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Abstract

Introduction

Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology, their

neural underpinnings are still under investigation. Here, structural Magnetic Resonance

Imaging (MRI) data collected from a large sample of BD and SCZ patients and healthy con-

trols (HC) were analyzed in terms of gray matter volume (GMV) using both voxel based mor-

phometry (VBM) and a region of interest (ROI) approach.

Methods

The analysis was conducted on two datasets, Dataset1 (802 subjects: 243 SCZ, 176 BD,

383 HC) and Dataset2, a homogeneous subset of Dataset1 (301 subjects: 107 HC, 85 BD

and 109 SCZ). General Linear Model analyses were performed 1) at the voxel-level in the

whole brain (VBM study), 2) at the regional level in the anatomical regions emerged from the
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VBM study (ROI study). The GMV comparison across groups was integrated with the analy-

sis of GMV correlates of different clinical dimensions.

Results

The VBM results of Dataset1 showed 1) in BD compared to HC, GMV deficits in right cingu-

late, superior temporal and calcarine cortices, 2) in SCZ compared to HC, GMV deficits in

widespread cortical and subcortical areas, 3) in SCZ compared to BD, GMV deficits in insula

and thalamus (p<0.05, cluster family wise error corrected). The regions showing GMV defi-

cits in the BD group were mostly included in the SCZ ones. The ROI analyses confirmed the

VBM results at the regional level in most of the clusters from the SCZ vs. HC comparison

(p<0.05, Bonferroni corrected). The VBM and ROI analyses of Dataset2 provided further

evidence for the enhanced GMV deficits characterizing SCZ. Based on the clinical-neuroan-

atomical analyses, we cannot exclude possible confounding effects due to 1) age of onset

and medication in BD patients, 2) symptoms severity in SCZ patients.

Conclusion

Our study reported both shared and specific neuroanatomical characteristics between the

two disorders, suggesting more severe and generalized GMV deficits in SCZ, with a specific

role for insula and thalamus.

1. Introduction

The neurobiological relationship between schizophrenia (SCZ) and bipolar disorder (BD) has

been the subject of many debates but is still largely unknown [1–3]. Currently, the dimensional

approach for diagnosing mental disorders has revitalized the question of shared characteriza-

tion of SCZ and BD in a dimensional continuum view, as opposed to a categorical dichoto-

mous vision. This has been supported by the neurobiological research that has shown that SCZ

and BD exhibit shared genetic [4, 5] and neurocognitive determinants [6], besides clinical fea-

tures [7]. The investigation of the neuroanatomical characteristics of the two disorders can

therefore help to further delineate their common and different pathophysiological bases, open-

ing the door to the development of tailored instruments with higher diagnostic specificity.

Meta-analyses of Magnetic Resonance Imaging (MRI) studies showed that both SCZ and

BD are characterized by a global brain volume reduction, as well as by ventricular enlargement

compared to healthy controls (HC) [1, 8, 9]. Voxel-Based Morphometry (VBM) meta-analyses

reported gray matter volume (GMV) deficits in insula, thalamus, cingulate cortex, medial fron-

tal gyrus, middle and superior temporal gyri in SCZ [8, 10], and in anterior cingulate cortex,

inferior frontal gyrus, insula, middle and superior temporal gyri and pole and claustrum in BD

[8, 11]. These studies suggest overlapping areas of GMV reduction among the two disorders,

but also provide evidence for the larger extent of the deficits in SCZ than in BD [2, 8]. Con-

versely, only a minority of MRI studies directly compared BD and SCZ [3, 12–16]. A recent

review on voxel-based comparisons between SCZ and BD found consistent evidence of GM

deficits in SCZ compared to BD [17]. Region-based studies on SCZ vs. BD found in BD

increased volume in the right amygdala and decreased volume in the bilateral ventricles com-

pared to SCZ [1].
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However, the meta-analyses that provided evidence for anatomical brain differences in

patients with SCZ and BD were limited by the heterogeneity of the primary studies in terms of

1) clinical sample, 2) applied MR methodology and 3) post-processing techniques.

To provide robust information on the neuroanatomical correlates of SCZ and BD, the pres-

ent work performs voxel-based and region-based analyses on a large dataset of 802 MR images

recorded from HC, SCZ and BD patients across four European Research Centers, 1) the Jena

University Hospital (Jena, Germany) (JUH), 2) the University Hospital Marqués de Valdecilla

(Santander, Spain) (UHMV), 3) the Scientific Institute and University Vita-Salute San Raffaele

(Milan, Italy) (UVSSR), 4) the University Hospital of Verona, (Verona, Italy) (VUH). These

Centers, together with the University of Milan, Milan (Italy) (UNIMI), promote the European

Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT), whose pur-

pose is to share and integrate clinical, demographic and neuroimaging data on BD and SCZ

patients, as well as HC, in order to identify large-scale neuroanatomical similarities and differ-

ences associated with the two disorders. To our knowledge, this is one of the first studies com-

paring such a large sample of SCZ, BD and HC subjects in terms of GMV through voxel-based

and region-based approaches.

2. Materials and methods

2.1. Subjects

Eight hundred and thirty-one subjects, 259 SCZ patients, 187 BD patients and 385 HC, were

recruited across the four Centers. Preliminarily to the MRI acquisition, they signed a written

informed consent to the protocol, in accordance with the Declaration of Helsinki and

approved by the local ethical committee guidelines. After a quality check procedure, 802 sub-

jects were selected for the analysis.

2.1.1. Recruitment. In each Center, the diagnoses of BD and SCZ were assessed using the

Structured Clinical Interview for Axis-I DSM Disorders (SCID) [18] and confirmed by the

clinical consensus of an expert psychiatrist. In most of the cases, SCZ patients were scored

using the Brief Psychiatric Rating Scale (BPRS), which was combined with the Positive and

Negative Syndrome Scale (PANSS) (in Milan and Verona) or the Scales for Assessment of Pos-

itive/Negative symptoms (SANS/SAPS) (in Jena and Santander). In the majority of BD

patients, depressive and manic symptoms were investigated using the Hamilton Rating Scale

for Depression (HRSD) [19] and the Young Mania Rating Scale (YMRS) [20]. HC were

recruited within the local communities of Jena, Milan, Santander and Verona through flyers

and word of mouth. Subjects with personal or family history of psychiatric illnesses, personal

history of substance or alcohol abuse, mental retardation or neurological disorders were

excluded from the study.

2.2. MRI data acquisition

Structural T1-weighted images were recorded in the four Centers using 3.0 Tesla MRI scan-

ners with the following parameters. JUH: Magnetization Prepared Rapid Gradient Echo

(MPRAGE) sequence (matrix 256x256x192, 1 mm3 voxel), Siemens Tim Trio scanner (Sie-

mens, Erlangen, Germany). UVSSR: MPRAGE sequence (matrix 256x256x220, 0.9x0.9x0.8

mm3 voxel), Philips Gyroscan Intera MR scanner (Philips, Best, the Netherlands). UHMV:

T1-Fast Field Echo sequence (matrix 256x256x160, 0.94x0.94x1 mm3 voxel), Philips Intera

scanner (Philips, Best, the Netherlands). VUH: MPRAGE sequence (matrix 256x256x160, 1

mm3 voxel), Magnetom Allegra Syngo scanner (Siemens, Erlangen, Germany).

Neuroanatomy of schizophrenia and bipolar disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0188000 November 14, 2017 3 / 22

https://doi.org/10.1371/journal.pone.0188000


2.3. MRI data processing

2.3.1. Pre-processing. In a first quality check, the images affected by important inhomo-

geneity or movement artefacts were discarded. The images were then subjected to a non-

parametric non-uniform intensity normalization (N3) using Freesurfer (http://surfer.nmr.

mgh.harvard.edu) [21]. This preliminary step was specifically added to remove non-unifor-

mity artifacts and homogenize the image intensities across sites. The bias-corrected images

were exported to Matlab R2014A (The Mathworks, Inc1) for the following analyses. The

image pre-processing was carried out using Statistical Parametric Mapping (SPM), version 12

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), and its VBM8 toolbox (http://www.

neuro.uni-jena.de/vbm/download/). The images were segmented using SPM12 segmentation,

which performs bias regularization and classifies the images into gray matter (GM), white mat-

ter (WM), cerebrospinal fluid, bone, soft tissue and air/background. In this procedure, the GM

and WM images of the subjects were also rigidly aligned via an affine transformation. The Dar-

tel (Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra) tools were

then used to determine the nonlinear deformations for registering the GM and WM images of

all subjects. Finally, the registered images were normalized to MNI space and smoothed with a

6 mm Full Width Half Maximum (FWHM) Gaussian kernel. A final quality check on the pre-

processed images based on 1) visual inspection and 2) covariance homogeneity was performed

using VBM8 modules: the images with an overall covariance below two standard deviations

were discarded from the analysis. The VBM and ROI analyses (2.3.2 and 2.3.3 sections) were

applied to both datasets. The results on Dataset2 are described in a Supplementary section, S1

Results.

2.3.2. VBM comparison across diagnostic groups. The VBM analysis was performed on

the pre-processed GM images using SPM12. The VBM analysis of each dataset was performed

using a full-factorial General Linear Model (GLM) design with two factors, the diagnosis factor

with 3 levels (SCZ, BD and HC) and the scanning site factor with four levels (Jena, Milan, San-

tander, Verona). While the diagnosis represented the factor of interest, the center factor was

included with the purpose to discard its contribution. The measurements were assumed to be

independent and with unequal variance between levels. Age and gender were included as

covariates, both interacting with the factor diagnosis. The volumetric differences among sub-

jects were considered by proportional scaling for the total intracranial volume (ICV). A GM

mask with optimal threshold for GMV was created using the masking toolbox (http://www0.

cs.ucl.ac.uk/staff/g.ridgway/masking/) and used in the GLM analysis. Inference on the GMV

differences between groups was made using double-sided t-tests (p<0.05, cFWE corrected). A

conjunction analysis was performed to extract the GMV reductions common to SCZ and BD.

A direct SCZ-BD comparison was also conducted.

2.3.3. ROI comparison across diagnostic groups. The ROI analysis was performed on

the anatomical regions containing the significant VBM clusters (p<0.05, cFWE corrected),

with the main objective to verify whether the local GMV differences emerged from the VBM

comparison were still significant at the global level in the corresponding anatomical regions.

The anatomical location of the VBM clusters resulting from the pairwise t-contrasts (para-

graph 2.3.2) was identified using the Automated Anatomical Labeling (AAL) atlas [22]. The

volume of the selected AAL regions was estimated by summing up the GMV of the voxels

within the entire anatomical region. In the GLM analyses, performed using in-house Matlab

scripts, the AAL regional volume was modeled in terms of diagnosis, scanning site, age, gender

and ICV. The differences between groups were investigated using double-sided t-tests. To

limit the false positive rates, a very conservative multiple comparison correction was applied
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by using the Bonferroni method with N = 116, corresponding to the number of regions within

the AAL atlas. The significance threshold was set to p = 0.05, Bonferroni corrected.

2.3.4. Clinical-neuroanatomical correlations. In the patient groups, we investigated the

possible effects of clinical variables on GMV. All the clinical variables were analyzed in sepa-

rate designs, including case by case the subsets of patients having the information of interest.

More details on scores and availability of clinical information can be found in Table 1.

In the BD sample, we analyzed the contribution of HRSD, BD type, psychotic features and

therapy based on benzodiazepines, antipsychotics and mood stabilizers. In the SCZ sample, we

investigated the contribution of BPRS, PANSS, SAPS, SANS, duration of untreated illness and

therapy with benzodiazepines. Since SAPS/SANS scores were not uniformly distributed

between Jena and Santander, their effects were studied in one center at a time. The possible

impact of age of onset on GMV was separately investigated in the two groups of patients.

The contribution of each clinical parameter on GMV was evaluated first at the voxel level,

using VBM, and then at the regional level, considering the significant AAL regions/clinical

variables from the VBM study. The ROI study was performed to verify the significance of the

clinical-neuroanatomical relation at the regional level.

In the VBM GLM analyses, the GMV of each voxel was modeled in terms of the clinical var-

iable of interest, age and gender. Since some variables were available across different centers,

in the corresponding models we included the site factor to remove its contribution. As in the

main VBM analysis (section 2.3.2), we accounted for the effect of head volume by proportional

scaling with ICV and we masked the results using the optimal threshold GM mask. Inference

on the contribution of the variable of interest was performed using double-sided t-tests

(p<0.001, >100 voxels).

In the ROI analyses, using in-house Matlab scripts, we conducted Pearson linear partial

correlation analyses between regional GMV (normalized for ICV) and the clinical variable of

interest, while accounting for the contribution of age and gender and, when appropriate, scan-

ning site. The significance threshold was set to p = 0.01.

3. Results

3.1. Demographic and clinical information

The demographic and clinical details of the two datasets are reported in Table 1.

Dataset1 was composed of 383 HC (195 males, range 18–62 years, 30.4 ± 9.2 years), 243

patients with SCZ (152 males, range 17–61 years, 33.24 ± 9.41 years) and 176 patients with BD

(69 males, range 20–76 years, 44.7 ± 12.08 years). Both psychotic and non-psychotic BD

patients (PBD, NPBD) as well as BD type I (BD-I) and BD type II (BD-I) patients took part to

the study: PBD patients were in minority, being 42 out of 176, whereas BD-I patients were in

majority, being 111 out of 176. Since no significant GMV differences emerged between them

(more details are in paragraph 3.3), in the main analysis BD patients were considered in a

unique group. From the analysis of variance (ANOVA), significant age differences across BD,

SCZ and HC emerged (p<0.01). Sex ratio (M/F) was 1.67 in SCZ, 0.64 in BD and 1.04 in HC

(χ2 = 23.02, p<0.0001). The fact that SCZ is diagnosed 1.4 times more frequently in males than

in females [23] supports the SCZ gender ratio. On the other hand, the women prevalence in

the BD group may be explained by the fact that BD patients were mostly recruited as depressed

inpatients, as women with BD may have more depressive and mixed episodes than do men

with the illness.

At the time of the MRI study, 23 BD patients were euthymic, 1 was in hypomanic state, 1

had mixed episodes, 27 were in manic phase and 120 were in depressed phase. This informa-

tion was missing in 4 patients. The assessment of euthymic, manic and depressed states was
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Table 1. Demographic and clinical details in the two datasets. In Dataset1, from the analysis of variance (ANOVA), significant age differences across

groups emerged (p<0.01). Sex ratio (Males/Females) was 1.67 in SCZ, 0.64 in BD and 1.04 in HC (χ2 = 23.02, p<0.0001).

Dataset1 SCZ PROBANDS (N = 243) BD PROBANDS (N = 176) HC (N = 383)

Demographic characteristics

Age (years)

(mean ± SD)

33.24 ± 9.41 44.7 ± 12.08 30.4 ± 9.2

Male gender (N, %) 152, 62.6% 69, 39.2% 195, 50.9%

Site of acquisition (N,

%)

Jena (45, 18.5%), Milan (82,

33.74%), Santander (89, 36.63%),

Verona (27, 11.11%)

Jena (23, 13.07%), Milan (134, 76.14%), Santander

(0), Verona (19, 10.8%)

Jena (111, 28.98%), Milan (74,

19.32%), Santander (105, 27.42%),

Verona (93, 24.28%)

Clinical characteristics

Age of onset (N,

mean ± SD)

229, 26.16 ± 7.65 150, 30 ± 10 n.a.

Psychosis, yes 243 (100%) 42 (28.86%) 0 (0%)

Antipsychotics, yes 233 (95.88%) 57 (32.39%) 0 (0%)

Mood stabilizers (N, N

yes)

144, 6 (2.47%) 139, 86 (48.86%) 383, 0 (0%)

Benzodiazepines (N, N

yes)

155, 110 (45.27%) 131, 94 (53.41%) 383, 0 (0%)

BD type n.a. BD-I: 111 (63.07%), BD-II: 54 (30.68%), no

information: 11 (6.25%).

n.a.

Mood state (N, %) n.a. Euthymic (23, 13.07%), hypomanic (1, 0.57%),

mixed (1, 0.57%), depressed (120, 68.18%), manic

(27, 15.34%), no information (4, 2.27%)

n.a.

Psychopathology

HRSD (N, mean ± SD) n.a. 107, 17.49.13 ± 9.61 n.a.

BPRS (N, mean ± SD) 220, 50.46 ± 16.12 n.a. n.a.

PANSS (N, mean ± SD) 95, 73.38 ± 18.59 n.a. n.a.

SAPS (Center, N,

mean ± SD)

Jena: 44, 20.21 ± 11.48.

Santander: 89, 14.14 ± 3.92.

n.a. n.a.

SANS (Center, N,

mean ± SD)

Jena, 44, 42.43 ± 14.15.

Santander: 89, 5.84 ± 5.81.

n.a. n.a.

Dataset2 SCZ PROBANDS (N = 109) BD PROBANDS (N = 85) HC (N = 107)

Demographic characteristics

Age (years)

(mean ± SD)

39.1 ± 8.78 39.13 ± 9.9 39.02 ± 10.26

Male gender (N, %) 67, 61.47% 34, 40% 52, 48.6%

Site of acquisition (N,

%)

Jena (19, 17.43%), Milan (33,

30.28%), Santander (42, 38.53%),

Verona (15, 13.76%)

Jena (22, 25.88%), Milan (53, 62.35%), Verona (10,

11.76%)

Jena (21, 19.63%), Milan (26,

24.3%), Santander (46, 42.99%),

Verona (17, 15.89%)

Clinical characteristics

Age of onset (N,

mean ± SD)

102, 30 ± 8.12 63, 28.08 ± 8.94 n.a.

Psychosis, yes 109 (100%) 26 (30.59%) 0 (0%)

Antipsychotics, yes 105 (96.33%) 33 (38.82%) 0 (0%)

Mood stabilizers (N, N

yes)

67, 5 (4.58%) 59, 41 (48.24%) 383, 0 (0%)

Benzodiazepines (N, N

yes)

74, 49 (44.95%) 57, 38 (44.71%) 107, 0 (0%)

BD type n.a. BD-I: 54 (63.53%), BD-II: 28 (32.94%), no

information: 3 (3.53%).

n.a.

Mood state (N, %) n.a. Euthymic (22, 25.89%), hypomanic (1, 0.57%),

mixed (0, 0%), depressed (49, 57.65%), manic (12,

14.12%), no information (1, 1.18%)

n.a.

(Continued )
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supported by HRSD and YMRS scores. Indeed, in manic patients the mean YMRS score was

20.8, in depressed patients the mean HDRS score was 22.32, whereas in euthymic ones both

HDRS and YMRS were below 8. Overall, the prevalence of patients in depressed phase is con-

firmed by the mean HRSD score, which was above 17 (as reported in Table 1).

In the SCZ sample, the mean BPRS and positive and negative symptoms rates from PANSS

or SANS/SAPS suggest that patients from all centers were from moderately to markedly ill [24,

25].

Concerning medication, antipsychotics were assumed by most SCZ patients (95.88%) and

by less than half of BD patients (32.39%). Among SCZ patients, 3 were treated with amisul-

pride, 49 with aripiprazole, 42 with clozapine, 13 with haloperidol, 14 with olanzapine, 6 with

paliperidone, 25 with quetiapine, 32 with risperidone, 17 with ziprasidone; this information

was missing for 30 patients. Among BD patients taking neuroleptics, 2 were treated with halo-

peridol, 4 with amisulpride, 2 with aripiprazole, 1 with chlorpromazine, 1 with clozapine, 11

with haloperidol, 5 with olanzapine, 1 with paliperidone, 15 with quetiapine and 7 with risperi-

done; this information was missing for 7 patients. From the available information on benzodi-

azepines, we know that BD patients taking benzodiazepines were in majority (at least the

53%). This drug was used also in the therapy of around one half of SCZ patients (45% or

more). Mood stabilizers were included in the therapy of approximately half of the BD sample

(at least the 48%) but were almost never used in the treatment of SCZ patients (�2%).

A reduced dataset (Dataset2), more homogeneous in terms of age and diagnosis, was manu-

ally extracted from the original one for a further analysis, with the main objective to investigate

the neuroanatomical differences among SCZ, BD and HC in a subset of Dataset1 without sig-

nificant age differences across groups. Dataset2 included 107 HC (52 males, 20–62 years,

39.02 ± 10.26 years), 85 BD patients (34 males, 20–60 years, 39.13 ± 9.9 years) and 109 SCZ

patients (67 males, 20–61 years, 39.1 ± 8.78 years). Since each group of patients was reduced by

more than half, from the analysis of Dataset2 we did not expect to reproduce the findings from

the main dataset, but we wanted to extract the most relevant features of the disorders. Com-

pared to Dataset1, the balance between psychotic vs. non-psychotic BD patients and BD-I vs.
BD-II patients was preserved; again, the depressed patients outnumbered the euthymic and

manic ones. Concerning the SCZ sample, the mean BPRS, SAPS/SANS and PANSS scores still

indicated moderate to severe schizophrenic symptoms.

Concerning medication, antipsychotics were taken by 96.33% of the SCZ sample and 38.82% of

the BD sample. Among SCZ patients, 1 used amisulpride, 26 aripiprazole, 15 clozapine, 7 haloperi-

dol, 5 olanzapine, 4 paliperidone, 9 quetiapine, 15 risperidone and 9 ziprasidone; the antipsychotic

Table 1. (Continued)

Psychopathology

HRSD (N, mean ± SD) n.a. 66, 14.52± 10.68 n.a.

BPRS (N, mean ± SD) 99, 50.02 ± 15.56 n.a. n.a.

PANSS (N, mean ± SD) 42, 70.64 ± 17.58 n.a. n.a.

SANS (Center, N,

mean ± SD/median)

Jena: 19, 42.21 ± 16.42.

Santander: 42, 4.5

n.a. n.a.

SAPS (Center, N,

mean ± SD)

Jena: 19, 19.84 ± 10.19.

Santander: 42, 13.60 ± 3.37

n.a. n.a.

SCZ: schizophrenia. BD: bipolar disorder. HC: healthy controls. HRSD: Hamilton Depression Rating Scale. BPRS: Brief Psychiatric Rating Scale. PANSS:

Positive And Negative Syndrome Scale. SAPS/SANS: Scales for Assessment of Positive/Negative symptoms. SD: standard deviation. The median value is

indicated in case of non-normal distribution.

https://doi.org/10.1371/journal.pone.0188000.t001
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type was not known in 14 patients. Among BD patients, 1 used aripiprazole, 1 chlorpromazine, 9

haloperidol, 4 olanzapine, 10 quetiapine and 4 risperidone, whereas the neuroleptic type was not

known in 4 patients. Benzodiazepines were used by almost half of both BD and SCZ patients

(�45%). Mood stabilizers were included in the therapy of around half of BD patients (48% or

more) but were almost unused in SCZ patients (less than 5%).

3.2. Comparison among diagnostic groups

The VBM and ROI results of Dataset1 are separately reported in sections 3.2.1 and 3.2.2,

respectively. The VBM and ROI results of Dataset2 are described in S1 Results.

3.2.1. VBM analysis. The VBM results of Dataset1 are reported in Fig 1, where the

clusters with significant GMV difference between the three couples of groups are shown. The

anatomical location and statistics of the SPM peaks (the first of each cluster) and the corre-

sponding cluster extension are listed in Table 2. Compared to HC, BD patients showed

reduced GMV (p<0.05, cFWE corrected) in three areas, mainly in the right hemisphere.

These regions were located in 1) anterior and mesial portions of the cingulate cortex, 2) supe-

rior temporal cortex and temporal pole, 3) calcarine cortex, cuneus and lingual gyrus. The

peak voxel was in the right subgenual cingulate cortex.

Compared to HC, SCZ patients showed widespread GMV reductions throughout the cortex

(p<0.05, cFWE corrected). The GMV deficits were detected in the frontal (anterior and mid

Fig 1. Results of the VBM analysis of Dataset1: regions with significant GMV difference between SCZ, BD and

HC (p<0.05, cFWE corrected). VBM: voxel based morphometry. GMV: gray matter volume. SCZ: schizophrenia. BD:

bipolar disorder. HC: healthy controls. cFWE: cluster family wise error.

https://doi.org/10.1371/journal.pone.0188000.g001
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cingulate cortex, rectus, frontal superior medial and mid frontal cortex), parietal (inferior pari-

etal cortex, supramarginal and postcentral gyri), occipital (cuneus and calcarine cortex) and

temporal cortices (mid and superior temporal cortex and pole, rolandic operculum, Heschl’s

gyrus, insula) of both hemispheres. An extensive GMV reduction also spanned bilaterally the

thalamus, hippocampus, parahippocampal gyrus and amygdala, as well as portions of the cere-

bellum. The most significant voxel was in the left superior temporal cortex.

The conjunction analysis revealed shared GMV deficits in SCZ and BD patients compared

to HC (p<0.05, cFWE corrected) in three clusters located in the superior temporal cortex,

anterior and mid cingulate cortex and occipital cortex of the right hemisphere. Although the

areas of GMV deficit of SCZ patients mostly included the BD ones, the subgenual portion of

the right cingulate cortex emerged only in BD patients.

The comparison between BD and SCZ revealed significant GMV differences in the bilateral

thalami and in the right insula, which showed GMV deficits in SCZ patients compared to BD

patients (p<0.05, cFWE corrected).

3.2.2. ROI analysis. The AAL regions with global GMV difference between the different

groups (SCZ vs. HC, BD vs. HC, SCZ vs. BD, SCZ and BD vs. HC) are reported in Table 3 and

shown in Fig 2 (p<0.05, Bonferroni corrected). Overall, at such conservative significance

threshold, the local GMV abnormalities were confirmed at the regional level in SCZ patients

but not in BD ones.

Indeed, the local GMV deficits in SCZ compared to HC (VBM t-contrast: SCZ<HC,

p<0.05, cFWE corrected) were confirmed at the regional level with a high level of significance

(p<0.05, Bonferroni corrected) in the majority of AAL regions, 57 out of 88, with the most sig-

nificant deficits in the bilateral rolandic operculum, insula, Heschl’s gyrus and superior tempo-

ral cortex, and in the left supramarginal gyrus and triangular inferior frontal cortex.

With regard to the GMV deficits in BD compared to HC (VBM t-contrast: BD<HC,

p<0.05, cFWE corrected), the ROI analysis did not confirm the VBM results at the regional

Table 2. Statistics of the significant ROIs (p<0.05, cFWE corrected) of the VBM analysis of Dataset1. Degrees of freedom: [1 785]. t-stat threshold:

3.1.

T CONTRAST CLUSTER

P(FWE)

# VOXELS PEAK T X,Y,Z [22] AAL REGION

BD < HC 0.001 1152 4.79 3, 32, 8 Anterior cingulate cortex, R

0.042 544 4.53 54, 0, 0 Superior temporal cortex, R

0.026 622 3.92 2, -69, 15 Calcarine cortex, R

SCZ < HC <0.001 20010 7.50 -57, -6, 5 Superior temporal cortex, L

<0.001 19855 6.74 56, 2, 2 Superior temporal cortex, R

<0.001 12948 5.84 5, -30, 44 Mid cingulate cortex, R

<0.001 2255 4.93 -51, -57, -15 Inferior temporal cortex, L

<0.001 4635 4.91 5, -86, 3 Calcarine cortex, R

0.002 1071 4.12 -38, -69, -51 Cerebelum 7b, L

0.014 718 3.55 -23, -78, -47 Cerebelum Crus 2, R

BD+SCZ < HC 0.042 544 4.53 54, 0, 0 Superior temporal cortex, R

0.001 833 4.41 3, 32, 8 Anterior cingulate cortex, R

0.026 520 3.83 8, -83, 2 Calcarine cortex, R

SCZ < BD 0.009 789 4.47 39, -2, 5 Insula, R

0.001 1246 4.46 5, -26, 6 Thalamus, R

BD: bipolar disorder. SCZ: schizophrenia. HC: healthy controls. cFWE: cluster family wise error. AAL: Automated Anatomical Labeling. R: right hemisphere,

L: left hemisphere.

https://doi.org/10.1371/journal.pone.0188000.t002
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level in any of the regions. Accordingly, the shared GMV deficits of BD and SCZ compared to

HC were not confirmed at the regional level.

Among the clusters showing lower GMV in SCZ compared to BD (VBM t-contrast:

SCZ<BD, p<0.05, cFWE corrected), the ROI analysis confirmed the VBM results in the right

rolandic operculum, right insula and left thalamus (p<0.05, Bonferroni corrected).

3.3. Clinical-neuroanatomical correlations

The results of the neuroanatomical-clinical correlation analyses are reported in Table 4

(p<0.001, >100 voxels).

In BD patients, the contributions of HRSD scores, BD type, psychotic features and antipsy-

chotic therapy on GMV were not significant. However, we found a positive association

between age of onset and GMV in two clusters belonging to right superior frontal cortex and

left mid temporal cortex. We also found neurotrophic effects of mood stabilizers, which were

associated with higher GMV in thalamus and cerebellum in the left hemisphere. On the con-

trary, BD patients treated with benzodiazepines showed reduced GMV in bilateral frontal cor-

tex (medial portion in the left hemisphere, inferior opercular portion in the right one), right

Table 3. Significant AAL regions of the ROI analysis of Dataset1 (p<0.05, Bonferroni corrected).

T CONTRAST AAL CLUSTERS

LEFT HEMISPHERE

AAL CLUSTERS

RIGHT HEMISPHERE

SCZ < HC Frontal cortex, inferior and mid orbitofrontal cortex, rolandic

operculum, insula, cingulate cortex, hippocampus,

parahippocampal gyrus, amygdala, calcarine cortex, precuneus,

lingual gyrus, inferior and mid occipital cortex, postcentral gyrus,

inferior parietal cortex, supramarginal gyrus, Heschl’s gyrus, mid

and superior temporal cortex, superior temporal pole.

Inferior and mid frontal cortex, orbitofrontal cortex, rolandic

operculum, rectus, insula, anterior and mid cingulate cortex,

hippocampus, parahippocampal gyrus, amygdala, calcarine cortex,

precuneus, cuneus, lingual gyrus, fusiform gyrus, postcentral

gyrus, inferior parietal cortex, supramarginal gyrus, Heschl’s gyrus,

mid and superior temporal cortex, temporal pole.

BD < HC / /

SCZ < BD Thalamus Rolandic operculum, insula.

SCZ AND

BD < HC

/ /

BD: bipolar disorder. SCZ: schizophrenia. HC: healthy controls. ROI: region of interest. AAL: Automated Anatomical Labeling.

https://doi.org/10.1371/journal.pone.0188000.t003

Fig 2. Results of the ROI analysis of Dataset1. AAL regions with significant GMV differences between SCZ, BD

and HC (p<0.05, Bonferroni corrected). ROI: region of interest. AAL: Automated Anatomical Labeling. GMV: gray

matter volume. SCZ: schizophrenia. BD: bipolar disorder. HC: healthy controls.

https://doi.org/10.1371/journal.pone.0188000.g002
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calcarine cortex and left supplementary motor cortex. The ROI analysis confirmed this associ-

ation at the regional level in right inferior frontal cortex (opercular portion) and right calcarine

cortex (p<0.01).

In SCZ patients, no significant effects of BPRS scores, therapy with benzodiazepines, dura-

tion of untreated illness and age of onset emerged. In the subset of patients scored with

PANSS, we did not find any GMV correlates of the scale scores. However, in SCZ patients

from Jena, we found a negative association between SANS scores and GMV in left superior

temporal pole. In patients from Santander, a negative relation emerged between SAPS scores

and GMV in left inferior parietal cortex. These results were not confirmed at the regional level.

4. Discussion

In the present work, we integrated and quantitatively analyzed a very large sample of structural

MRI data of HC and patients with SCZ and BD. Our ultimate objective was to obtain a robust

large-scale identification of the structural cerebral differences associated with the two disor-

ders, overcoming the limitations related to low sample size and statistical power that affect

most of the current studies on SCZ and BD.

Our results show that the partial overlap between BD and SCZ in terms of clinical pheno-

type may rely on shared neuroanatomical changes, supporting the hypothesis of common

brain structure endophenotypes across categorical diagnoses [26]. However, our findings also

show points of difference across the two diagnoses and demonstrate the greater extent of the

SCZ pathology, associated with brain structures that are more severely compromised in com-

parison with BD. The increased volumetric deficits in SCZ patients may be related to the more

severe clinical picture and cognitive impairment currently seen in SCZ than in BD [27–29].

Although clinical manifestations and cognitive deficits can be significant in BD too, in our BD

sample the prevalence of non-psychotic patients may have contributed to widen the GMV dif-

ferences between BD and SCZ.

4.1. Gray matter phenotypes of SCZ and BD

The analyses conducted in this multicentric study revealed overlapping volume deficits in the

two groups of patients, being more severe and generalized in SCZ. The VBM results on Data-

set1 from the SCZ-BD conjunction analysis showed in the two patient groups compared to

HC a GM atrophy in superior temporal cortex and temporal pole, anterior and mid cingulate

Table 4. Statistics of the VBM analysis of clinical variables. Degrees of freedom: [1 785]. t-stat threshold: 3.1.

VARIABLE DIAGNOSIS # VOXELS T STAT P-VALUE X,Y,Z [22] AAL REGION

MOOD STABILIZERS BD 180 4.05 <0.001 -8, -9, 11 Left thalamus

111 3.80 <0.001 -11, -42, -6 Left cerebellum

BENZODIAZEPINES BD 151 -4.21 <0.001 -29, 20, 44 Left midfrontal cortex

134 -3.93 <0.001 39, 11, 26 Right inferior frontal cortex, opercular portion

610 -3.90 <0.001 9, -95, -2 Right calcarine cortex

243 -3.83 <0.001 -3, -12, 62 Left supplementary motor cortex

AGE OF ONSET BD 242 4.40 <0.001 -60–20–8 Left midtemporal cortex

AGE OF ONSET BD 257 4.10 <0.001 21 12 53 Right superior frontal cortex

SANS (JENA) SCZ 106 -3.89 <0.001 -32, 15, -23 Left superior temporal pole

SAPS (SANTANDER) SCZ 218 -4.34 <0.001 -27, -54, 38 Left inferior parietal cortex

BD: bipolar disorder. SCZ: schizophrenia. AAL: Automated Anatomical Labeling. SANS: Scale for Assessment of Negative Symptoms. SAPS: Scale for

Assessment of Positive Symptoms.

https://doi.org/10.1371/journal.pone.0188000.t004
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cortex and calcarine cortex of the right hemisphere; the shared GMV reduction in right tem-

poral cortex, more pronounced in SCZ, was confirmed by the analyses on Dataset2. In the lat-

ter analysis, the emergence of GMV deficits in BD only at the uncorrected significance level

may be the effect of the removal of many older patients from the BD sample. Overall, our find-

ings are consistent with the ones of previous studies, showing in SCZ and BD overlapping defi-

cits in cingulate cortex and temporal lobe [8, 14].

Previous studies using different MRI contrasts have confirmed the key role of these

regions in these disorders. Reduced WM volume, fractional anisotropy and GM complexity

in frontal and temporo-parietal regions emerged in both SCZ and BD [15, 30–35]. The cor-

tical thickness, cortical volume, water diffusion and blood perfusion in fronto-temporo-lim-

bic regions have also emerged as relevant features for classification of first episode psychosis

(FEP) [36–38]. Functional MRI studies reported dysfunctional superior temporal gyrus and

disrupted fronto-temporal connectivity in patients with FEP and in ultra-high-risk subjects

[39, 40]. Furthermore, the dorsal anterior cingulate cortex represents a key node of the cin-

gulo-opercular network, exerting top-down control over sensory and limbic regions, which

emerged to be disconnected in patients with SCZ [41] and BD [42]. More in general, global

structural and functional connectivity metrics have been shown to be abnormal in psychotic

illnesses [43].

4.2. Specific characteristics of SCZ

In line with previous studies [8, 12, 44], our VBM and ROI findings confirm the larger extent

and magnitude of GMV deficits in SCZ patients than in BD patients when compared to HC,

with the regions of GMV reduction in BD largely included in the SCZ ones.

The VBM analyses of both datasets revealed widespread deficits of SCZ patients, which

appeared to be highly significant and symmetrically distributed across the two hemi-

spheres. The ROI analyses strengthened the above results, providing evidence for the con-

sistence of such deficits at the regional level in SCZ but not in BD. While the local GMV

deficits associated with BD were mainly in the right hemisphere, the SCZ ones spread to

the left hemisphere. The right frontal and temporal areas showing lower GMV in SCZ

compared to HC were more extended than BD ones, including the rolandic operculum,

Heschl’s gyrus, insula, dorsolateral prefrontal cortex and wider portions of the cingulate

cortex. Noticeably, in SCZ the left temporal deficits were more significant than the right

ones: this finding, besides being supported by wide literature evidence [10, 45, 46], may be

related to the key role of left temporal cortex in auditory information processing, halluci-

nations and thought disorders.

The VBM analyses also highlighted thalamic, hippocampal and amygdalar deficits in SCZ

patients but not in BD ones. The anatomical abnormalities of these structures in SCZ patients

appear to be consistent with their extensive cognitive deficits [28, 47, 48]. In line with the

hypothesis of “cognitive dysmetria”, the GMV reduction in key nodes of information process-

ing may underlay the deficits in integrating and coordinating information of SCZ [49]. The

VBM and ROI results on Dataset2 confirmed the extended volumetric deficits characterizing

SCZ compared to HC, involving both cortical and subcortical regions.

The areas of GMV reduction in SCZ highlighted in our study were consistently reported in

previous voxel-based [8, 10, 15, 44, 50, 51] and region-based studies, showing GM changes in,

for example, anterior cingulate cortex [52], superior temporal gyrus [53], insula [54], entorhi-

nal cortex [55] and amygdala [47]. Changes in WM have also been reported in SCZ patients

[27], mainly in frontal and temporo-occipital areas [46, 56], corpus callosum [46, 57, 58] and

thalamus [59].
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4.3. Specific characteristics of BD

Despite the wider deficits characterizing SCZ in comparison with HC, the VBM analysis of

Dataset1 highlighted a specific deficit of BD patients compared to HC in a portion of the right

anterior cingulate cortex, crossing the perigenual and subgenual areas. This specific deficit of

BD was already described [8] and is in line with postmortem studies on BD, showing in this

region decreased neural density and thickness of cortical layers III, V and VI [60]. Since the

subgenual anterior cingulate cortex is implicated in the processing and modulation of emo-

tions, its specific abnormality in BD patients may be interpreted on the light of the emotional

dysregulation that characterizes mood disorders [61, 62]. Regional GMV deficits in these areas

have been associated with a personal history of attempted suicide in BD [63] and are amelio-

rated by lifetime lithium treatment [64]. Although the relationship between neural and behav-

ioral alterations in BD needs further investigation [65], the altered control of prefrontal cortex

over limbic structures may trigger the emotional hyper-reactivity in BD patients [66].

The deficit in right anterior cingulate cortex resulting from the VBM analysis was not con-

firmed at the regional level by the ROI analysis on Dataset1, probably due to the extension of

the anterior cingulate region in the AAL atlas, which did not differentiate among its subre-

gions. It should be mentioned that diverse findings came from previous region-based studies,

which showed no GMV deficits in bilateral subgenual prefrontal cortex [67] and in right ante-

rior cingulate cortex [68] in BD compared with HC. However, these results emerged from

smaller patient samples compared to the present work.

It is worth noticing that our VBM analyses showed a right lateralization of the GMV deficits

in BD patients, which is in line with the findings of previous structural [11] and functional

[69] studies. This result is supported by the knowledge that right prefrontal cortex plays a key

role in cognitive inhibition [70] and is corroborated by evidence that transcranial magnetic

stimulation of this region represents an effective add-on treatment for BD [71, 72]. Such an

asymmetry may also reflect the lower WM integrity in prefrontal-limbic, limbic and callosal

tracts observed in BD compared with HC [30, 73–75]. However, Bellani and colleagues [76]

investigated laterality effects in SCZ and BD compared with HC using a visuo-motor task,

without finding any difference between BD and HC. Therefore, the issue of laterality in BD

should be further investigated.

4.4. Differences between BD and SCZ

One of the main novelties of the present study concerns the direct comparison between SCZ

and BD. Significant inter-diagnostic differences emerged only from the analysis of Dataset1,

suggesting slighter differences between SCZ and BD patients than between each group of

patients and HC. However, the VBM and ROI analyses of Dataset1 highlighted GMV deficits

in SCZ compared to BD in the right insula and its operculum and in the thalami, especially in

the left hemisphere.

So far, the limited number of studies that compared SCZ and BD, either directly or indi-

rectly, usually found GMV deficits in SCZ compared to BD. Although the cortical regions

interested by these deficits were rather heterogeneous across studies, our results partially con-

firm the previous ones.

In this respect, the volume losses in the insula and/or thalamus that we found in SCZ com-

pared to BD have already been reported in the literature [3, 13–15, 51]. In the work from Bora

and colleagues [51], such a difference was found to be related to the male dominance in the

SCZ group, which also characterized our and other datasets. However, the hypothesis of a spe-

cific involvement of the thalamus in the pathophysiology of SCZ has been recently emphasized

in the literature [77], corroborated by postmortem evidence of reduction in volume and
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number of neurons of the medial dorsal thalamic nucleus, the principal source of thalamic

projections to the prefrontal cortex [78]. Pharmacological effects cannot be ruled out, because

antipsychotics seem to exert effects on thalamic volumes [79]. The structural differences

between SCZ and BD in the thalamus may also be reflected in the lower thalamic function of

SCZ compared to BD that was reported in [80].

The further hypothesis of a specific role of the insula in SCZ pathology is supported by the

exaggerated thalamic-insular functional connectivity characterizing SCZ compared to HC

[81]. The above deficits may also relate to the lower metabolism in frontal, parietal and tempo-

ral WM tracts that emerged in SCZ compared to BD [82].

Differently from our study, GMV reductions in SCZ compared to BD were also described

in the right lingual gyrus [12], amygdala, putamen and hippocampus [2] as well as in the cere-

bellum [83].

4.5. Comparison with other multicentric studies

To our knowledge, this is the one of the first multicentric studies on SCZ and BD with such a

large number of patients and combining ROI and VBM analyses.

A very recent multicentric study that deserves mention was conducted by Ivleva and

colleagues [12], who compared GMV in a large sample of patients with SCZ, PBD and schi-

zoaffective disorder (SAD), their first-degree relatives and HC. In their study, GMV was inves-

tigated at the voxel-level and in 5-mm radius spheres centered on the VBM peak voxels. In line

with our results, they showed broader GMV deficits in SCZ than in BD when compared to

HC, as well as GMV deficits in BD in the cingulate and superior temporal cortices, mainly in

the right hemisphere. It is worth noticing that Ivleva et al. contrasted GMV across DSM diag-

noses and psychosis biotypes, providing evidence for the meaningful classification of patients

based on neurobiological constructs. This represents an interesting perspective that should be

investigated in the next future, when a larger sample of PBD patients will be available.

Another study that deserves mention [84] involved 13 Centers and around 500 subjects,

either SCZ patients or HC, and produced VBM and ROI results on SCZ that were overall

in agreement with ours. However, compared to our study, it was limited by the absence of

BD patients, besides being based on a smaller sample of subjects distributed among a

larger number of centers, which made the results more susceptible to confounding center

effects.

4.6. Methodological issues

Our results were obtained by applying both voxel-based and region-based analyses, whose

integration represents one of the novelties of our study. Here, the ROI analysis was introduced

to inspect the reproducibility of the VBM findings at the regional level. It should be remarked

that the ROI analysis was VBM-driven, as the selection of the AAL regions was based on VBM

results, and that VBM and ROI results were not fully independent, as the ROI volume was

computed on the same tissue density maps of the VBM study. However, the two approaches

provide different information and have complementary advantages and disadvantages. In

region-based approaches, the results reliability depends on the choice of the regions, which

can be either manual or automatic, but the results are less sensitive to local imperfections than

in voxel-based approaches. Therefore, in our study, the combination of VBM and ROI analyses

allowed to investigate both local and global GMV differences and to provide more robust evi-

dence of the neuroanatomical bases of BD and SCZ.

The choice to include the analysis of Dataset2, a subset of Dataset1, was motivated by the

inhomogeneous characteristics of Dataset1. Although the GLM design modeled and removed
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the contribution of age, gender and center, the comparison between the results of Dataset1

and Dataset2 allowed to identify the most relevant results. The findings of Dataset2 were less

significant compared to the ones of Dataset1 due to the smaller sample, but less vulnerable to

confounding factors. A more robust validation may come from the analysis of an independent

sample, which is encouraged in the next future.

The VBM and ROI results on both datasets showed an overall agreement, which demon-

strates not only the reliability of the findings on the two datasets, but also the validity of the

quantitative techniques that were applied. In both datasets, the site represented a relevant con-

tributor: the different imaging parameters, types of MR scanner and head coils led to images

with different spatial resolution, contrast and intensity, whose contribution was considered in

the analysis.

In the main study design, we did not account for clinical information such as age of illness,

psychopathological scores, pharmacological treatment and substance abuse, which may have

an influence on the brain structural characteristics. This choice was motivated by the heteroge-

neity of available information and by the variety of treatments across the four centers. How-

ever, we investigated the contribution of a set of clinical variables on GMV in subsamples of

patients, according to the available information. The results concerning the BD sample suggest

that mood state, BD type and psychotic symptoms should have not influenced the results.

However, we cannot exclude possible confounding effects due to 1) age of onset and medica-

tion in BD patients, 2) symptoms severity in SCZ patients. These limitations should be taken

into account when interpreting the current results.

4.7. Future perspectives

The results of this large neuroimaging study demonstrate the importance of comparing BD

and SCZ (between themselves and with HC) to gain new knowledge of the shared and specific

neuroanatomical bases of the two disorders, bringing added value to the clinical management

of BD and SCZ.

However, our results need to be confirmed by future investigations on large independent

samples and should be integrated with the study of gender and age effects in both BD and

SCZ. On the one hand, the investigation of brain sexual dimorphism in BD and SCZ can shed

new light on the relationship between sexual differentiation processes and vulnerability to

develop psychiatric disorders. On the other hand, the analysis of age-related neuroanatomical

changes has potential to highlight any deviations from normal brain maturation shared by BD

and SCZ or diagnosis-specific. These complex topics will be the object of a future dedicated

investigation from the ENPACT group.

In the near future, we are interested in repeating the SCZ-BD comparison by using a larger

BD sample, with a sufficient and balanced number of psychotic and non-psychotic patients,

with the objective to identify any neurobiological characteristics associated with psychotic fea-

tures across traditionally distinct categorical diagnoses.

5. Conclusions

Although SCZ and BD are conceptualized in a continuum of clinical phenotypes, the underly-

ing neural mechanisms are still largely unknown. In the present study, structural MRI images

of a large sample of subjects were analyzed with voxel-based and region-based techniques to

identify GMV differences and similarities between SCZ and BD. The two disorders exhibited

shared fronto-temporo-occipital GMV deficits in the right hemisphere, which support the

hypothesis of a continuous GM endophenotype for SCZ and BD. Our study demonstrates that

the two disorders are not completely dichotomous in terms of GM anatomy, but also suggest
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that SCZ is associated with brain structures that are more severely compromised in compari-

son with BD. A specific involvement of thalamus and insular cortex in SCZ is suggested, which

needs further investigation. The results of our study provide a key piece of information for the

comprehensive understanding of the two disorders, opening the door to advanced diagnostic

and treatment strategies.
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