8 1371 1.33e+4 2.68e+3 6.70e+3 2.20e+3 4.51e+3 1.99e+3

16 5415 3.52e+5 5.57e+4 1.94e+5 4.50e+4 8.87e+4 3.80e+4
32 21303 5.46e+6 8.81e+5 2.82e+6 7.07e+5 1.35e+6 5.89e+5

64 85,251 7.79e+7 1.44e+7 4.30e+7 1.09e+7 2.52e+7 9.58e+6

128 343,131 1.04e+9 2.62e+8 8.72e+8 2.20e+8 4.26e+8 1.83e+8

two cases, the performance of stabilization terms is analogous to the one observed

on quadrilateral meshes, since the best accuracy is achieved by the stabilization

with U = I and αstab = Trace(MP)/3.

6. Conclusion

We reviewed the construction of highly regular virtual element approximations for

polyharmonic problems in two spatial dimensions, recalling the main theoretical

convergence results available in the literature. Moreover, we performed a set of new

two-dimensional numerical tests to investigate how different stabilizations in the

formulation of the VEM affect the solver performance in terms of condition number

of the resulting linear system and accuracy of the approximation schemes. For the

discretization of the Poisson equation, our numerical results show that the choice of

the stabilization has an almost negligible effect on condition numbers and accuracy.

On the other hand, the numerical results that we obtained for the biharmonic

equation shows that the choice of the stabilization may affect significantly the

accuracy of approximation. This effect may be even more pronounced for p1 > 2

and requires further investigation. The best overall performance in our tests is

provided by the so-called dofi–dofi stabilization. On the basis of the results obtained

regarding the conditioning of the highly regular VEM matrices, we also believe that

it is worth of future investigations the development of effective preconditioners for

VEM approximations of high-order elliptic equations.
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