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Abstract— The identification of switched nonlinear systems
involves solving a combinatorial problem that simultaneously
addresses sample-mode assignment and nonlinear model struc-
ture selection. The complexity of this problem is often pro-
hibitive, since mode switchings can take place at arbitrary
times. To reduce it to an affordable level, one can constrain
the mode switchings to occur only at few specific instants. This
approach is effective if combined with a refinement strategy,
that corrects the number and locations of the switchings. In
this paper, one such strategy is discussed, which employs a
local optimization process to correct the position of switchings,
and is also capable of detecting redundant modes. An iterative
method, applying an identification step and a refinement step
at all iterations, is tested on a numerical example to illustrate
the effectiveness of the refinement strategy. The method does
not require prior assumptions on the number of modes.

I. INTRODUCTION

Hybrid systems can describe dynamically rich phenomena
that combine continuous and discrete dynamics [5]. An
often used representation employs different continuous local
models (modes), and a switching mechanism between them.
In switched systems, the latter is determined by an exogenous
finite-valued switching signal which identifies at all times
which mode is active. On the other hand, piecewise affine
models switch according to a polyhedral partition of the
state-input domain.

The identification of hybrid systems involves both the
estimation of the local dynamics and the switching mech-
anism, configuring a complex optimization problem. Various
approaches have been introduced in the recent literature to
address this task (see, e.g., [12], [4], [6]). Comparatively
fewer works address the case with nonlinear local models,
and typically in a non-parametric setting using kernel func-
tional expansions (see, e.g., [1], [7], [8], [9]). Employing
a parametric framework can lead to more compact and
interpretable models, but adds another dimension to the
problem. Indeed, one can resort e.g. to polynomial Nonlinear
AutoRegressive with eXogenous input (NARX) models to
represent the local dynamics associated to the modes, [10],
[11], approximating the system nonlinearities by means of
finite-dimensional parameterized polynomial expansions. In
that case, however, the identification procedure is effective
only if it includes model structure selection or at least
regularization to suitably compress the model size.
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One such method for switched NARX (SNARX) systems
is discussed in [2]. The SNARX identification problem is
formulated as a combinatorial problem, where the discrete
variables are associated to the switching signal and the struc-
ture of the NARX local models. To manage the combinatorial
complexity, mode switching is allowed only at specific in-
stants, which results in a significant reduction of the discrete
variables. A randomized method is employed to simulta-
neously identify the switching signal, thereby assigning a
mode to each sampling time (sample-mode assignment), and
the local nonlinear models associated to the various modes
(local model identification). The method is shown to be very
accurate if the set of candidate switching times includes
the true ones, and to provide satisfactory approximations
otherwise.

In [3] a refinement stage is added to correct the switching
locations, and the identification and refinement step are
alternated until convergence. In this way, both the switching
signal and the local models can be more accurately estimated.
The rationale of the refinement strategy is to augment the set
of candidate switching times by sampling more densely in
the neighborhood of the detected mode switchings (denoted
active switchings). Instead, candidate switching times not
corresponding to actual detected switchings are removed.
This heuristic yields limited improvements as it does not
rely on a precise relocation of a detected mode switching, but
simply increases the number of candidate switching locations
near it. This adds further complexity to the combinatorial
problem and generates small time intervals, which compli-
cates the sample-mode assignment at the next run of the
identification step. Furthermore, the method rests on the
assumption that the number of modes is known.

We here introduce an improved refinement step, designed
to correct not only the number and location of the switchings
but also the number of modes. The refinement step has
been redesigned based on a completely different principle,
whereby instead of adding new candidate switching instants
near an active switching point, the location of the latter
is corrected with a local optimization approach. This pre-
vents the complexity increase mentioned before, and avoids
the generation of small intervals. Indeed, the number of
switching time instants is rapidly reduced, by removing
redundant ones and correcting the location of the active ones.
Additionally, the proposed method removes the assumption
that the number of modes be known, in that it allows to
efficiently detect and eliminate the redundant modes.

The proposed algorithm has been tested on a benchmark
example to demonstrate its effectiveness.



II. THE SNARX MODEL IDENTIFICATION PROBLEM

A. The SNARX model class

A SNARX is a switched system where the different modes
are described by NARX models, [10], [11]. The switching
signal σ ∈ {1, ..., NM}N associates a mode to each sample,
N being the length of the observation window and NM
the number of modes. A NARX model is formulated as an
input-output recursion, where the current output value is a
nonlinear function of past input and output samples, plus
noise. Accordingly, a SNARX model can be written as:

y(t) = fσ(t)(x(t)) + e(t) (1)

where f i(·) defines the nonlinear dynamics of the ith mode,
i = 1, . . . , NM , x(t) = [y(t − 1) . . . y(t − ny)u(t −
1) . . . u(t−nu)] is a finite-dimensional vector including the
past input and output samples (up to the maximum lags nu
and ny , respectively), and finally e(t) is a white noise signal.
More in detail, the nonlinear dynamics are represented as a
linear combination of nonlinear basis functions:

f i(x(t)) = ϕ(x(t))Tϑi (2)

where ϕ(x(t)) = [ϕ1(x(t)) . . . ϕn(x(t))]T is the vector
of basis functions and ϑi = [ϑi1 . . . ϑ

i
n]T is the parameter

vector associated to the ith mode. Since the model equation
takes the form of a linear regression, the ϕj(x(t)) functions
are also referred as regressors. In the context of NARX
models, the nonlinearity is often represented as a polynomial
functional expansion, the regressors being monomials of x.
However, since the number of polynomial terms increases
rapidly with the number of arguments (ny + nu), and the
degree nd of the expansion, model structure selection tech-
niques are generally employed to mitigate overparametriza-
tion issues and enforce model robustness. The maximum
values of ny , nu, and nd are set by the user.

B. SNARX model identification

Let {(u(t), y(t))}t=1:N be a set of input-output data pairs
obtained from an unknown switched nonlinear system. The
identification of a SNARX model from these data consists of
two tasks: a) sample-mode assignment, and b) local model
identification. The latter task involves both model structure
selection and parameter estimation.

As a result of model structure selection, not all regressors
ϕj(x(t)), j = 1, . . . , n, are included in a local model.
Accordingly, a binary vector s ∈ {0, 1}n can be used to
characterize its structure (0 indicating term rejection from
the model). Overall, the regressor composition of a SNARX
system can be encoded in a binary matrix S ∈ S =
{0, 1}n×NM , where the kth column defines the structure of
the NARX model associated to the kth mode. The switching
signal is instead defined by a vector of integers σ =
[σ(1) . . . σ(N)] ∈ Σ = {1, 2, ..., NM}N , σ(t) indicating
the mode associated to sample t. The structure of a SNARX
system is then completely characterized by λ = (σ,S), with
λ ∈ Λ = Σ×S. Given a candidate SNARX model structure
λ, one can univocally determine the local model parameters

and compute the model output ŷ(t). Finally, one can evaluate
the accuracy associated to the SNARX model structure λ, e.g.
in terms of the mean square prediction error L(λ) achieved
by ŷ(t). In the following, we will use the performance index

J (λ) = e−KλL(λ), (3)

which is conveniently scaled from 0 to 1, to rate a SNARX
model structure.

C. SNARX model identification as a combinatorial problem

Given a SNARX structure λ = (σ,S), the parameter
estimation task for each mode can be univocally addressed
by applying ordinary Least Squares on the data portion per-
taining to that mode (as of σ), using the regressors assigned
to that mode according to S (see, e.g., [2]). Therefore,
the SNARX identification problem ultimately amounts to
finding the value λ∗ = (σ∗,S∗) ∈ Λ that maximizes the
performance index J (λ). An exhaustive approach to the
solution of this combinatorial problem is typically unfeasible
due to the size of set Λ. It is typically the length N of vector
σ that blows up the combinatorial complexity. On the other
hand, the number of actual samples in which a mode change
occurs is normally much smaller than N .

This suggests the following two-step workaround [3].
First, the problem is addressed assuming that switchings
can occur only at a few given time instants, specified in
the ordered set Ts = {tk}k=1:Ns , with t1 = 1, tk < tk+1

for k = 1, . . . , Ns − 1, and tNs ≤ N . Set Ts includes the
original guess on the possible switching times, based on
the available prior knowledge (e.g., minimum dwell-time).
The definition of Ts leads to a partition of the observation
window {1, . . . , N} into Ns sub-periods Ik = [tk, tk+1 − 1]
for k = 1, . . . , Ns − 1, and INs = [tNs , N ]1. Accordingly,
σ(t) = σ(tk) for t ∈ Ik, i.e. mode σ(tk) is active in the
entire time interval, and one need only specify the values
of σ(t) for the time samples in Ts. This greatly reduces the
size of the solution space, and allows to effectively tackle
the combinatorial problem [2]. However, the result is sub-
optimal since the coarse subdivision of the data in sub-
periods allows only an approximate estimation of both the
switching locations and the local models, which are generally
identified on mixed data.

The second step consists in refining the set Ts based on the
result of the identification step, removing redundant sample
times and correcting the location of the remaining ones. Then
the identification step is repeated with the new set Ts and
the method is iterated until convergence.

In the following sections, we briefly review the method
introduced in [2] for dealing with the identification step,
and propose a novel scheme for the refinement step. Besides
refining the switching time locations, the proposed scheme
is designed to detect and remove redundant modes as well,
so that the method can be employed to estimate the number
of modes as well (and does not need prior information on
this parameter).

1Notice that if the length of the Ik sub-periods matches the minimum
dwell-time, at most one switching can occur in each sub-period.



III. THE IDENTIFICATION STEP

This section briefly reviews the randomized approach
for SNARX identification introduced in [2], based on the
assumption that mode switchings can occur only at the time
instants in Ts. This algorithm generally provides excellent
results if T ◦s ⊆ Ts, T ◦s being the set of the real switching
times, and performs reasonably otherwise, albeit with some
unavoidable approximation errors.

The method reformulates the identification problem as
the tuning of a probability distribution over Λ. Briefly, the
probability distribution is tuned based on a sample-and-
evaluate strategy, whereby various SNARX model structures
are extracted from the distribution and collectively evaluated
to infer how to correct the distribution for better performance.
Eventually, the distribution converges to a limit distribution
corresponding to a specific NARX structure.

Let PΦ(λ) = Pξ(σ) · Pς(S) be a probability distribution
defined over Λ, where Φ = (ξ, ς) is the associated random
variable. Here, ξ ∈ Σ and ς ∈ S are associated to the switch-
ing signal and the SNARX regressor composition, respec-
tively. The adopted factorization of PΦ(λ) rests on the inde-
pendence assumption between the mode sequence σ and the
SNARX regressor composition S. The average performance
of Φ can be calculated as E[J (Φ)] =

∑
λ∈Λ PΦ(λ)J (λ).

The best probability distribution P∗Φ maximizes E[J (Φ)].
Accordingly, λ∗ can be characterized as

λ∗ = arg max
λ∈Λ

P∗Φ(λ) (4)

The randomized approach consists in extracting samples
of Φ and evaluating them to approximate E[J (Φ)], using this
information to correct the distribution, until convergence to
a limit distribution (i.e., to a specific SNARX structure λ∗).

In order to tackle the optimization of E[J (Φ)], a suitable
parametrization of PΦ(λ) is needed.

A. Parametrization of PΦ(λ)

Recalling that mode switchings can occur only at time
instants belonging to Ts, we associate a Categorical random
variable ξ(k) ∼ Cat (ηk) to each σ(tk), tk ∈ Ts, where
ηk = [η1

k, η
2
k, ..., η

NM
k ], and ηik denotes the probability that

σ(tk) (actually the entire interval Ik) is assigned to mode i.
Clearly,

∑NM
i=1 η

i
k = 1. By assuming independence between

the elements σ(tk), Pξ(σ) takes the form

Pξ(σ) =
∏
tk∈Ts

η
σ(tk)
k . (5)

Similarly, a Bernoulli random variable ρij ∼ Be(µij) is as-
sociated to each element in S, where the success probability
µkj represents the belief that the jth regressor ϕj is included
in the ith local model. By assuming independence between
each element in S, Pς(S) takes the form

Pς(S) =

NM∏
i=1

∏
j:Sji=1

µij
∏

j:Sji=0

(1− µij). (6)

The probability distribution PΦ(λ) is thus parameterized
by the set of scalar parameters ηik and µij , denoted Mode

Extraction Probabilities (MEPs) and Regressor Inclusion
Probabilities (RIPs), respectively.

B. Tuning of PΦ(λ)

The MEPs and RIPs are iteratively tuned by extracting and
evaluating sample values λ = (σ,S) of Φ = (ξ, ς). Specifi-
cally, they are updated based on the following equations:

ηik ← ηik + χδik, µij ← µij + χ`ij (7)

where χ > 0 and

δik = EPΦ
[J (Φ) | ξ (k) = i]− EPΦ

[J (Φ) | ξ (k) 6= i]

`ij = EPΦ

[
J (Φ) | ρij = 1

]
− EPΦ

[
J (Φ) | ρij = 0

]
Note that δik is positive only if on average it is more
convenient to assign sub-period Ik to mode i, rather than
not. Similarly, a positive `ij indicates that the SNARX model
performs better on average when it includes the ith regressor
in the jth mode, as opposed to not including it. In practice,
the update terms δik and `ij can only be approximated with
averages taken on a limited number of extracted samples.
This is the reason why a conservative update policy is
adopted, limiting the effect of the correction terms with
parameter χ. A theoretical proof of the local convergence
properties of this update policy is discussed in [3].

Remark 1: The independence assumptions between the
introduced random variables are only meant to provide a
convenient sampling mechanism of the model structures λ.
They do not limit per se the nature of the underlying system.

C. Algorithm termination

The algorithm terminates when the update step does not
modify the MEPs and RIPs anymore. Then, one can deter-
mine the switching signal by setting σ̂(tk) = arg maxi(η

i
k),

and σ̂(t) = σ̂(tk) for t < tk+1 (or t ≤ N if k = Ns). The
structures of the local models are defined by the estimated
RIP values. For further details we address the reader to [3].

IV. THE REFINEMENT STEP

The refinement steps first detects and removes redundant
modes. Then, a local optimization approach is used to cor-
rect the locations of the active switchings, while redundant
switchings are removed.

A. Removing redundant modes

Redundant modes are detected according to the following
three rules. First, irrespective of their structure and param-
eters, modes that are not assigned to any sub-period (i.e.,
any mode j such that j /∈ ∪tk∈TsΣ̂(tk), where Σ̂(tk) = {i |
ηik > 0}) can be immediately removed.

Second, if for any two modes i and j it holds that T is =
T js , where T ls = {tk ∈ Ts | l ∈ Σ̂(tk)}, then one mode
is redundant. In that case, only the mode that best fits the
common assigned data is retained, and the other is removed.

Another more frequent –and less trivial to detect– con-
dition is that, due to redundancy and noise in the data, the
data pertaining to a single mode are fragmented between
multiple similar local models. To assess model similarity we



employ a Student’s t-test to pairwise compare the identified
local models. For fairness, we calculate the residuals of both
models on the same data-set, consisting of all sub-periods
assigned to either of them. In case the test indicates that
modes i and j are statistically indistinguishable, then j is
replaced by i in Σ̂(tk) for all k, and the j-th sub-model is
removed.

B. Refinement of the switching time locations

After the identification step, one of the following cases
applies to each tk ∈ Ts \ {t1}:

1) Let |Σ̂(tk)| = |Σ̂(tk−1)| = 1. Then, if Σ̂(tk) =
Σ̂(tk−1), no actual mode change occurs at tk (inactive
switching), and tk can be removed: Ts = Ts \ {tk}.

2) If Σ̂(tk)∩ Σ̂(tk−1) = ∅, then a mode change occurs at
tk (active switching), and tk is retained in Ts. However,
due to the coarse solution of the mode assignment
problem, the switching location must be regarded as
approximate and requires a local refinement.

3) If neither condition applies, it is not yet possible to
establish if the switching is active, and tk is retained.

Next, the location of the switchings in Ts is refined
obtaining set T news . More in detail, for a given tk ∈ Ts
let t̂k ∈ B(tk), where B(tk) is a conveniently small
neighborhood of tk (e.g., one can set B(tk) = [max(1, tk −
bw/2c),min(tk+bw/2c, N)], where w determines the length
of the time window centered over tk, save for border issues).
Now, for each pair (ik−1, ik) ∈ Σ̂(tk−1)× Σ̂(tk), let

L(ik−1,ik) =

tk+1−1∑
t=tk−1

εik−1
(t)2

if ik−1 = ik, where εq(t) = y(t) − ϕ(x(t))T ϑ̂q is the
residual associated to mode q, and

L(ik−1,ik) = min
t̂k∈B(tk)

L̄(ik−1,ik)(t̂k)

otherwise, where

L̄(ik−1,ik)(t̂k) =

t̂k−1∑
t=tk−1

εik−1
(t)2 +

tk+1−1∑
t=t̂k

εik(t)2. (8)

L(ik−1,ik) evaluates the model accuracy (according to the
currently available estimated local models) in the interval
from tk−1 to tk+1, for an optimal positioning of the switch-
ing (in case of an active switching), assuming that the left
sub-period is assigned to mode ik−1 and the right one to
ik. Accordingly, the optimal mode assignment for the two
sub-periods is given by

(i?k−1, i
?
k) = arg min

(ik−1,ik)∈Σ̂(tk−1)×Σ̂(tk)
L(ik−1,ik).

Then, the mode assignments are reset to Σ̂(tk−1) = {i?k−1}
and Σ̂(tk) = {i?k}. Additionally, if i?k−1 = i?k, tk is evaluated
an inactive switching, and therefore removed. Conversely, if
i?k−1 6= i?k, the switching time tk is corrected to

t?k = arg min
t̂k∈B(tk)

L̄(i?k−1,i
?
k)(t̂k)

Algorithm 1 Switching refinement
Require: Ts,ηk, k = 1, .., Ns,ϑ

i, i = 1, .., NM , w
Ensure: T news , σ̂

1: for all tk ∈ Ts do . Mode assignment
2: Σ̂(tk)← {i ∈ {1, . . . , NM} | ηik > 0};
3: end for
4: T news ← {t1};
5: for k = 2 to |Ts| do . Switching refinement
6: L◦ ←∞;
7: B ← [max(1, tk − bw/2c),min(tk + bw/2c, N)];
8: for all (ik−1, ik) ∈ Σ̂(tk−1)× Σ̂(tk) do
9: if ik−1 = ik then . Inactive switching

10: L←
tk+1−1∑
t=tk−1

εik−1
(t)2;

11: else . Active switching

12: L← min
t̂∈B

t̂−1∑
t=tk−1

εik−1
(t)2 +

tk+1−1∑
t=t̂

εik(t)2;

13: end if
14: if L < L◦ then
15: L◦ ← L; i?k−1 ← ik−1; i?k ← ik;
16: end if
17: end for
18: if i?k−1 6= i?k then

19: t?k ← arg min
t̂∈B

t̂−1∑
t=tk−1

εi?k−1
(t)2 +

tk+1−1∑
t=t̂

εi?k(t)2;

20: T news ← T news ∪ {t?k};
21: σ̂tk ← i?k;
22: end if
23: if k = 2 then σ̂t1 ← i?k−1; end if
24: end for

and t?k is added to the refined set T news .

The proposed refinement algorithm is summarized in the
pseudo-code Algorithm 1.

C. Detection and refinement of close switchings

A last check is carried out to detect and remove duplicate
switchings that may result from the previous operation.
Observe that the refinement performed by Algorithm 1 is
approximate, due to the limited length of the optimization
window and the imprecision of the estimated local models.
Thus, it may sometimes happen that two subsequent switch-
ings are refined towards the same position, generating an
unacceptably small sub-period (e.g., regarding to a minimum
dwell time constraint). Close switching times of this type are
merged into one, removing the intermediate sub-period.

More precisely, let tk, tk+1 ∈ T news be such that tk+1 −
tk < w/2. Then, if σ̂tk−1

= σ̂tk+1
, both switching locations

are simply removed from T news . Otherwise, tk is eliminated
and the location of tk+1 is refined with the same method
explained in the previous sub-section.



V. SIMULATION RESULTS

The SNARX system considered in [3] is employed here,
which includes two modes.

M◦1 : y(t) = −0.905y(t− 1) + 0.9u(t− 1) + e(t)

M◦2 : y(t) = −0.4y(t− 1)2 + 0.5u(t− 1) + e(t)

where y is the output, u is the input (uniformly distributed
in [0,1]), and e(t) is a white Gaussian noise with zero mean
and variance 0.012. The data-set consists of N = 2000
samples, and includes 4 mode switchings starting fromM◦1,
at samples 370, 1420, 1520, and 1750.

Initially, the set of candidate switching times is defined
as a uniform partition of the time horizon, i.e. Ts = {tk =
100k}, k = 1, 2, ..., 19, assuming a minimum dwell-time of
100 samples. The local models are quadratic polynomial
NARX models with orders ny = nu = 2, which amounts
to n = 15 possible regressors for each mode. Initially, the
MEPs are set to 1/NM , NM being the assumed number of
modes, and the RIPs are all initialized by 0.2.

A. Single run results

We first illustrate how the proposed SNARX identifica-
tion procedure works, with focus on the refinement of the
switching times and the detection of redundant models. We
assume that NM = 3. Figure 1 graphically illustrates the
evolution of the switching signal estimation during the al-
gorithm iterations, both regarding the identification step and
the refinement step. The first application of the identification
step (see upper colored bar in Figure 1) shows that M1 and
M2 are often associated to the same sub-periods, indicating
a possible redundancy, which cannot yet be resolved, since
T 1
s ⊂ T 2

s and the two models are not sufficiently similar to
satisfy the t-test (they have different structure, as per Table I).

Next, the active switchings and the latent switching times
in the mixed sub-periods are refined by Algorithm 1. Specif-
ically, all possible mode switching patterns from Ik−1 to
Ik are tested and the best assignment is selected. Consider
for example the first two sub-periods, I1 (from 1 to 100)
and I2 (from 101 to 200): the value of the local fit index
(8) as a function of the switching location in the region
around 101 is shown in Figure 2 (left) for all possible mode
patterns (both sub-periods can be assigned either to M1 or
M2). The comparison clearly indicates that the assignment
of both sub-periods to M1 yields the best fitting results.
Consequently, the switching can be considered inactive and
be removed. On the other hand, when we focus on t15, all
possible switching patterns indicate a switching around 1420
fromM3 to eitherM1 orM2. Actually, the two alternatives
yield almost equivalent results due to the similarity of the
first two modes. The outcome of the refinement procedure
is depicted in the second colored bar in Figure 1. Only 6
switching times remain (at 266, 370, 1420, 1570, 1751 and
1948), dividing the observation horizon in 7 sub-periods.

In the second iteration, the 3rd and 5th period are assigned
to M3, whereas the remaining 5 sub-periods return a mixed
result. However, since this time T 1

s = T 2
s , one among M1

and M2 can be eliminated. Applying the refinement rule

Fig. 1. Evolution of the mode assignment and the switching times along
the iterations. Odd and even rows indicate the results of the identification
and refinement steps, respectively. The mode assignment is graphically
represented using a different color for each mode, as of the colormap on
top. Striped regions indicate sub-periods associated to multiple modes.

Fig. 2. Refinement of switching times t2 (left) and t15 (right), according
to Algorithm 1.

with the two remaining models yields the final switching
times, namely 370, 1420, 1570, and 1751, and the algorithm
has reached convergence.

TABLE I
MODEL STRUCTURE SELECTION OVER ITERATIONS

Iter. M1 M2 M3

1
y(t− 1) ,
u(t− 1)

y(t− 1) ,
u(t− 1), u(t− 2)

y(t− 1)2,
u(t− 1)

2
y(t− 1) ,
u(t− 1)

y(t− 1) ,
u(t− 1)

y(t− 1)2,
u(t− 1)

3
y(t− 1) ,
u(t− 1)

-
y(t− 1)2,
u(t− 1)

B. Monte Carlo analysis

In this sub-section, a Monte Carlo (MC) analysis is carried
out to analyze the performance of the proposed method. The
analysis is repeated for different initial assumptions on the
upper bound of the number of modes, NM , to evaluate its
robustness regarding the ability to estimate correctly this
crucial parameter. Table II reports the aggregate results over
50 runs for each case. The model quality is assessed in terms
of the classification error rate (percentage of misclassified
samples) and the quality of fit, according to the normalized
index

FIT = 100

(
1−

∑N
t=1 ‖y(t)− ŷ(t)‖2∑N
t=1 ‖y(t)− ȳ‖2

)
,



TABLE II
RESULTS OF THE MC ANALYSIS.

# of initial modes 3 4 5
Average # of iterations 2.56 2.74 2.82
FIT [mean (std.)] 74.3 (1.6) 74.3 (1.6) 74.3 (1.6)

Class. error [mean (std.)] 0.26 (0.18) 0.26 (0.18) 0.26 (0.18)

Corr. ident. of NM 100% 100% 100%
Corr. sel. of s(1) 100% 100% 100%
Corr. sel. of s(2) 96% 96% 96%

where ŷ(t) is the output predicted at time t by the estimated
SNARX model and ȳ = 1

N

∑N
t=1 y(t) is the output average.

The proposed method performed well both regarding
the detection of redundant modes and the estimation of
the switching times. Indeed, the correct number of local
models and switchings was estimated in all runs. Largely
over-estimating the number of modes ultimately does not
affect the quality of the results, though more iterations are
required on average to recognize the mode redundancy. The
switching locations are very accurately estimated, save from
an occasional displacement from the ground truth positions
by a few samples. Indeed, the refinement rule is based on a
fitting condition, which is unavoidably subject to small bias
due to the effect of noise. This, however, does not prevent the
algorithm from achieving excellent classification accuracy
overall. Regarding the estimation of the model structures,
sometimes the nonlinearity in M◦2 is not captured in the
identified sub-model, depending on the particular realization
(see also the analysis in [2] on this aspect). Fortunately,
this happens only 2 times out of 50. Compared to [3], the
performance is equivalent both in terms of the FIT index
and the classification error, although the efficiency is much
higher, as discussed next.

C. Analysis of the computational load

The previous SNARX system is considered again here
with a linearly increasing number of switching times, N◦s =
5, . . . , 30, namely T ◦s = {1} ∪ {150k + 1}k=1,...,N◦

s−1,
accordingly extending the length of the observation window
to N = 150N◦s . The candidate switching times are randomly
initialized from Gaussian distributions tk ∼ N (100k, 10)
where k = 1, 2, ..., bN/100c−1. Batches of MC simulations
were carried out with the identification approach in [3] and
the refinement method proposed in the paper, in both cases
assuming NM = 2. As depicted in Fig. 3, the proposed
refinement stage allows the proposed method to complete
the task in a shorter time compared to [3], the difference
increasing with the complexity of the problem (i.e., as the
number of switchings |T ◦s | is increased). This superiority
derives from the new optimization approach, in which the
switching times are locally refined at the price of a small
amount of calculation. In addition, the new method does not
require the introduction of further candidate switching times
over the iterations, which obviously reduces the computa-
tional complexity.
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Fig. 3. Computational load analysis: total elapsed time of the method of
[3] (red) and the proposed one (blue) for increasing number of switchings.

VI. CONCLUSION

The identification of SNARX models was addressed, with-
out assuming prior knowledge on the number of modes,
which is a crucial hypothesis in many approaches. The
resulting algorithm alternates between an identification step,
operating with fixed switching positions, and a refinement
step, designed to revise the switching locations and detect
redundant modes. A detailed analysis on a numerical ex-
ample drawn from the literature indicates that the proposed
algorithm provides accurate estimation of the number of
modes, the switching locations, as well as the structure and
parameters of the sub-models.
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