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ABSTRACT: 

Assessing crops health and status is becoming relevant to support farmers’ decisions and actions for a sustainable agriculture. The 

use of remote sensing techniques in agriculture has become widely popular during the past years. Earth Observing (EO) data can 

greatly contribute to constantly monitor crops phenology and to estimate important vegetation biophysical parameters. 

This work presents a hybrid approach, which exploits the PROSAIL-PRO model and Machine Learning (ML) algorithms, to 

estimate maize biophysical variables, such as Canopy Chlorophyll Content (CCC) and Leaf Area Index (LAI). The test site is 

represented by two maize fields located near Grosseto (Tuscany, IT), where two field campaigns were carried out in July 2018. 

During the same period, the airborne sensor Hyplant-DUAL acquired two images of the test site. These images were used to simulate 

PRISMA and Sentinel-2 data in order to investigate the difference of the retrieval performance between hyperspectral and 

multispectral EO data. Results show similar performance between Sentinel-2 and PRISMA. The ML algorithms, providing the best 

performance (GPR and NN) within the hybrid framework, were then applied to actual Sentinel-2 images. The retrieval results for 

LAI and CCC were compared to estimations assessed through the ESA S2Toolbox. The comparison showed that the proposed 

method provides better results than those achieved through S2Toolbox, for both LAI (R2 = 0.85 and MAE = 0.39; S2Toolbox: R2 = 

0.35 and MAE = 0.87) and CCC (R2 = 0.73 and MAE = 0.20; S2Toolbox: R2 = 0.29 and MAE = 0.68). 

* Corresponding author

1. INTRODUCTION

Agricultural practices can lead to different environmental 

threats, such as water consumption, biodiversity loss, 

pollutants’ leaching and emissions. The assessment of crops 

health and status can support farmers’ decisions and actions for 

a sustainable agriculture. This is the context where precision 

farming becomes relevant. 

Precision farming is a management strategy used to “apply the 

right treatment in the right place at the right time” (Gebbers & 

Adamchuk, 2010). It is an important component of smart 

farming, which aims at an information-driven optimization of 

all aspects of a farming system (Bach et al., 2016). 

Precision farming thus holds the potential for increasing yields 

on limited land while saving resources and preventing 

environmental pollution (Plant et al., 2000). 

In this context, assessing vegetation status and health through 

Earth Observation (EO) data become relevant for the 

determination of some important biophysical vegetation 

variables (BVs). 

Different methods can be found in literature for BVs retrieval 

such as parametric and nonparametric, linear and nonlinear 

regression methods, as well as physically-based methods using 

radiative transfer models (RTMs) and, more recently, hybrid 

approaches.  

During the last decades, simple empirical parametric models 

were employed for the retrieval of biophysical parameters by 

using narrowband vegetation indices. Since few regions of the 

electromagnetic spectrum are exploited by using vegetation 

indices, a limitation in the retrieval of specific vegetation 

parameters may arise.  

To overcome this situation, nonparametric methods could be 

employed. In general, nonparametric methods seek to best fit 

the training data, whilst maintaining some ability to generalize 

the unseen data. Nonlinear nonparametric methods are also 

known as machine learning regression algorithms (MLRAs). 

Physically-based methods represent an alternative to the 

regression methods. They use RTMs for simulating the 

reflectance of vegetation measured by an EO sensor. 

Hybrid methods are increasingly used in literature (Berger, 

Verrelst, Féret, Hank, et al., 2020; Berger, Verrelst, Féret, 

Wang, et al., 2020; Verrelst et al., 2020). In this approach, 

RTM are used in combination with MLRAs. Thus, hybrid 

methods have the transferability guaranteed by the use of a 

physically-based method and the computationally efficiency and 

flexibility provided by the regression method. 

The goal of this work is the evaluation of a hybrid approach for 

the estimation of BVs, such as Canopy Chlorophyll Content 

(CCC) and Leaf Area Index (LAI) of maize crops, from

hyperspectral and multispectral sensors.

In particular, this study tested the most recent version of

PROSAIL (PROSAIL-PRO, Féret et al., 2020) and several

MLRAs. The PROSAIL-PRO model was used to generate a

database with hundreds of simulated vegetation reflectance

spectra (Look Up Table - LUT). This database was then used to

train different combinations of ML algorithms and feature

selection configurations to estimate crop BVs. The best

performing combinations were then applied to actual Sentinel-2
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data. The best results obtained from the hybrid approach were 

then compared to LAI and CCC estimated from S2Toolbox. 

2. MATERIAL AND METHODS

The following sections describe the study area, field 

measurements, EO dataset and the steps involved in the hybrid 

approach for the BV retrieval. 

2.1 Study area and fields measurements 

The study area is located in Tuscany (42°49′47.02″ N 

11°04′10.27″ E; elev. 2 m a.m.s.l.), central Italy, North of 

Grosseto and 20 km away from the coastline.  

Within the study area, two maize crops, from two different 

farms, Le Rogaie (around 76 ha) and Ceccarelli (around 33 ha), 

were selected as test sites. These two fields feature different 

irrigation systems and different sowing dates. 

During June and July 2018, two field campaigns were carried 

out on the two fields, in order to collect a comprehensive 

dataset of biochemical and biophysical parameters. In particular 

LAI was measured with a LAI-2200 (LI-COR Biosciences, 

USA) and Leaf Chlorophyll Content (LCC) was measured with 

SPAD (Konica Minolta, Japan) and DUALEX (Force-A, 

France). CCC was calculated as LAI * LCC. The field activities 

included CAL/VAL radiometric measurements performed with 

spectroradiometer SPECTRAL EVOLUTION SR-3500 

(https://spectralevolution.com/products/hardware/compact-lab-

spectroradiometers/sr-3500/) and vegetation measurements and 

sampling. 33 Elemental Sampling Units (ESU) of almost 20x20 

m were identified for the field campaign. Each ESU includes up 

to 4 plots of 10x10 m, for a total of 87 plots. 

2.2 Airborne and spaceborne EO dataset 

The study area was acquired by the HyPlant-DUAL 

hyperspectral airborne sensor on 7th and 30th July 2018. 

HyPlant-DUAL dataset was spectrally resampled at PRISMA 

(PRISMA-like) and Sentinel-2 (S2-like) wavelengths. 

PRISMA-like spectra were compared to radiometric field 

measurements in order to remove noisy bands presenting a 

mean absolute error greater than 5%: the final spectral 

configuration includes 155 bands. In the case of both S2 

datasets (actual and simulated form HyPlant-DUAL), B1, B2, 

B9, B10 were removed to be consistent with ESA S2Toolbox 

(Weiss & Baret, 2016), while B8a was removed by Sen2R 

(Ranghetti et al., 2020). Therefore, the final spectral 

configuration for S2-like dataset includes 8 bands: B3, B4, B5, 

B6, B7, B8, B11, B12. 

In addition, actual Sentinel-2 images were also available on the 

area of interest. The Sentinel-2 images acquired on 8th July and 

2nd August 2018 (the S2 images closest to the field campaign) 

were then downloaded with Sen2R (Ranghetti et al., 2020). 

Table 1 resumes the EO dataset used in this study. 

Dataset Acquisition date 

PRISMA-like 07/07/2018 

S2-like 07/07/2018 

Sentinel-2 08/07/2018 

PRISMA-like 30/07/2018 

S2-like 30/07/2018 

Sentinel-2 02/08/2018 

Table 1. Airborne and spaceborne EO datasets. 

2.3 Hybrid approach 

2.3.1 PROSAIL-PRO: The RTM tested in the hybrid 

approach proposed in this work is PROSAIL-PRO. It combines 

two RTMs: the leaf PROSPECT-PRO model and the canopy 

4SAIL model. Starting from structural and biophysical 

parameters as inputs, PROSPECT-PRO simulates reflectance at 

the leaf level from 400 nm to 2500 nm. The outputs of the 

PROSPECT-PRO are used by the 4SAIL, together with other 

variables, such as plant structural parameters, viewing angles 

and soil background to simulate the vegetation reflectance at 

canopy level.  

2.3.2 Development of the training LUT: The PROSAIL-

PRO was used to simulate canopy reflectances based on the 

combination of different input, characterizing the crop, the soil 

and the sun-sensor geometry. 

Assumptions on the distribution of the above input variables 

needs to be done. Each PROSAIL-PRO input was modelled 

according to Normal or Uniform distributions. For each 

variable, the ranges of these distributions (mean and standard 

deviation for Normal distribution; min and max values for 

Uniform distribution) were set according to both field 

measurements and literature (Weiss & Baret, 2016), in the case 

measurements were not available. 

Those inputs were then randomly sampled according to their 

distribution and used to simulate, through the PROSAIL-PRO, 

canopy reflectances of maize crops in the range 400–2500 nm 

with a spectral resolution of 1 nm. These reflectances were then 

resampled at the selected PRISMA (155 bands) and Sentinel-2 

(8 bands) wavelengths. The final training database includes 

both input variables and PRISMA-like or S2-like reflectance 

spectra. 

A Gaussian white noise of 5% was also added to inputs and 

canopy reflectances, in order to get more realistic data. 

2.3.3 MLRA training phase: The training phase was 

performed using different ML regression algorithms for the 

retrieval of LAI and CCC. The algorithms used in this study 

include Partial Least Square Regression (PLSR), Gaussian 

Process Regression (GPR), Support Vector Regression (SVR), 

Artificial Neural Networks (ANN) and Random Forests (RF).  

2.3.4 Validation phase and maps generation: The trained 

models were then applied to the datasets reported in Table 1. 

The 87 field measurements of BVs carried out in the two maize 

fields in Grosseto were used to validate the hybrid models, 

comparing measured and estimated BVs values. 

Moreover, for Sentinel-2 images, the best retrieval results for 

LAI and CCC, from the above-mentioned algorithms, were 

compared to the estimates from ESA S2Toolbox (Weiss & 

Baret, 2016). Due to the different spatial resolution between 

HyPlant-DUAL and actual Sentinel-2 images, the validation 

statistics were computed by averaging the BV values belonging 

to the same ESU. 

Finally, the best performing algorithms were applied to the 

datasets (PRISMA-like, S2-like and actual S2) to generate maps 

of LAI and CCC over the investigated maize crops. 

The training, validation and generation of maps were performed 

using ARTMO (Verrelst et al., 2011). 

3. RESULTS AND DISCUSSION

This section shows the results of the influence of LUT size, as 

well as the results of LAI and CCC estimations from the 

proposed hybrid approach and the S2Toolbox. 
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3.1 Impact of LUT size on retrieval performance 

The impact of the database size on the retrieval performance 

was investigated for all the BVs. Several LUTs ranging from 

1000 to 9000 samples, with a 1000 samples step, were 

generated in the S2-like configuration. These LUTs were then 

used to train retrieval models for LAI and CCC and were 

validated against field measurements. 

Figure 1 shows, as example, the impact of the training database 

size on the accuracy and training time of the selected models for 

CCC. The increase in the size of the training dataset leads to a

minor improvement in the model statistics. On the other hand,

the training time rises significantly, in particular for GPR. A

similar pattern was verified also for LAI. Therefore, a LUT of

2000 samples was considered a good trade-off between

accuracy and time.

Figure 1. Impact of the training database size on the models’ 

accuracy (R2) and training time for CCC. 

3.2 Hyperspectral vs multispectral BVs retrieval 

The comparison of the best results for CCC and LAI estimated 

from PRISMA-like and S2-like dataset are resumed in Figure 2.  

Figure 2. Comparison of CCC (top) and LAI (bottom) 

estimation from PRISMA-like (left) and S2-like (right) dataset 

using the hybrid approach (GPR and NN). 

In general, retrieval results for CCC and LAI show very good 

performances for both PRISMA-like and S2-like dataset. For 

both BVs, S2-like achieved slightly better performance than 

PRISMA-like, in terms of MAE (CCC: 0.23 for S2 and 0.32 for 

PRISMA; LAI: 0.41 for S2 and 0.52 for PRISMA). Even if 

PRISMA provided a better correlation coefficient (R2 = 0.77) 

than S2 (R2 = 0.76) for CCC, there is an overestimation of this 

BV of 20%. Moreover, it is worth noting that PRISMA-like 

gives better estimates than S2-like at high values, highlighting a 

saturation effect for S2-like. 

Among the tested ML algorithms GPR provided the best results 

for CCC and LAI retrieved from PRISMA-like. Whereas NN 

performed better for LAI estimated from S2-like. 

3.3 Hybrid vs S2Toolbox BVs retrieval 

The best performing algorithms, for the retrieval of CCC and 

LAI from S2-like, were applied to the actual Sentinel-2 images, 

acquired on 8th July and 2nd August 2018. S2Toolbox was 

applied to the same dataset to assess both BVs.  

Figure 3. Comparison of  CCC (top) and LAI (bottom) 

estimations from Sentinel-2 data using hybrid approach (left) 

and S2Toolbox (right). 

Retrieval results, using the hybrid approach and S2Toolbox, are 

resumed in Figure 3. Considering the hybrid approach, from the 

scatterplots in Figure 2 and Figure 3, it is clear how the retrieval 

performed on real data leads to a general underestimation of the 

BVs: specifically, the angular coefficient of the regression line 

is generally lower than the slope for S2-like retrieval. This 

worsens the saturation effect observed in S2-like data. However, 

despite this issue, the hybrid approach provides good results for 

both CCC (R2 = 0.73, MAE = 0.20) and LAI (R2 = 0.85, MAE 

= 0.39). 

Regarding ESA S2Toolbox, the estimations show much lower 

accuracy for both CCC (R2 = 0.30, MAE = 0.68) and LAI (R2 = 

0.35, MAE = 0.87). These poor results could be explained 

considering that the NN algorithm in the S2Toolbox was trained 

with a comprehensive LUT which should be representative of 

the main vegetation types around the globe. While this global 

training data may be suitable for modelling the average 

vegetation status, they might not represent the status of specific 

areas.  Thus, fine-tuned ad-hoc models, such as those proposed 

in this work, can lead to significantly better estimates. 
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Figure 4. Comparison of CCC maps estimated from Sentinel-2 

image acquired on 2nd August 2018 using the hybrid approach 

(left) and S2Toolbox (right). 

Figure 4 shows the comparison of CCC maps estimated from 

Sentinel-2 image acquired on 2nd August 2018 using the hybrid 

approach (left) and S2Toolbox (right). As it was expected from 

the scatterplot, the map estimated from S2Toolbox presents 

many more saturated pixels especially for high CCC values. 

4. CONCLUSIONS

This work proposed a hybrid method, which combines the 

radiative transfer model PROSAIL-PRO and several ML 

regression algorithms (PLSR, GPR, SVR, ANN and RF), for 

the estimation of CCC and LAI. The exploited EO dataset, 

acquired from both airborne and spaceborne sensors, includes 

both hyperspectral (PRISMA-like) and multispectral data 

(simulated and actual Sentinel-2 data). 

The analysis on the impact of LUT size on retrieval 

performance showed that increments in LUT size have a minor 

impact on retrieval accuracy. On the other hand, an increase in 

the training time was observed, especially for GPR. For this 

reason, a LUT of 2000 samples was considered a good trade-off 

between accuracy and time. 

The comparison between hyperspectral and multispectral data 

(simulated from the airborne imager HyPlant-DUAL) for the 

retrieval of CCC and LAI showed very good performances for 

PRISMA-like and S2-like dataset. For both BVs, S2-like 

achieved slightly better performance than PRISMA-like, even 

though S2-like estimates showed a saturation effect visible at 

high CCC and LAI values. 

The best performing algorithms for S2-like were applied to 

actual Sentinel-2 data and compared to the results obtained 

using ESA S2Toolbox. The validation of these two approaches 

showed that the proposed hybrid method provides better 

estimates than S2Toolbox for both CCC and LAI, highlighting 

the need for specific algorithms tuned for specific areas. 
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