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Abstract

Traditional vision-based navigation algorithms are highly affected from non-

nominal conditions, which comprise illumination conditions and environmen-

tal uncertainties. Thanks to the outstanding generalization capability and

flexibility, deep neural networks (and AI algorithms in general) are excellent

candidates to solve the aforementioned shortcoming of navigation algorithms.

The paper presents a vision-based navigation system using a Convolutional

Neural Network to solve the task of pinpoint landing on the Moon using abso-

lute navigation, namely with respect to the Mean Earth/Polar Axis reference

frame. The Moon landing scenario consists in the spacecraft descent on the

South Pole from a parking orbit to the powered descent phase. The archi-

tecture features an Object Detection Convolutional Neural Network (ODN)

trained with supervised learning approach. The CNN is used to extract

features of the observed craters that are then processed by standard image

processing algorithms in order to provide pseudo-measurements that can be

used by navigation filter. The craters are matched against a database con-
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taining the inertial location of the known craters. An Extended Kalman

Filter with time-delayed measurements integration is developed to fuse opti-

cal and altimeter information.

Keywords: Vision-based navigation, Absolute navigation, CNN Craters

detection, Lunar landing

1. Introduction1

Lunar environment and Artificial Intelligence are becoming increasingly2

attractive to the Space research community, due to the latest long-term plans3

of Space Agencies. On one hand, the activities linked to the Lunar Gateway4

have renovated the deep interest in the mentioned environment [1, 2, 3, 4].5

On the other hand, recent advancement in research demonstrate the use of6

Artificial Intelligence for different tasks in the space domain, from navigation7

[5, 6] to formation flying guidance and control [7, 8, 9]. In this work, the8

development of a vision-based navigation system using AI to solve the task9

of pinpoint landing on the Moon is presented. The considered lunar landing10

scenario is defined by the spacecraft descent on the South Pole, covering the11

altitude range from 100 km to 3 km. The proposed navigation strategy is sub-12

divided in two main phases which are slightly overlapped for safety reason:13

one where absolute navigation is performed, the other estimating instead the14

relative state with respect to the targeted landing site. The current paper15

focuses on the absolute navigation scenario. The basic idea is to exploit16

a coupled architecture, between a navigation filter and an AI-assisted Im-17

age Processing (AI-IP) system comprised by neural networks and standard18

image processing algorithms. The AI-IP will be able of processing images19
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acquired by a navigation camera, generating pseudo-measurements that can20

be exploited by a sensor-fusion filter, to retrieve the estimated state. In par-21

ticular, literature demonstrates that craters database matching is typically22

exploited to retrieve the absolute pseudo-measurement [10, 11]. In these23

papers, the database matching is performed via nearest neighbor approach,24

linking the output from the object detector to the navigation filter.25

In recent years, the evolution of specialized computing processors, like26

Tensor Processing Units (TPU) and Vision Processing Units (VPU), and the27

correspondent increment of available computational power paved the way28

for future AI-assisted space systems. Some early applications were already29

tested in orbit [12, 13]. Guidance, Navigation, and Control, and Vision-30

based navigation in particular, could potentially achieve large benefits from31

the introduction of such systems.32

Different solutions were proposed. In [14] a Convolutional Neural Network33

(CNN) is coupled with a Long-Short Term Memory (LSTM) to achieve an34

end-to-end learning for estimating the 6-DoF pose of a UAV during landing.35

The global position and orientation of the robot are the final outputs of the36

AI architecture using images and IMU measurements as inputs. A similar37

concept structure (CNN+LSTM) is proposed and extended by [15], where the38

final output of the AI system is not the pose estimation, but a thrust control39

profile to drive the spacecraft in a lunar landing maneuver, mapping the input40

of the navigation sensors directly to the control action. A Recurrent CNN41

(RCNN) is adopted in [16] to perform end-to-end 6-DoF visual odometry:42

the proposed approach exploits a deep learning system based on a monocular43

visual odometry (VO) algorithm to estimate poses from raw RGB images.44
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[17] uses a CNN to estimate the depth field of the scene. Information output45

by the AI is then passed to an optimization algorithm that filters and refine46

the pose estimation. Craters identification has been proposed as a viable47

method to perform absolute navigation during lunar landing. State of the48

art detectors make use of Object Detection Networks (ODN) [18, 19] image49

segmentation [20, 21, 22]. In order to perform end-to-end navigation, craters50

detected by the AI requires to be matched with a database. Geometrical [23,51

24] or feature-based [25] algorithms were proposed. Finally, object detection52

algorithms using Deep Convolutional Networks have been proposed for UAV53

obstacle avoidance in [26].54

The objective of the paper is to present the baseline architecture for such55

intelligent vision-based navigation strategy, together with some preliminary56

results of the algorithm implementation. In particular, the paper fulfills the57

following objectives:58

• the development of a synthetic image generation pipeline to generate59

the training dataset and the testing trajectory frames;60

• the creation of a customized CNN to work out the task of crater detec-61

tion in Moon images;62

• the derivation of a customized and efficient routine to perform database63

filtering and matching to retrieve the absolute location of detected64

craters;65

• the development of an Extended Kalman Filter to carry out the navi-66

gation estimation based on AI-IP pseudo measurements and altimeter67

reading, taking into account the measurements delay.68
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The following sections are structured as follows. In Section 2, the ref-69

erence Moon landing scenario is presented, detailing the considered landing70

phases. In Section 3, the proposed complete architecture for the absolute71

navigation is detailed, from the adopted neural network down to the navi-72

gation filter. Simulations results and achieved performance are expounded73

in Section 4, while conclusions are drawn in Section 5, with highlights for74

planned future steps.75

2. Moon Landing: Scenario Definition76

The considered mission scenario consists in the spacecraft descent from77

an altitude of 100 km down to 3 km targeting the Lunar South Pole area, the78

designated candidate target for human missions incoming in the next years79

[27, 28]. Even if the problem of autonomous guidance generation is out of80

the scope of the present study, feasible trajectories are required to test the81

proposed AI-based navigation on representative cases. Thus, spacecraft tra-82

jectories will be generated executing optimal guidance algorithm depending83

on the target location and thrust constraints. Moreover, due to the given84

landing location, it is critical to take into account illumination and shad-85

owing condition. Since the angle between the Moon rotation axis and the86

ecliptic is close to 90°, in the Polar Regions the topography plays a crucial87

role in the determination of the illumination conditions. In fact, areas at88

relatively high altitude can experience continuous periods of illumination (of89

several months), whereas some crater bottoms are always in shadow. In such90

scenario, the navigation system can encounter highly varying illumination91

conditions, with low Sun elevation angle in the South Pole region and large92
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Figure 1: Nominal Lunar Landing Phases and Navigation modes. Distances and times are

not in scale. The time scale takes the PDI as origin, while Downrange is assumed to be 0

at the Landing Site.

shadow areas in the image. Figure 1 shows the assumed nominal phases for93

a Lunar landing mission. It can be seen how on-board Navigation operates94

in two modes, Absolute and Relative.95

The spacecraft is assumed to initiate the landing maneuver from a circular96

Parking Orbit (PO) with altitude between 100 and 250 km. The spacecraft97

performs a tangential burn to lower the orbit perilune, inserting itself into an98

elliptical orbit. The lower the perilune, the lower the overall amount of fuel99

required for the landing maneuver. At the same time, the terrain topography100

poses a safety requirement on the minimum altitude of the perilune. 15 km is101

a generally accepted value and is adopted as nominal value in this study. At102

the perilune of the transfer orbit the Powered Descent Initiation takes place:103
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the main thrusters are turned on and the spacecraft performs the Main Brake104

maneuver, in which most of the horizontal is dropped. The thrust magnitude105

is constant and close to the maximum. The thrust vector pointing profile106

is optimized and remains close to the local horizon. During most of this107

phase the navigation is absolute, while in the last part relative navigation is108

initialized, for it is required to be already active and running at the beginning109

of the next phase. As the nominal landing site comes into the field of view110

of the navigation system, the Final Approach phase begins. The constant111

thrust constraint is released and the S/C performs a pitch maneuver to point112

the thrust vector mainly toward ground. In this phase relative navigation is113

performed; the landing area is scanned and large diversions to the landing114

trajectory can be commanded to cope with errors. Below 1500 m of altitude,115

fine trajectory corrections (in the maximum order of magnitude of hundreds116

of meters) can be ordered to perform the Hazard Avoidance task. This phase117

ends on the vertical of the selected landing site at a certain altitude (tens118

of meters), with null horizontal velocity. Pinpoint landing terminates with a119

powered vertical descent at constant velocity until the touchdown. Absolute120

navigation, which constitutes the main focus of this work, is operative from121

the parking orbit until the beginning of the Approach phase.122

To ease the formulation of the reference landing maneuver, without loss123

of generality, in this work is assumed that the inclination of the initial PO124

can be tuned to match the latitude of the target landing site achieving a125

planar trajectory (in the inertial reference frame). Nevertheless, the planar126

assumption in not valid in a Lunar Fixed Frame (LFF), due to the Moon127

rotation. Such reference frame corresponds to the Mean Earth/Polar Axis128
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Figure 2: Lunar Fixed Frame Mean Earth/Polar Axis. Figure from [29] by GUO et al.

(ME), as shown in Fig. 2, described in details in [29]. It defines the z-axis as129

the mean rotational pole, while the Prime Meridian (0° Longitude) is defined130

by the mean Earth direction. The intersection of the lunar Equator and131

Prime Meridian occurs at what can be called the Moon’s “mean sub-Earth132

point”, due to the Moon’s tidal locking to the Earth. In absolute navigation,133

the state of the spacecraft is reconstructed with respect to the LFF. The effect134

of the Moon’s rotation corresponds to a maximum velocity in the Crossrange135

direction approximately equal to 4.5 m s−1 during the coasting phase. In the136

models, simulations, and generation of the image dataset used to train, test,137

and verify the AI system, this effect shall be taken into account.138

The times of the transitions between the Main Brake and the Approach,139

and between the Approach and the Hazard Avoidance, come out from a140

complex optimization performed in the mission design phase, and depend on141

the combination of several parameters, related to the controllability of the142

lander (thrust and torque maximum magnitude, divert capabilities), and to143

the constraints imposed by hazard detection and navigation capabilities.144
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2.1. Reference landing maneuver145

Figure 3 reports the specific application case used as reference in this146

work. The lander mass at PDI is assumed to be 1500 kg. The available147

thrust during the Main Brake is assumed to be 3800 N, while during the Fi-148

nal Approach and in the subsequent phases it is considered to be throttleable149

between 1000 and 2300 N. The main engine is assumed to be tightly con-150

nected to the S/C structure with no thrust vector control, linking the thrust151

pointing direction directly with the S/C attitude. Trajectory has been opti-152

mised to minimize the fuel consumption; a direct optimization method has153

been used for the main brake phase, combined with the semi-analytical DA154

guidance described in [30] for the Final Approach. The optimization does155

not include the coasting phase, which is purely ballistic and in first approx-156

imation can be assumed to be a perfect Keplerian arc of an elliptical orbit.157

Figure 3a shows the nominal altitude profile, starting at the PDI. It can158

be seen how at the beginning the high tangential speed tends to follow the159

transfer orbit trajectory and the altitude increases. Then, as the drop in the160

horizontal velocity becomes relevant, the altitude begins to decrease. Fig-161

ures 3b and 3c show respectively the horizontal and vertical velocity profiles:162

most of the horizontal velocity is dropped in the Main Brake, with a velocity163

in the order of magnitude of 100 m s−1 at the beginning of the Approach.164

The profile of the thrust angle (corresponding to the pitch angle) is shown165

in Fig. 3d. It is considered to be 0 whenever pointing toward the horizon,166

and −90° with the thrust vector pointing downward (vertical attitude). The167

pitch maneuver at the end of the main brake, corresponding to an altitude168

of ∼4000 m is clearly visible. Finally, Fig. 3f reports the view angle on the169
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(b) Horizontal velocity.
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(c) Vertical velocity.
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(d) Thrust angle.
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(e) Thrust magnitude.
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(f) View angle over landing site.

Figure 3: Nominal landing maneuver (powered descent and final approach only).

nominal landing site from the lander, an information of particular relevance170

in a relative navigation scenario, not covered in this work. No specific epoch171

is assumed for the initiation of the maneuver, nor RAAN for the parking172

orbit. In this way, the reference maneuver can be adapted to different initial173

conditions, exposing the navigation system to completely different portions of174

lunar terrain, giving the possibility to test the system in different conditions.175

2.2. Camera and illumination conditions assumptions176

A camera with 40° Field Of View (FOV) and a 1024× 1024 pixels sensor177

is assumed as main navigation sensor. During the powered descent the trans-178

lation of the S/C is controlled in open-loop mode, with the lander tracking a179

profile of attitude and thrust magnitude computed by the on-board guidance180

module. In order to cope with error propagation, the trajectory is periodi-181

cally recalculated, converging progressively to the target. An estimation of182

the lander state in terms of position and velocity relative to the target is183
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then required only for periodically trajectory update. From past studies, it184

is known that such system can be effective with a minimum frequency of185

the trajectory update of 0.2 Hz [30, 31]. Beyond certain frequencies the gain186

in performance due to the faster update becomes irrelevant. Taking some187

margin, a minimum requested frequency of 1 Hz is assumed for the image188

feeding to the navigation.189

During the coasting phase, the S/C travels half of the transfer orbit,190

covering 180 degrees in true anomaly. That implies that the illumination191

conditions on ground, especially the inclination of the Sun over the terrain,192

that the navigation system is expected to encounter are extremely variable,193

from the Sun slightly above the horizon in polar regions to 90° of Sun elevation194

close to the Lunar Equator. No particular constraints that bounds the Sun195

inclination to a specific range is assumed.196

3. Absolute Navigation Architecture197

The absolute navigation task requires the determination of the complete198

state, i.e. position and velocity with respect to the inertial system fixed to199

the Moon. The optical measurements are fed to a convolutional neural net-200

work, which is trained to identify the database craters present in the image.201

Such correspondence is later fed to a navigation filter that performs sensor202

fusion with an altimeter present on-board. A schematic of the architecture203

is reported in Fig. 4.204

3.1. Crater database and AI training set generation205

The task of absolute navigation is to estimate the lander position and206

velocity with respect to the LFF. Thus, the ultimate goal is to retrieve such207
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Figure 4: Schematic of absolute navigation modules.

information from the craters identified in the image.208

3.1.1. Dataset elements209

The objective of the AI algorithm is to detect craters on the lunar surface.210

For training purposes, a dataset has been created, formed by the following211

fundamental elements:212

• a set of images of the lunar terrain;213

• the list of the visible craters in each image, with centers positions and214

radii in camera coordinates;215

• for each image, the correspondent absolute position and attitude of the216

lander relative to LFF;217

• a crater database including the position (or alternatively the latitude/longitude218

pair) of each labeled crater in the LFF.219

3.1.2. Dataset generation framework220

An artificial Digital Elevation Model (DEM) of the Moon has been ex-221

ploited to generate simulated images taken by a landing navigation camera,222

12



to create both the AI training dataset and end-to-end simulations of com-223

plete landing maneuvers used to evaluate the overall system performances in224

Section 4. The simulated portion of the Moon used for generating the dataset225

is a DEM modeled in Pangu, an high fidelity rendering software meant for226

space applications and realistic rendering of natural celestial bodies [32]. A227

flat DEM is created, perturbed with fractal noise and enriched with the other228

relevant terrain features, i.e. craters. A detailed crater database is needed229

to perform lunar absolute navigation with the proposed architecture. This230

method allows to have a completely reliable ground-truth for the craters po-231

sition and size, while real DEMs present craters that are not registered in232

databases and would not allow to build a completely reliable training set.233

In order to generate a rich and representative dataset, the environmental234

variables in Table 1 are randomly varied within the reported ranges. By235

doing so, the dataset can cover the wide feature-space that is expected in the236

operational scenario. The lunar impact crater size and distribution has been237

extracted from [33].238

The craters reported in Table 1 refer to the synthetic generation per-239

formed in Pangu. In the ballistic trajectory during the coasting phase, the240

S/C travels half of the transfer orbit, covering 180◦ in true anomaly. That241

implies that the illumination conditions on ground, especially the inclination242

of the Sun over the terrain, that the navigation system is expected to en-243

counter are extremely variable, from the Sun slightly above the horizon in244

polar regions to potentially straight illumination with 90◦ of Sun elevation245

close to the Lunar Equator. Regarding the Sun Azimuth angle, considering246

the South Pole region, it is related to the Moon rotation. Therefore, it can247
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Table 1: Environmental variables and their range of variation for the dataset generation.

Variable Range

Altitude 3 - 100 km

Attitude pitch (wrt vertical) 0◦ - 20◦

Sun illumination angle - Elevation 0◦ - 90◦

Sun illumination angle - Azimuth 0◦ - 360◦

Synthetic crater frequency 1.8e6 - 3e6

Synthetic craters dimension 6 - 500 m

vary in the whole range between 0◦ to 360◦. Actually, this wide range is ap-248

plicable only for high latitudes close to the Poles. No particular constraints249

that bound the Sun inclination to a specific range (like the execution of the250

whole landing maneuver close to the lunar terminator) are assumed.251

For the dataset, 5000 images have been generated: some examples of252

images stored in the dataset are reported in Fig. 5a, with the ground-truth253

craters present in the images highlighted in Fig. 5b.254

3.2. Neural network training set255

In order to perform the training of the neural network, the dataset de-256

scribed in Section 3.1.2 is completed with the information related to the257

craters actually visible in each frame. Each image is associated with the list258

of the craters comprised in the current field of view; the coordinates of each259

crater are converted into a bounding box, expressed by a vector of coordi-260

nates in the image reference frame [ymin, xmin, ymax, xmax]. The pairs (image,261

list of bounding boxes) constitute the actual training set for the subsequent262
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(a) Original images.

(b) Ground truth craters.

Figure 5: Training set examples.

neural network: the image is the network input, while the list of bounding263

boxes constitutes the network target.264

3.3. CNN for crater detection265

Convolutional Neural Networks are particularly suited for replacing effec-266

tively some of the traditional image processing algorithms. Several, different267

network structures can be conceived basing on CNNs. State of the art crater268

detection networks rely heavily on the so called U-Net architecture [34, 35]269

to identify landmarks by means of image segmentation [20, 21, 22]. For the270

first half of its layers, the network downsamples, and then upsamples for271

the second half, while maintaining short-cut connections between the lay-272

ers. Finally, it uses template matching to extract the craters from the target273

masks. Despite its high accuracy, such architecture involves a huge number274

of trainable parameters, with a computational cost accordingly high. Pre-275

liminary tests performed with such architecture confirmed this trend, with a276

computational burden potentially too high to achieve the target of at least277
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Figure 6: Single Shot Detection (SDD) network from [36] by Liu et al. The original feature

extractor is based on VGG-16; a fully convolutional network is than used to estimate both

the class and the bounding box associated to each object in the image.

one image processed per second on flight-representative hardware.278

To reduce both the computational cost and the training time, a state-279

of-art Object Detector Network (ODN) is considered. Pre-trained models280

are already available in Tensorflow Object Detection API framework. The281

collection has models trained on benchmark datasets such as COCO, KITTI282

and Open Images: such models are available for initialization of new custom283

models and to train them on novel datasets. The structure of the network284

used in the implementation is based on a Single Shot Detector (SDD) [36]285

with MobileNetV2 [37], pre-trained on the COCO dataset [38], as feature ex-286

tractor. SDD combined with MobileNetV2 ensures computational efficiency287

and fast inferences on the embedded system thanks to the use of optimized288

operations like depth-wise separable convolutions [39] instead of basic con-289

volutions.290

The basic structure of a SDD network is shown in Fig. 6: in this work,291

with respect to the original version represented in the graph, the VGG-16292

feature extractor has been replaced with the more computationally efficient293
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MobileNetV2. Transfer learning allows to exploit the efficient set of low level294

features that pre-trained networks offer: nevertheless, the specific, selected295

network imposes some constraints on the size of the input frame, that has296

to fit the pre-trained architecture. An additional preprocessing step is then297

requested: first, the image is scaled down to the 320 × 320 px resolution,298

then is converted back in a 3-channel image, achieving a final frame size299

equal to 320× 320× 3, which is the original input size of the MobileNetV2.300

The conversion from single channel to RGB comes with null computational301

cost, for the information of the original channel is just replicated 3 times.302

The downscaling is selected for mainly two reasons: on one hand, in this303

way, the size of the input is kept unaltered to meet the original input of304

the MobileNetV2; on the other hand, increasing the input size affects the305

inference time, which is potentially crucial for the next implementation of306

the algorithm into real hardware.307

The output consists in a n × 5 matrix reporting the list of the craters308

located in the image. Each row, corresponding to a single detection, is a309

5-element vector [ymin, xmin, ymax, xmax, α], where the first four elements con-310

sist in the coordinates of the bounding box enclosing the crater. The origin311

of the reference system is conventionally placed in the upper left corner of312

the image; values are normalized by image width and height to constrain the313

interval between zero and one. The index α ∈ [0, 1] is a score representing314

the network confidence in the crater identification: low score means little315

confidence in saying that the output coordinates correspond to the bounding316

box of a crater. Only craters detected with high confidence α ≥ α are con-317

sidered for the subsequent navigation step. The threshold α is an adjustable318

17



Figure 7: Output of the ODN. Bounding boxes around detected craters.

hyperparameter of the navigation system: in the remainder of the paper,319

α = 0.6 is assumed. Standard ODNs are trained to recognize multiple types320

of objects, and each bounding box has an associated class; in this particular321

case, the network is trained to detect a single ”crater” class. An example of322

the network output is shown in Fig. 7.323

Post-processing is performed on the network output to retrieve the craters324

coordinates given the bounding boxes predicted by the AI model. The step-325

wise procedure is summarized here:326

• Selection of the predicted bounding boxes according to the confidence327

threshold α and Intersection-Over-Union threshold, IoU ≥ IoU (set to328

0.1). Intersection-Over-Union is used in non max suppression, which is329

used to eliminate multiple boxes that surround the same object, based330

on which box has a higher confidence. The building blocks of this331

process are:332
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– Compare the most confident bounding box with its IoU with every333

other predicted bounding box of the crater class. If the IoU ≥ IoU,334

discard it as it represents a duplicate detection.335

– Remove the output predicted bounding box from the list of bound-336

ing boxes.337

• Calculate the center and diameter to inscribe each rectangular bound-338

ing box into a circle.339

In this way, bounding box coordinates are converted in a 3-element vector340

[x, y, ρ], where x and y are the coordinates of the crater’s center, and ρ341

its radius, directly comparable with the craters database. An example is342

shown in Fig. 8. One of the major concerns with CNN and AI in general343

is their generalization ability, and the proper behavior of the model when344

performing inferences on real data is not assured when the training is based345

on synthetic data. Although this aspect needs to be tackled at a systematic346

level, which is beyond of the scope of this paper, the trained ODN detector347

has been qualitatively assessed with real Moon images. The results are shown348

in Fig. 9.349

3.4. Database Filtering and Matching350

The first task of the navigation module consists in matching the detected351

craters codn, expressed in image frame coordinates, to real database craters.352

In this way, the absolute location of identified features, i.e. craters, can be353

retrieved. The task requires the feedback knowledge coming from the nav-354

igation estimate of the spacecraft position vector. The FOV of the camera355
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(a) Before the post-processing. (b) After the post-processing.

Figure 8: ODN post-processing. Bounding boxes are converted into craters’ positions and

radii.

(a) Real Moon image before the post-processing. (b) Real Moon image after the post-processing.

Figure 9: Real Moon image ODN post-processing. Bounding boxes are converted into

craters’ positions and radii. Moon image taken from LROC database [40].
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is projected on the surface using spherical projection. In other words, find-356

ing the intersection between a sphere and a line one needs to combine the357

equations:358

‖x− c‖2 = r2 (1)

where x are the points on the sphere, c the center point and r radius of the359

sphere.360

y = o + dû (2)

where y are points on the line, o the origin of the line and d the distance361

from the origin along the line and û the direction of line (a unit vector). The362

origin is the focal point of the ideal camera.363

The output of the projection is a set of corners κ, representing the bound-364

aries of the projected FOV. Each corner is expressed in latitude (φ) and lon-365

gitude (λ) coordinates. The margined search area A is a spherical region366

constructed by extracting the maximum lat-lon coordinates out of the κ cor-367

ners, as shown in Fig. 10. The extracted database craters cdb coordinates are368

first expressed in the inertial frame, then they are projected into the camera369

frame.370

∀cdb ∈ A, (λ, φ)→ (X, Y, Z)I → (lx, ly, lz)C = AC/I(X, Y, Z)I (3)

Finally, the homographic projection is used to retrieve the 2D coordinates371

of each crater in the image frame, as reported in Eq. 8. At this point, the372

algorithm possess two lists of craters expressed in the image frame: cdb is the373

query grid out of which the craters in the list codn are matched.374

The matching task is performed using a traditional 1-nearest neighbor375

routine, the list of craters are organized into a KD-tree to facilitate the376
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Figure 10: Margined search area A containing the projected FOV.

matching procedure. The features used for matching are obviously the craters377

location coupled with the projected diameter. The craters database matching378

outputs a set of inertial coordinates of craters that have been identified as379

the groundtruth of the ODN detected craters.380

3.5. Absolute Navigation Filter381

The absolute navigation task is performed by a discrete-time Extended382

Kalman Filter, whose output is the estimate of the complete state X, compo-383

sition of position R̂ and velocity V̂ vectors. The inputs received are instead384

the AI-IP block products and the output of the altimeter, the former sampled385

at a 1 Hz rate, while the latter at 8 Hz.386

The dynamics implemented on the filter, used to retrieve the a-priori387

estimate of the state, is given by a simplified two-body dynamics expressed388

in the LFF reference frame with the control component U . Eq. 4 reports389
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the complete expression of the right-hand-side of the implemented dynamics390

f(X), where GM$ is the gravitational parameter of the Moon and Ω =391

[0, 0, Ω]ᵀ is the angular velocity of the Moon rotation about its own axis,392

expressed in the LFF, which coincides with the angular velocity of the non-393

inertial reference frame.394

Ẋ = f(X) =

Ṙ
V̇

 =

 V̇

−GM$
‖R‖3 R + V ∧Ω + Ω ∧R ∧Ω + U

 (4)

The Jacobian matrix deriving from such expression is instead given by Eq. 5.

F =

03×3 I3×3

FV R FV V

 (5)

with FV R =
GM$
‖R‖3


3/ ‖R‖2X2 − 1 3/ ‖R‖2XY 3/ ‖R‖2XZ

3/ ‖R‖2 Y 2 − 1 3/ ‖R‖2 Y Z

Sym. 3/ ‖R‖2 Z2 − 1+


(6)

+


Ω2 0 0

0 Ω2 0

0 0 0



and FV V =


0 2Ω 0

−2Ω 0 0

0 0 0

 (7)

Concerning instead the measurement models employed, the filter receives395

from the AI-IP block both the absolute location ρi and relative line-of-sight396

ui associated to the ith matched crater. The former is expressed in the LFF397

frame (see Fig. 2), while the latter is expressed as the two homographic398
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coordinates, projection of the LoS vector onto the on-board camera plane.399

The measurement function that is implemented on the filter is represented400

in Eq. 8.401

ui =

ui,x
ui,y

 = f/li,z

li,x
li,y

 (8)

with li = AC/I
R̂− ρi∥∥∥R̂− ρi

∥∥∥ (9)

Here some parameters have been introduced, namely the focal length f ,402

the LoS vector in the camera frame li and the rotation matrix AC/I from the403

LFF frame (I) to the camera frame (C). Given the necessity of retrieving404

the absolute attitude of the spacecraft, a rotational filter is required to be405

running in synchronous advance with respect to the translational filter.406

These pieces of information are fused together with measurements of the407

satellite altitude ζ, taken by an altimeter. As such, the measurement model408

reported in Eq. 10, where R$ is the average Moon radius.409

ζ(R) = ‖R‖ −R$ (10)

The complete measurement function is then constructed as the collection410

of all the homographic coordinates associated to the detected craters as per411

Eq. (8) with the addition of the altimeter measure estimate, as in Eq. (10).412

The resulting measurement estimate vector h is composed by 2Ncrat + 1413

elements, where Ncrat is the number of detected craters. The associated414

Jacobian matrix H will have a size of (2Ncrat+ 1×6) and is to be assembled415

with Ncrat (2 × 6) Hi,crat matrices for each crater LoS and with a single416
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(1 × 6) Halt for the altimeter part. The complete expressions are omitted417

due to their cumbersome representations.418

Algorithm 1 reports the most relevant steps of the EKF procedure in a419

pseudo-code format.

Algorithm 1 Extended Kalman Filter

1: X̂−
k =

∫ tk
tk−1

f(X(τ))dτ , Xk−1 = X̂k−1, X̂+
0 = X0 . Absolute state propagation

2: Fk = ∂f
∂X

∣∣∣∣
X̂k−1

, Hk = ∂h
∂X

∣∣∣∣
X̂

−
k

. State and measurement Jacobian matrices

3: Φ(tk, tk−1) = I6x6 + Fk∆t . State Transition Matrix

4: P−
k = Φ(tk, tk−1)P+

k−1ΦT (tk, tk−1) + Q, P+
0 = P0 . State Covariance matrix propagation

5: Kk = P−
k HT

k (HkP
−
k HT

k + Rk)−1 . Kalman gain matrix computation

6: X̂+
k = X̂−

k + Kk(Yk − h(X−
k )) . Absolute State correction

7: P+
k = (I −KkHk)P−

k (I −KkHk)T + KkRKT
k . State Covariance matrix correction

420

The output of the filter is then fed back in the IP block. The estimate421

of the state can be exploited in order to restrain the research space for the422

pattern matching algorithms. However this additional information for the IP423

block could not be exploited in non-nominal conditions, such as a lost-in space424

scenario, reason for which performance assessment without this improvement425

shall be performed as well.426

3.6. Time-Delayed Measurements Fusion427

The navigation algorithm heavily relies on optical measurements. The428

information content is extracted from the images through the ODN and the429

intermediate post-processing. Such process takes a finite amount of time430

that needs to be taken into account when fusing the measurements in the431

Extended Kalman Filter, especially for real-time applications. Indeed, when432

delayed measurements are presents, at instant k the system receives a delayed433

measurement corresponding to time instant s (s = k −N , where N number434
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of delay samples). In this paper, a known delay of 1 s is reached in light of435

the future hardware implementation. There are various methods to consider436

the measurements delays in the navigation filter:437

• Filter recalculation method: it consists of coupling two filters running438

at fast and slow rate [41]. The former incorporates the high-frequency439

measurements, whereas the latter is activated every time a delayed (e.g.440

slow and less frequent) measurement arrives. The method computes the441

entire trajectory of the state until the current step. Using this method,442

optimality is guaranteed at the cost of computational burden.443

• Alexander Method: it consists on updating the covariance matrices at444

time s as if the delayed measurement arrived. Then, once measure-445

ments Ys are inserted at time k, the update is simply the standard446

Kalman Filter one with a correction matrix term [42].447

• Larsen Extrapolation Method: The method described in [42] requires448

the measurement matrix Hs and the noise distribution matrix Rs at449

time s. In the presented scenario, this is not valid: indeed, the mea-450

surement matrix depends on the relative positioning of the camera and451

craters. Larsen developed a measurement extrapolation method that452

does not require knowledge about the two matrices until time k [43].453

Such method is taken as reference to implement a modified version454

suitable for the analyzed scenario.455

The adaptation of the Larsen method for the measurement fusion is hereby456

described. For details on the derivation, the reader is suggested to refer to457

the original reference [43]. Several modifications were needed to solve two458
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shortcomings of the original method: the incorporation of high-frequency459

altimeter and the extension to the nonlinear Extended Kalman Filter. For460

the former, the filter firstly computes the gain and the updates as in Algo-461

rithm 1 fusing fast altimeter measurements. For what concerns the delayed462

measurements, let us call the measurements coming from the time instant463

s = k − N as Ys, which are incorporated at time instant k. The Larsen464

method consists in calculating an extrapolated measurements from Ys to be465

integrated at time k, called Yext
k,s :466

Yext
k,s = Ys + h(X̂−

k )− h(X̂+
s ) (11)

At each intermediate step between s and k a correction term M is calculated467

as:468

Mk =

[ k−s−1∏
i=0

(I−Kk−iHk−i)Φ(tk−i, tk−i−1)

]
Ps (12)

where the Kalman gain and measurement sensitivity matrix Hk−i at step

k− i does not reflect any update coming from the delayed measurement Ys.

Then, the updates of the correction term are calculated as follows, modifying

the correction equations in Algorithm 1:

Kk,s = MkH
T
k,s[Hk,sPsH

T
k,s + Rs]

−1 (13)

X̂+
k = X̂−

k + Kk,s(Y
ext
k,s − h(X̂−

k )) (14)

P+
k = (I−Kk,sHk,sM

T
kP−1

k )P−
k (I−Kk,sHk,sM

T
kP−1

k )T + Kk,sRsK
T
k,s

(15)

The covariance update is a modified version of the Joseph formula adapted469

to the original Larsen method. This is done to ensure that the covariance470

matrix remains positive semi-definite. As seen in Eq. 11 and Eq. 12, the471
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extrapolation method always requires only two matrix multiplications at each472

time instant and the storage of two variables any time an image is acquired.473

4. Navigation Training and Test474

In order to assess and validate the performances of the proposed architec-475

ture a testing pipeline has been put in place, exploiting the following blocks.476

High-fidelity dynamics Simulator. This block takes as input a nominal guid-477

ance profile, like the one described in Section 2.1, and simulates the overall478

maneuver from lander trajectory to the sensors readings in a high-fidelity479

scenario. The output consists in the ground-truth trajectory and in simu-480

lated measurement histories for attitude and additional navigation sensors481

(i.e. altimeters) necessary for algorithm validation. Since the whole ma-482

neuver takes place in close proximity to the lunar ground, only the Moon483

gravitational pull is included in the translational dynamics. The LP165P484

spherical harmonics model up to the 165th order [44] is adopted. Distur-485

bances in both direction and magnitude of thrust are included. The nominal486

thrust vector is rotated by a random angle with normal distribution with487

zero mean and standard deviation σ = 1°. Thrust magnitude is perturbed488

by a Gaussian noise with standard deviation 23 N (1 % of the assumed throt-489

tleable thrust). The proposed navigation system provides an estimate of the490

translation states only, but relies on attitude determination to identify the491

camera pointing direction: then, attitude estimation errors could have an492

impact on navigation performances. The spacecraft rotational dynamics are493

not simulated: the navigation camera is assumed to maintain a nominal nadir494

pointing, while a Gaussian noise with standard deviation σ = 1° is added on495
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the three Euler Angles to represent attitude determination errors. A zero496

mean Gaussian white noise is added to the ground-truth altitude to simu-497

late altimeter measures. A standard deviation of 1 % of the current altitude498

is assumed, reflecting the actual behavior of the laser altimeter technology.499

The whole model is implemented in a Matlab-Simulink environment, with al-500

titude measurements generated at frequency 8 Hz. An example of simulated501

altitude measurement is reported in Fig. 11, compliant with the scenario502

described in Section 2.503

Navigation images rendering. As reported in section 3.1, a 3D rendering504

tool is adopted to simulate realistic images as generated by the on-board505

navigation camera. Pangu is exploited for such purpose, taking as input506

the ground-truth generated by the simulator block for both trajectory and507

spacecraft attitude and outputting a sequence of images sampled at 1 Hz.508

AI-IP block. This block includes the application of the trained crater detector509

to the generated images to extract the centers and the radii of the detected510

craters, expressed in pixels coordinates in the camera frame. This procedure511

is executed in a Python environment.512

Navigation algorithm simulator. The final block is instead in charge of run-513

ning the crater matching and the filtering tasks in a step-wise fashion, ex-514

ploiting as inputs all the generated measurements, i.e. the ODN products515

and the altimeter readings, dealing also with the two different sampling rates.516

Each second of simulation, the algorithm given its current best state estimate,517

runs the crater matching procedure, comparing the detected craters to the518

pruned craters database and pass to the filter the measurements of all the519
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Figure 11: Simulated measured altitude.

matches retrieved. The state estimate is then be compared to the ground-520

truth trajectory and, together with the estimated covariance matrix, used to521

assess the overall strategy performances. Also this block is implemented in522

a Matlab-Simulink environment.523

4.1. CNN training524

The use of a pre-trained MobileNetV2 model allowed to rely on transfer525

learning to speed-up the training process, achieving at the same time good526

results even with a relatively small training set like the one described in527

Section 3.1. A fine-tuning of the original weights of the last two network528

branches was sufficient for converging to an optimal solution, while all the529

other weights were maintained fixed at the original value. No data augmenta-530

tion was applied or required. The adopted loss function replicates the original531

implementation by Liu et al. [36], and it is composed by two contributions532

to be minimized concurrently:533

L(x, c, l, g) =
1

N

(
Lconf(x, c) + αLloc(x, l, g)

)
(16)
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where Lloc is a localization loss that reduces the L1 distance between the534

predicted box l and the ground-truth box g, and Lconf is a confidence loss535

that expresses the confidence level for a particular image crop to pertain to a536

particular class c. The x variable is an indicator for matching the ith default537

box for the jth ground-truth box of category p.538

The network is trained on the dataset presented in Section 3.1, with batch539

size optimized to 16 samples, and learning rate optimized to 0.001, using the540

Adam optimizer [45]. The train-validation split equals to 80-20%. Test541

images are those generated for the trajectories: sequential images coming542

from the same Pangu rendered Moon region. Transfer learning considerably543

speeds-up the training process, avoiding the burden to learn low-level fea-544

tures, inherited from the pre-trained network. Actual learning, enabled for545

higher layers only, tailors the network over the specific problem even with a546

relatively small dataset: the loss function reached its minimum in 150 epochs.547

Relevant statistical metrics on the test dataset are reported in Tab. 2.

Table 2: ODN statistical performance metrics on the test dataset.

Metric Value

Precision 0.6

Recall 0.9

F1-score 0.7

Mean IoU 0.7

548
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4.2. Craters detection and matching performance549

In this section, the assessment of the network capabilities in detecting550

craters, and of their subsequent matching within the crater database is pre-551

sented. Fig. 12 shows the results of the crater matching task for a sample552

image never seen by the network during the training phase. Craters detected553

by the ODN (red) are matched to the ground truth database (yellow/green).554

On the test set, the average correct match percentage is nearly ∼75 % in555

each frame. Craters detection delivers an average localization error of ∼3 px556

in the LoS, as reported in Fig. 14, in which the average center location error557

for each frame associated with the relative standard deviation of the error558

distribution is shown. Please note that such error is only related with the559

ODN crater detection on each frame.560

The radius fit output by the network is generally larger than the ground-561

truth, as shown in Fig. 13 for an example image. A possible motivation lies562

in the ODN post-processing stage, in which the crater radius is computed by563

assuming the bounding box inscribed into a circular shape. Nevertheless, this564

issue does not affect the absolute navigation itself, but rather the matching565

process with the database given that the KD-tree search is performed in566

the three dimensions [x, y, ρ]. Figure 15 shows the histogram of the radius567

estimation error: the average error is∼15 % with respect to the ground-truth.568

The number of detected craters is deemed as sufficient for the required569

accuracy; indeed, it is in the order of ∼ 50 detected craters for each frame.570

Figures 16 and 17 show the frequency of the number of detected craters in571

the prototyping trajectory.572

An inference time on the network of 0.02 s per image on a Nvidia RTX573

32



Figure 12: Example of crater detection and matching. The green craters are those ex-

tracted from the database. Given the limited size, they are discarded from the matching

procedure.

Figure 13: Wrong estimation of crater diameter. The detected diameter is larger than the

database ones, due to the ODN post-processing.
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Figure 14: LoS detection errors in pixel between database and detected craters.

Figure 15: Diameter estimation error in detected craters.

Figure 16: Detected craters distribution along a portion of the prototyping trajectory.
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Figure 17: Detected and matched craters distribution along a portion of the prototyping

trajectory.

Titan X GPU (or 57 frame per seconds, with FP32 model precision) was574

preliminary assessed. No model optimization has been performed for the575

test execution. In order to obtain a better estimation of the potential per-576

formance in flight, the network has been implemented also on a Raspberry577

Pi 4 equipped with an Intel Movidius Neural Compute Stick. This system578

is built around the Intel Myriad 2 VPU, a possible future architecture for579

AI systems in space applications, that has already proven effective in flight580

[12, 13]. On Myriad hardware, with no code optimization, the inference time581

increases to 0.4 s per image (or 2.5 frames per seconds), a value compatible582

with the needs of autonomous navigation.583

4.3. Navigation Prototyping: numerical results584

The full pipeline coupling AI-IP and NAV module has been tested using a585

sample trajectory, resembling the scenario described in section 2. The craters586

database (cfr. [46]) linked to the absolute navigation is used down to an587

altitude of roughly ∼20 km. Below such altitude, the database spatial density588
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becomes lower than the captured FOV on the surface resulting in very few589

craters to be matched. The issue can be easily solved by refining the database590

list or coupling the absolute navigation with a relative navigation module that591

performs frame-to-frame motion estimation. The tuning parameters used for592

the simulations are reported in Tab. 3.593

Figure 18 reports an instant in time, showing the different navigation594

modules performing the task. The database filtering restrains the search595

region in longitude and latitude coordinates, then the detected craters are596

matched using location and diameter as descriptors. Please note that the597

number of detected and processed craters is limited by the maximum craters598

variable in Tab. 3, which aims at keeping the number of processed craters599

within an acceptable range for navigation performance without overburden-600

ing the computational cost for subsequent real hardware implementation.601

The navigation estimate is reported in Fig. 19. The horizontal and vertical602

error are reported instead of the three-axis results. The vertical error is the603

projection of the error ∆ = Rnav −Rgt along the radial direction. The norm604

of the along-track and across-track error is combined in the horizontal one.605

The navigation yields an estimation error ∼ 200 m along the trajectory, both606

for vertical and horizontal error, which is aligned with the expected perfor-607

mance at these relevant altitudes. The small peak present in the plot refers608

to the passage on the North Pole. Such degradation is due to the fact that,609

in that area, the database filtering is performed on a spherical cap rather610

than a margined projected FOV. This is done at high latitude (i.e. above611

88°) in order to avoid any singularities or wrapping errors at the polar point.612
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Parameter Value Description

MAX N CRAT 50 Maximum number of processed craters

P0 diag(104I3×3, 100I3×3) Initial Covariance Matrix

Relem 104I2×2 Elementary crater localization error covariance

Ralt 102 Elementary altimeter error variance

Table 3: Simulation parameters

Figure 18: Running navigation performing λ-φ database searching and matching. The

database filtering restrains the search region in longitude and latitude coordinates (bottom

right), then the detected craters are matched using location and diameter as descriptors

(top left).
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Figure 19: Estimation horizontal and vertical error for absolute navigation.

5. Conclusion613

The paper proposed an AI-based Optical Navigation algorithm to per-614

form absolute navigation during Lunar landing. A successful integration of615

both the detection ODN and the matching and estimation algorithm has been616

presented. The ODN network can successfully retrieve the Moon craters in617

an image. The crater detection delivers excellent center localization results618

(below ∼ 3 px) with respect to database ones, on average. This result pro-619

vides the required performance for the subsequent matching task. The crater620

diameters are slightly over-estimated due to ODN post-processing, neverthe-621

less the prototyping tests did not show any criticalities for such behavior.622

However, for future development, an additional consolidation may include a623

RANSAC-like algorithm to filter out the outliers matching.624

The database crater matching for absolute navigation has been devel-625

oped and tested: results showed that each detected crater was matched to626

database ones, with a small percentage of false matches. The whole pipeline627
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for absolute navigation, including AI-IP e NAV filter, has been implemented628

and tested in a sample trajectory at prototype level, taking into account the629

injection of delayed measurements. The sample scenario demonstrated that630

the navigation system can meet the performance requirements. Moreover,631

the complete pipeline for dataset generation has been set-up and used to632

create the prototyping dataset.633

The presented work foresees implementation on real hardware with del-634

icate execution time constraints, hence it is critical to reduce the computa-635

tional burden on-board. The main objective is to assess the applicability of636

CNN-based crater detector to the absolute navigation task. In particular, the637

usage of such ODN architecture, compared with classical algorithms, may be638

beneficial under several aspects: first of all, the amount of crater detections639

that ODN-detector produces is robust to disturbances or modifications of640

the image quality due to Gaussian noise, shot noise, brightness levels, as well641

as different illumination conditions. This robustness to visual alterations642

supports the feasibility of CNN-based techniques as reliable navigation ar-643

chitectures that do not imply a high level of human input or tuning. This is644

confirmed also by other works [21, 22, 47, 16]. Moreover, as mentioned, this645

work is aimed at the subsequent integration in real flight-like hardware: the646

achieved inference time makes the ODN a promising, and fast, alternative to647

the iterative, and slower, processes of template matching and thresholding648

required in classical techniques [10]. In this way, and end-to-end navigation649

cycle, including the image processing, can be achieved at 1 Hz frequency.650
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