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Co-design and experimental validation of a
gyroscopic stabilizer for powered two-wheelers

Giulio Panzani, Davide Todeschini, Matteo Corno, Davide Sette and Sergio M. Savaresi

Abstract—Roll dynamics of powered two-wheelers (PTW) are
unstable at low speed and their active control could improve
both safety and comfort. The paper proposes the co-design of a
stabilization system based on Control Momentum Gyroscopes
(CMGs) which, with their compact package and low power
request, are a fascinating option in particular for PTW, where
on-board energy and size constraints make the design of a
proper roll torque actuator challenging. The joint design of the
actuator and its control law is proposed by defining a multi-
objective optimization problem, which also turns into a tool that
allows the designer to steer the parameters choice in different
directions. The resulting prototype is manufactured, installed
on a motorcycle, tested and experimentally validated in several
conditions.

Index Terms—Powered two-wheelers control, gyroscopic stabi-
lization, mechatronic co-design, multiple-objective optimization
design

I. INTRODUCTION

CONTROL momentum gyroscopes (CMGs) are a well-
known torque actuator technology which is successfully

employed for the stabilization and control of the angular
dynamics of various systems, making use of the gyroscopic
principle. Compared to reaction wheels (RWs), which feature
a simpler mechanical design and easier operation, CMGs offer
the significant advantage of delivering higher torque for a
given actuator power [1]. This makes CMGs ideal for space
applications (where power thriftiness is of paramount impor-
tance) and maritime ones (where large torques are requested).

When considering ground vehicles, CMGs do not show
the same success. The main reason is the predominantly 2-
dimensional – planar – motion of such vehicles, where the
use of a gyroscopic stabilizer finds little room. Even when
considering the 3-dimensional roll and pitch dynamics of a car,
semi-active or active suspensions are generally preferred. Con-
versely, two-wheeled vehicles could benefit from gyroscopic
stabilization: in fact, their 3D motion shows a strong coupling
between the lateral and roll dynamics, highly dependent on
the vehicle speed.

Within the context of Advanced Driver Assistance Systems
(ADAS) for powered two-vehicles (PTW) [2], the capability
of stabilizing the vehicle roll dynamics could be efficiently
exploited, for instance, to implement an automated emergency
braking system that require a complete vehicle stop in response

G. Panzani, D. Todeschini, M. Corno and S.M. Savaresi are with Dipar-
timento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Italy. Corresponding author: giulio.panzani@polimi.it

D. Sette is with Ducati Motor Holding s.p.a, Borgo Panigale, Italy
This work has been supported by the European project ADAS&ME under

grant agreement No 688900.

to rider sickness or faint. Beside the dynamics related issues,
two-wheelers feature the additional challenge of managing the
trade off between space limitations and power requirement.
Given these premises, the gyroscopic actuation technology
seems very promising for powered two-wheelers as they can
yield a roll torque to control the vehicle dynamics, at a low
power cost.

The available scientific literature on PTW gyroscopic sta-
bilization shows the potential of this technology, but it is far
from being complete, as also remarked in [3, 4]. Some papers
use gyroscopic stabilization to showcase specific features
of some control strategies: [5, 6, 7, 8, 9] propose various
interpretations of linearised state feedback control; similarly,
[10, 11] explore robust control using H∞ and H2 methods.
Veering toward non linear control, one should consider [12],
where a piecewise affine control is tested in simulation on
a simplified vehicle dynamic model, and [13, 14, 15] which
propose Fuzzy and Adaptive Sliding Mode control. Other
papers make use of gyroscopic stabilization in combination
with non standard vehicle configurations: for example the
autonomous bike discussed in the simulation study [16] has
no steering capability and makes use of the gyroscope to
change direction. Similarly, an MPC approach is used in
[17] to stabilize a simulated bicycle where the steer angle is
considered fixed. Finally [18, 19] consider also active steering
and achieve both stabilization and path tracking.

In the literature, the preferred stabilization approach is to
use only the roll angle measurement as feedback. This choice
does not take full advantage of the commonly available Inertial
Measurement Units capable of providing, beside the estimate
of the roll angle, also direct measures of the roll rate; moreover
it disregards the fact that the flywheels might experience an
undesired drift. This drift is a consequence of errors in the
roll angle estimation or vehicle unbalances, that cause the
real equilibrium position to differ from the zero roll value
one. Within this perspective, the presence of a rider on the
vehicle makes the stabilization problem even more challenging
as their non constant posture can be seen as a time-varying
system perturbation. The only work that considers riders is
[20] where, however, the control strategy aims at inducing
stable periodic roll oscillations, for medical purposes. As one
can see, the available experimental validations of gyroscopic
stabilizers are only partially satisfactory, since they do not
consider the rider presence, and make use of unnecessarily
restricting assumptions.

Furthermore the open scientific literature does not deal with
the the design and the sizing of the gyroscopic actuator itself.
In most case the actuator is given a priori and is a starting
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Fig. 1. The gyroscopic actuator employed in this work with its two counter-
rotating gyros, mounted on the test vehicle.

point to design a control law. The only work on the gyroscopic
actuator design applied to PTWs is [3] where numerical and
simulation analyses address the following aspects: different
stabilizer architectures, the role of active or passive stabilizer
and a systematic study of its effect on the vehicle motion and
handling.

This paper contributes to the highlighted missing points. In
particular, it focuses on the gyroscopic stabilization of a PTW
at low/null speed, proposing an integrated co-design approach
which jointly addresses the actuator and the control parameters
design, taking into direct consideration the size, power and
control constraints typical of PTW. The overall procedure,
firstly discussed by means of simulations, is experimentally
validated on a motorcycle showing how the designed actuator
and the controller achieve stabilization in a realistic scenario
where sensor bias and riders-induced unbalances are natively
present.

In Section II, the overall system is introduced, discussing the
actuator architecture, the modelling and the resulting cascaded
controller structure. Section III addresses the mechatronic
project as an optimization problem whose outcome is both the
actuator and the control system parameters. The stabilizing
controller details are discussed in Section IV, ranging from
the selected control structure, the available degrees of free-
dom and their role in achieving a robust performance with
respect to sensing errors and parameter uncertainties. Section
V concludes the paper with the experimental validation of the
designed actuator and controller, using a ridden motorcycle.

II. SYSTEM DESCRIPTION

A. System overview

This work considers a standard touring motorcycle. Based
also on the considerations outlined in [3], the actuator ar-
chitecture features a couple of counter-spinning and counter-
swinging gyroscopes (see Fig. 1 and Fig. 3). The two spinning
axes are aligned with respect to the vehicle vertical axis and
are independently driven by two electric motors (element 2,
marked in blue). Two hydraulic linear actuators (element 3,
orange coloured) move each flywheel (enclosed in the green
shell, element 1) around the swing axis, normally aligned with
the vehicle pitch one. The choice of such configuration is to

be preferred to other options, as the counter-movement of the
gyroscopes yields a null parasitic torque on the vehicle. In
addition, the actuator generates a torque along the vehicle roll
axis only if the swing axis are actively actuated, see [3].

B. Modelling
The overall system dynamics are described by the set of

equations (1). For their derivation, the interested reader can
refer to [5].

Mlg sin ρ− Iρ̈ =

2∑
i=1

Igzωiϑ̇i cosϑi (1a)

Igx ϑ̈i − Igz ρ̇ωi cosϑi + Fd,ϑi = τϑi (1b)

Igz ω̇i + Igz ρ̈ sinϑi + Igz ρ̇ϑ̇i cosϑi + Fd,ωi = τωi (1c)

Equation (1a) pertains the motorcycle dynamics which – at low
vehicle speed – can be described as an inverted pendulum.
The left side collects the destabilizing gravitational torque
and the roll inertia; the right side models the roll gyroscopic
torque, proportional to the flywheel spinning inertia Igz and
the product between the spinning (ωi) and the swinging (ϑ̇i)
velocities. The suffix i = 1, 2 refers to the corresponding
flywheel and has been added to keep the notation compact.

Equations (1b) and (1c) describe, respectively, the swing
and spin rotation dynamics and both equation hold for each
of the two flywheel. The control inputs τϑi , τωi appear on
the right hand side, causing respectively the swing and spin
accelerations ϑ̈i and ω̇i. All the other terms can be regarded as
disturbances: some are related to the spin and swing coupling
due to the gyroscopic effect and the others describe the system
non-idealities, lumped in the terms Fd,ϑi and Fd,ωi . As an
example, Fd,ωi contains all the friction torques that must be
compensated to reach the spinning speed ωi.

In equation (1a), the vehicle, the rider and the flywheels
are lumped into a single set of parameters: M is the overall
mass, located at the equivalent distance from the ground l,
and I is equivalent roll inertia. These parameters are computed
considering the vehicle (mv = 260 kg), the rider (md = 70 kg)
and the flywheels as three point-like masses set at a certain
height (lv = 0.6 m, ld = 0.9 m and lg = 0.8 m) from the
ground. While the vehicle parameters are known, the same
doesn’t hold for the rider’s weight which is a constant, though
uncertain, parameter. Moreover, the model considers a rider
that is rigidly connected to the motorcycle; in reality, riders
are free to shift their weight on the saddle [21]. Since it
is practically impossible to accurately model how any rider
would actively behave, it is better to consider a simplified
model and test the controller against the rider’s movement.
The flywheel mass mg and the spinning inertia Igz are the
result of the design procedure, proposed in Section III.

It is worth mentioning that, when deriving equations (1),
some features of the considered application allow for some
simplifications. The roll equivalent inertia I neglects the
flywheels rotational inertia contributions, as they are orders of
magnitude smaller than the vehicle ones. In equation (1a) and
(1b) the gyroscopic effect has been simplified keeping only
the terms ωiϑ̇i cosϑi and Igz ρ̇ωi cosϑi which are outstanding
with respect to others, due to the very high value of ωi.
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C. Control architecture

A cascade control architecture is well suited for the system
described in (1), where the stabilizing roll torque depends on
the spinning rate and the swinging one. As shown in Fig. 2,
two inner independent controllers – enclosed in the darker
shade – are used, one for each axes angular speed. The outer
control loop – in the brighter shade – computes the reference
angular velocities, eventually yielding the desired stabilizing
roll torque.

ϑ̇i

ωi

τϑi

τωi

ϑi

ρ, ρ̇

ω̄

˙̄ϑi

Spin speed

controller

Swing speed

controller
Vehicle roll

controller

Fig. 2. Block diagram of the cascade control scheme.

The gyroscopic torque model, see (1a), suggests that the
swing angle ϑi should be kept as small as possible, in order
to avoid the end-stops and to maximize gyroscopic efficacy.
To do so, the term Igzωi is maximized: on one side the
mechanic flywheels design tries to increase as possible their
spin inertia Igz ; on the other side, the spinning speed controller
is designed so to track high reference values (thousands of
rpms). Both objectives in practice yield a low-bandwidth spin
controller that aims to track a constant reference, as the amount
of torque τωi needed to dynamically change the values of
ωi would result in an oversized spin motor. For this reason,
the spin speed reference is a constant design parameter. The
flywheel spin thus acts like a roll gyroscopic torque booster
and the torque dynamic modulation is delegated to the swing
speed controller, designed to track a reference speed with a
sufficiently high bandwidth.

III. ACTUATOR MECHATRONIC DESIGN

A. Problem definition

A multi-objective optimization for the design of the CMG
actuator parameters is proposed. The PTWs gyroscopic stabi-
lization calls for a mechanical and control co-design. In fact,
in PTWs (and in general narrow-track vehicles), weight, space
and power limitations are tight; as a result the actuators pa-
rameters are typically not simply constrained within a range of
admissible values, but should be optimized. On the other side,
the control goal, i.e. the vehicle upright stabilization, is highly
dependent on the actuator design: the consequence of a wrong
actuator sizing is not a suboptimal control performance but the
impossibility of stabilizing the vehicle. Thus, a mechanical-
and-control joint design is required.

The optimal choice of plant (physical quantities) and control
parameters (e.g. control law gains, control variable trajectories,
etc..) can be addressed as an optimization problem within
different frameworks, see [22, 23]. In this work the so called

simultaneous co-design formulation is employed, where the
values of the physical (xp) and control (xc) variables are found
by solving an optimization problem where a cost function
J(xp, xc) embeds both plant and control objectives. Some
remarks on the proposed approach follow.

In linear plant and feedback control law co-design problems
it is very efficient to express control objectives analytically,
see for instance [24]. Analytic formulations are usually not
available when nonlinear co-design is addressed. A common
practice is to define a reference scenario and to evaluate the
control performances in a simulation-based manner. Moreover,
no particular assumptions are made on the control structure
and the direct optimization of the control variables trajectories
is done [25]. This kind of approach, at a later stage, requires
the control system specialist to find a suitable control law that
mimics the optimized control. Despite the apparent complexity
this approach is common in literature – see [23, 26] – as it
leaves the control specialist the necessary degrees of freedom
in the design of the closed-loop control law that, for nonlinear
systems, is not a standard problem. The proposed CMGs co-
design follows this approach, avoiding the explicit definition
of a feedback control law, which is addressed at a later stage
in Section IV.

Another distinctive feature of the proposed co-design is the
use of the inverse system dynamics. In the hypothesis that
the flywheels are perfectly counter swinging and spinning at
the same constant speed, the nonlinear equation (1a) can be
rewritten

ϑ̇ =
1

cosϑ
·

(
1

2Igzω
(Mlg sin ρ(t)− Iρ̈(t))

)
and analytically integrated, yielding the time trajectory of the
swing angle:

ϑ(t) = arcsin

(
1

2Igzω

∫ t

0

(Mlg sin ρ(t)− Iρ̈(t)) dt

)
. (2)

Thanks to equation (2), closed-loop roll angle trajectories
can be imposed and the corresponding swing angle trajectory
computed. The control input τϑ can be finally found by means
of equation (1b). This simplifies the optimization problem, as
the system dynamics no longer appear in the constraints.

The actuator co-design is hence addressed by solving the
following problem:

min
xp,xc

J(xp, xc)

s. t. f(xp, xc) ≤ 0
(3)

where the cost function J(xp, xc) and the constraints
f(xp, xc) ≤ 0 are evaluated on the following reference
scenario. We consider the stabilization of the vehicle starting
from a non equilibrium condition ρ0 6= 0, ρ̇0 = 0. In such
manoeuvre, though simplified, the initial roll value ρ0 sum-
marizes the non-idealities and disturbances that the controller
should cope with. We consider ρ0 = 2◦ which is the resulting
COG inclination when the driver bends out from the vehicle
vertical axis of about 30◦, a rather extreme situation.

The elements of the co-design problem (3) are detailed in
the following.
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1) Decision variables x: these are the parameters that
characterize the actuator, both in terms of physical (xp) and
control (xc) parameters. They are:

x = [xp |xc] = [R α h ω̄ |Ωρ ξρ] . (4)

The first three parameters define the flywheel geometry, hence
the resulting spin, swing inertia (Igz and Igx ) and mass mg .
Having opted for a hollow cylinder – whose symmetrical shape
helps to avoid vibrations induced by unbalanced loads – the
external radius R, the cylinder height h and the ratio between
the internal r and the external radius α ∈ [0, 1] completely
define the flywheel geometry, see also Figure 3. The spin speed

R

hλv

λh

ω2

ϑ2

r

ω1

ϑ1

Fig. 3. Schematic representation of the flywheels.

reference ω̄ – tracked by the dedicated spin controller – plays
a role both from a physical and a control point of view: on
one side a high spinning speed concerns the designer in terms
of power consumption and mechanical flywheel stresses but,
on the other, allows for a higher available roll torque.

The last two design parameters are control related ones.
They parametrize the time-domain evolution of the vehicle roll
angle, during the uprise manoeuvre. Such trajectory matches
the one of a second order dynamic system (as suggested by
the roll equation (1a)) and can be generally described with the
following expression:

ρ(t) =
ρ0√

1− ξ2
ρ

e−ξρΩρt cos
(

Ωρ

√
1− ξ2

ρ · t
)
. (5)

For a given roll angle evolution, the required swing an-
gle trajectory is given by (2). Thus, thanks to the inverse
dynamics, closed-loop performance become actual decision
variables rather than control objectives. Decoupling the closed-
loop behaviour from the control law that practically yields
it allows for better interpretability of the optimization results
and for a wider flexibility in the design of the control law,
which can also address secondary objectives that are not
originally included in the actuator design in order to keep the
optimization problem simple.

2) Cost function: there are several competing objectives
that the design should take into consideration and for this
reason the co-design is in fact a Multi-Objective Optimization
(MOO) problem. In this paper we opted to approach the MOO

using the scalarization method, by means of a weighted sum
J(x) of five different cost functions Ji(x):

J(x) =

5∑
i=1

wiJi(x). (6)

The use of scalarization rather than Pareto methods, see
[27], is common in co-design optimization-based problem,
as it provides a unique solution and allows the designer to
incorporate preferences or objective rankings with relative
simplicity. Moreover, the high number of objectives included
in the optimization makes the use of Pareto methods difficult,
as the resulting Pareto front is no longer easily representable.

Straightforward plant design objectives are the overall actua-
tor mass (J1(x)) and its bulk (J2(x)). For the defined flywheel
shape, the mass is:

J1(x) = mg = π%hR2
(
1− α2

)
(7)

where % is the density of the material. The space occupied by
the actuator depends not only its geometric dimensions, but
also on the swing flywheel movement during the manoeuvre.
The maximum horizontal (λh) an vertical (λv) occupied spaces
(see also Figure 3) are:

λh = max
t

(2R cosϑ(t) + h sinϑ(t))

λv = max
t

(2R sinϑ(t) + h cosϑ(t))
. (8)

where ϑ(t) is the flywheel swing angle during the motorcycle
rise, computed thanks to (2). A synthetic bulk cost function is
thus defined:

J2(x) = λ =
√
λ2
h + λ2

v. (9)

The costs J3(x) and J4(x) account for energetic consider-
ations. The former considers the kinetic energy stored in each
flywheel

J3(x) = Espin =
1

2
Igz ω̄

2. (10)

The latter describes the maximum actuation power during the
manoeuvre:

J4(x) = Psw = max
t
τϑ(t)ϑ̇(t) (11)

where ϑ̇(t) is computed as in (2) and τϑ(t) from the swing dy-
namics in equation (1b), neglecting the non idealities lumped
in the term Fd,ϑi .

Finally, J5(x), is equal to the value of the flywheel swing
angle at the end of the rising manoeuvre

J5(x) = ϑ∞. (12)

This cost quantifies the control-oriented goal of keeping the
flywheels close to the zero swing angle position. This in-
directly accounts for the end-stops presence, not explicitly
modelled in the system dynamics. More importantly, one
should recall that the gyroscopic roll torque decreases with
the swing angle and becomes zero when ϑ = 90◦, nullifying
the actuator effectiveness. This issue can be mitigated with a
proper design of the outer controller, but it is still important
to include this parameter in the cost function.
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In weighted-sum MOO weights selection is a known crucial
point [28]. Weights wi usually accomplish two tasks: they nor-
malize the different cost functions and reflect system designer
preferences among the different objectives. Traditional tech-
niques normalize each cost by dividing for a reference value,
typically related to the maximum or minimum cost function
value within the admissible range of the optimization variables
[28]. In co-design MOO, compared to more classic decision
making MOO, design variables boundaries are usually loose
or difficult to be defined a-priori: for instance, one can think of
the minimum flywheel size, or the range of the control design
variables which are both difficult to be strictly defined. For
this reasons, a systematic normalization approach is not viable
as the reference cost function values would reflect unrealistic
situations, ill-posing the co-design problem. Thus, we opted
to compute the weights as the reciprocal of a limit acceptable
value (according to the designer) of the cost function value J∗i ,
thus wi = 1/J∗i . In this way the weights embed the designer
preferences and also normalize each the cost function. Notice
that a very similar approach is used in [29]. The reference
cost function values, along with the corresponding weights,
are reported in Table I.

3) Constraints: the co-design constraints are

0 ≤ R ≤ Rmax (13a)
0 ≤ α < 1 (13b)
0 ≤ h ≤ hmax (13c)
0 ≤ ω̄ ≤ ω̄max (13d)

0 < Ωρ ≤ Ωρ,max (13e)
0 < ξρ ≤ 1 (13f)
Im (ϑ(t)) = 0. (13g)

Constraints (13a)-(13e) keep the design parameters within
their significance range. The last two constraints are the
most interesting ones. Equation (13f) imposes the asymptotic
stability of the roll dynamics, as makes the roll angle
converging to zero. Constraint (13g) enforces the feasibility
of the rising manoeuvre. For a given roll trajectory, defined
by Ωρ and ξρ, but there is no guarantee that the actuator can
provide the required roll torque, that depends on the swing
angle trajectory ϑ(t): preventing imaginary solutions of (2)
certifies the admissibility of design.

The existence of a solution for the co-design problem
depends only on the constraint (13g), that is satisfied whenever
the arcsin argument in equation (2) is sufficiently small. This
can be always achieved with high values of the spin speed ω̄
or flywheel inertia Igz : relaxing the upper bounds in equations
(13a), (13c) and (13d) can thus help, whenever optimization
infeasibility becomes an issue.

TABLE I
COST FUNCTIONS ACCEPTABLE LIMITS AND CORRESPONDING WEIGHTS

FOR THE DEFINITION OF (6)

J∗i m∗g λ∗ E∗spin P ∗sw ϑ∗∞

value 10 Kg 0.20 m 2 · 104 J 5 W 1.25 rad
wi 0.1 5 5 · 10−5 0.2 0.8

B. Results and analysis

The optimization problem (3) that minimizes (6) over the
variables (4) enforcing the constraints (13) is solved in Matlab
using the fmincon routine. Table II lists the optimal parameters
and the corresponding cost function terms.

TABLE II
OPTIMAL DESIGN PARAMETERS.

Optimization variable value

R 8 cm
α 0.71
h 4.2 cm
ω̄ 9800 rpm
Ωρ 0.65 Hz
ξρ 0.68

Cost function value

J1 = mg 3.2 kg
J2 = λ 0.22 m
J3 = Espin 8100 J
J4 = Psw 2.4 W
J5 = ϑ∞ 35◦

A sensitivity analysis complements these results. Fig. 4
shows the outcomes of the optimization whend carried out
for different values of the weights. In each column, the ith

weight is changed (for example, in the first column the weight
m̄g , referred to the cost function J1): the top row shows
the effect of such change on the optimal design variables
whereas the bottom one depicts the impact on the cost function
terms Ji. For the sake of a more clear representation, instead
of parametrizing the different lines according to the weights
values, the corresponding cost function changes are used.

For instance, the first column shows how the optimal
actuator design changes if a reduction of the overall flywheel
mass is needed. The top plot reveals that reducing the mass
(lines where mg < 0%) leads to a geometric redistribution in
the flywheels that result less thick (the parameter h is reduced)
and radially fuller (α increases). However, such redistribution
is non-optimal in terms of gyroscopic inertia since some mass
is moved from a peripheral to a central position and the
spin speed ω̄ needs to increase. It is interesting to notice
that all the design objectives are equivalently competing: in
fact, for each cost modification an almost equivalent change
is experienced in all the other cost functions. Thus, sub-
grouping of competing objectives is not feasible and remarks
the challenges in the application of Pareto approaches for the
solution of the MOO problem.

Beside the tradeoffs, the sensitivity analysis provides quan-
titative indications for the designer. As an example, inspecting
the third column, if one wants to almost half the spin reference
speed, they have to cope with at least a 15% increase of
volume (λ), flywheel mass, swing angle and swing actuation
power. These numbers are useful to assess if such spin speed
reduction is compatible with other design constraints and
feasibility.

As final remark, notice how the closed-loop parameters ξρ
and Ωρ are mostly sensitive to the swing related variables,
namely the swing actuation power Psw and the final swing
angle ϑ∞: the roll stabilization closed-loop response can be
fastened (thanks to the increase of Ωρ) almost linearly w.r.t. the
available swing actuation power and decreasing the damping
of the complex poles ξρ has a significant impact on the
reduction of the swing angle ϑ∞.
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Fig. 4. Sensitivity analysis of the design parameters and corresponding cost function with respect to the weights wi values.

IV. CONTROLLER DESIGN

A. Internal controllers - Spin and swing speed

The inner, as in Fig. 2, controllers are classical servo-loops
closed on the swing and spin dynamics. They are designed
considering two factors. Firstly, the spin speed controller must
be capable of reaching and keeping the target speed ω̄. The
second requirement is control-oriented: the optimal design sets
quantitative targets for the closed-loop roll dynamics, i.e the
natural frequency Ωρ and the damping ξρ, and the internal
swing speed loop must be faster than these dynamics to
effectively apply the cascade control architecture. In practice,
considering that the required dynamics feature a settling time
of tset = 1.8s an internal swing control bandwidth higher
than 4Hz should be guaranteed for the swing speed controller.
These considerations lead to a simplified model of the swing
and spin (14) dynamics.

ϑ̇i = ˙̄ϑi, ω̇i = 0. (14)

B. External controller - Roll dynamics

After the system co-design is solved, the system control spe-
cialist must design a control law which is capable of stabilizing
the vehicle in a general condition, not only in the considered
reference scenario. This, unfortunately, is usually not an im-
mediate task, see [25]. However, the proposed co-design sets
clear targets for the external controller: the roll closed-loop
dynamics must match a second order asymptotically stable
system with parameters Ωρ and ξρ. This naturally suggests the
use of a linear state-feedback control law, whose parameters
are computed by means of the pole placement method. Within
this framework, it is also possible to address other closed-
loop objectives, important for a practical controller realization,
but secondary with respect to the main vehicle stabilization

goal. These secondary objectives can be achieved without any
modification to the actuator design: for this reason they have
not been explicitly included in the co-design, in order to keep
the optimization problem as simple as possible.

To address the control law design, a control-oriented model
of the system is needed. Firstly, the roll dynamics equations
(1a) are rewritten as

ρ̈ =
Mlg

I
ρ− Igz

I
ω̄
(

˙̄ϑ1 + ˙̄ϑ2

)
(15a)

ϑ̇1 = ˙̄ϑ1

ϑ̇2 = ˙̄ϑ2,
(15b)

where (15a) comes from the linearisation of the dynamics
around the nominal stabilized equilibrium, ρ, ρ̇ = 0 and
ϑ1,2 = 0 and constant speed ω̄. Equations (15b) reflect the
control-oriented description of the swing dynamics, as in (14).

A more convenient form of the control-oriented
model is obtained by considering the counter (16a)
and in-phase (16b) swing movements of the flywheels:

ϑ̇ =
ϑ̇1 + ϑ̇2

2

˙̄ϑ =
˙̄ϑ1 + ˙̄ϑ2

2

(16a)
∆ϑ̇ =

ϑ̇1 − ϑ̇2

2

∆ ˙̄ϑ =
˙̄ϑ1 − ˙̄ϑ2

2

(16b)

The linearised system equations (15) can be then written in
the state-space form:

ẋ =


0 1 0 0
a 0 0 0
0 0 0 0
0 0 0 0

x +


0 0
b 0
1 0
0 1

u (17)
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with a = Mlg
I , b = −2

Igz
I ω̄ and

x =


x1

x2

x3

x4

 =


ρ
ρ̇
ϑ

∆ϑ

 =

[
xϑ
x∆

]
u =

[
uϑ
u∆

] [ ˙̄ϑ

∆ ˙̄ϑ

]

Equations (17) reveal that the roll and the counter-phase swing
dynamics ϑ are decoupled form the in-phase ∆ϑ ones; thus
the in-phase dynamics x∆ control is addressed at a later stage.

The closed-loop roll and counter-phase system dynamics
(xϑ) are further manipulated, based on the following consid-
erations:
• the state vector xϑ is augmented including the integral

of the swing angle ϑ

xϑ =
[
ρ ρ̇ ϑ ϑ∫ ]T

• a state feedback control law is implemented, including a
bias term β corrupting the roll angle measure.

uϑ = KTy =
[
kρ̇ kρ kϑ kϑ∫

]
ρ+ β
ρ̇
ϑ
ϑ∫


This additional variable models the roll angle estimation
uncertainties and the lateral vehicle unbalances (due to
asymmetric loads or driver posture) that imply a non null
roll angle equilibrium position.

The closed-loop dynamics eventually become:

ẋϑ =


0 1 0 0

(a + bkρ̇) bkρ bkϑ bkϑ∫
kρ̇ kρ kϑ kϑ∫
0 0 1 0

xϑ +


0
bkρ̇
kρ̇
0

β
(18)

Equations (18) reveal that the control of the roll dynamics,
matching the parameters Ωρ and ξρ, could be achieved with the
sole feedback of the roll and the roll rate measures (i.e. setting
kϑ = kϑ∫ = 0). However, in presence of a non-zero roll bias β
(that could be caused by a movement of the rider, for example),
the swing angle, which features a marginally stable dynamics,
would diverge. To avoid this issue, one could set a non-
null reference roll angle, compensating for the bias. However,
finding this value is not trivial and practically infeasible as the
compensation would need to be extremely precise.

The hereby solution is to include the swing angle in the
feedback variables (kϑ 6= 0) to stabilize its dynamics: in case
of roll biases, the flywheel divergence is prevented and this
indirectly yields the vehicle robust stabilization. Moreover,
including the swing integral variable in the feedback retrieves
the angle back towards the desirable null position. The idea of
activating a swing angle lure strategy at the end of the stabi-
lization manoeuvre, has been presented in [15]. We implement
such idea in a more formal and practical way, that does not
require any end-of-stabilization trigger (that indeed makes the
approach in [15] quite difficult to be applied in practice).

The benefits of including the flywheel variables ϑ and ϑ∫
in the feedback are shown in Fig. 5, that shows the vertical
stabilization when the roll measure is corrupted with bias,

with the three considered feedback alternatives. The upper
plot shows the measured roll angle – affected by the bias
β – and the lower plot the flywheel swing angle. When
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Fig. 5. Simulation of an uprise stabilization with a biased roll angle measure
using different choices of feedback variables.

only the roll variables are used for the feedback action the
system is stabilized only for few seconds and, as the flywheel
angle reaches high values, the gyroscopic effect is no longer
enough to produce the torque required to keep the vehicle
in the non-equilibrium position. The inclusion of the swing
variables allows the effective stabilization of the vehicle, and
when the swing integral is included the flywheels relocation to
the centered position is obtained. As expected, the controller
stabilizes the vehicle around a non-zero roll angle (in particular
around the roll value that matches the bias β).

The definition of the controller parameters K, relies on the
pole placement method. The two additional degrees of freedom
reflect in an augmented vector of desired closed-loop poles:

λdes =

 −ξρΩρ ± jΩρ
√

1− ξ2
ρ

λϑ
λϑ∫

 .
The position of the two additional poles is chosen according
to the following rationale:

1) the two poles must be located at a sufficient low fre-
quency with respect to the internal actuator controller
ones, to preserve the cascaded controller architecture;

2) the smaller pole location defines the settling time of the
flywheels in the centered position;

3) higher values of λϑ and λϑ∫ yield a smaller sensitivity
of the flywheel swing angle to the bias affecting the
measure;

4) increasing the values of λϑ and λϑ∫ requires an increase
of actuator power (as in (11));

5) the choice of λϑ and λϑ∫ has an impact on the system
robustness w.r.t. the driver mass value.

Fig. 6 graphically represents points 3) and 4). To quantitatively
assess point 5), Fig. 7 shows the couples λϑ - λϑ∫ which result
in a successful vehicle stabilization (gray area) for different
driver mass, md, values. As the driver mass increases the
feasibility region shrinks. Still, this happens for significant
variations (over 30 kilograms with respect to the nominal
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Fig. 6. Effect of different locations of the desired closed-loop poles λϑ and
λϑ∫ on the maximum swing angle and actuator power in a roll biased vertical
stabilization manoeuvre.

value); in view of a possible real application of the gyroscopic
stabilizer one could make use of available tools for mass
estimation, see e.g. [30] and adapt the controller parameters
accordingly.
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Fig. 7. Combinations of λϑ - λϑ∫ values that result in a successful vehicle
stabilization starting from a 1◦ initial condition (grey area) as function of the
driver mass (70kg is the nominal controller design value).

The stabilization of the in-phase dynamics can follow the
same rationale used for the counter-phase ones, acting on the
control variable u∆ = ∆ ˙̄ϑ. Using the state-feedback control
law u∆ = k∆x∆ the closed-loop dynamics become:

ẋ∆ = k∆x∆. (19)

The asymptotic stabilization of the in-phase dynamics is much
simpler, being independent from the vehicle roll dynamics.
The value of k∆ is related to the location of the closed-loop
pole of such dynamics: since in-phase movements are expected
to be related to small flywheel differences – for example in
terms of mass, frictions etc. – it is not mandatory to enforce
fast closed-loop dynamics.

V. EXPERIMENTAL RESULTS

The previous sections focused on designing the system and
the controller. The design has been carried out under some
simplifying hypothesis. This section, by building and testing
a prototype – according to the results of the optimization
based design – provides proof that the simplifying assumptions
do not limit the applicability of the proposed approach. The
design of Section III lead to the actuator shown in Fig. 1:
the prototype is installed in place of the tail box of a Ducati
Multistrada 1260, whereas the saddlebags house the hydraulic
and the electronic components. The flywheel weighs 4 kg
and their yaw inertia is 0.0169 kg·m2. The slightly different
flywheels parameters, with respect to the nominal design, are
due to a 8mm disk that fills the hollow cylinder, which is
required to guarantee the structural integrity of the actuator
and ease the spin motor anchoring. The vehicle is equipped
with wheel encoders that measure the vehicle speed v, and an
Inertial Measurement Unit that provides the roll rate ρ̇ and an
estimate of the vehicle roll angle ρ. The gyroscopic actuator
comes with two spin motor encoders (measuring ω1,2), and
two linear potentiometers that provide the swing angles ϑ1,2

and their angular rates ϑ̇1,2.
The flywheels are set at 10 000 rpm. Fig. 8 shows that the

spin controller tracks the reference precisely, despite the swing
and roll vehicle movements occurring during the stabilization
test (the one presented in the later Fig. 12). The swing speed
controller features a bandwidth of approximately 7 Hz, as
visible in the reference step response shown in the bottom
plot of Fig. 8. Note how the controllers successfully decouple
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Fig. 8. Experimental spin (top) and swing (bottom) speed internal controller
performance.
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the spin and swing dynamics.
The location of the additional closed-loop swing poles has

been tuned experimentally following the indications provided
in Section IV.

Fig. 9 assesses the stabilizing capability in the co-design
reference scenario (i.e. starting from a non zero roll angle). The
vehicle roll is stabilized and the flywheel angles go back to the
zero starting position. Note that the equilibrium position does
not coincide with a null vehicle roll angle, as discussed. The
experimental upright stabilization manoeuvre has the same
settling time as the simulated one of Figure 5; one could note
a slightly larger overshoot which is explained by the simplified
simulation model.
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Fig. 9. Experimental vehicle upright stabilization manoeuvre.

Fig. 10 exemplifies the role of the swing angle feedback.
It compares the full state (roll and swing variables) and the
partial (roll variables) feedback solutions, where in the latter
case the roll measure is manually compensated so to result in
an almost zero value at the equilibrium. The experiments prove

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

R
o

ll 
[°

]

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-40

-30

-15

0  

15 

S
w

in
g

 a
n

g
le

 (
m

e
a

n
) 

[°
]

roll+swing variables feedback

roll variables feedback

Fig. 10. Experimental comparison between the partial (roll variables) and
full (roll and swing variables) state feedback.

how both controllers succeed in maintaining the motorbike
upright. However, the non perfect roll reference computation
causes the drift of the flywheels for roll variables strategy,
which eventually hit the endstops and cause the motorcycle to
fall.

Fig. 11 refers to an upright stabilization, with one flywheel
starting from a position very close to the endstop. This

experiment highlights the role of the in-phase controller. The
counter-phase and in-phase controllers work simultaneously to
stabilize the vehicle, compensate the roll angle estimate offset,
eventually leading both flywheels to the zero rest position
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Fig. 11. Experimental vehicle upright stabilization manoeuvre with a mis-
aligned initial flywheel angles.

The model used in the design, assumes a rigid rider; in
order to check the impact of this hypothesis, we consider
both external disturbances – Fig. 12 – and riders’ mass and
movements – Fig. 13. In the first figure, the system is initially
stable and, at the vertical lines, perturbed by an external
action: the roll variation immediately triggers the flywheels
movement, maintaining the vehicle equilibrium. The second
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Fig. 12. Experimental assessment of the controller robustness with respect
to external disturbance: at vertical lines a shove on the vehicle handlebar is
applied.

figure tests three different conditions: without the rider, with
the rider standing as still as possible and with the rider
behaving naturally. Note that the system stability is always
achieved and that the equilibrium roll reaches different values,
indicating that the presence of the rider causes a lateral shift
of the COG. Further, the system successfully manages time-
varying unbalances induced by the rider. These unbalances
result in more variable roll and swing angle trajectories that
are however stable. This analysis proved the robustness of the
design against rider’s un-modelled behaviours.
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Fig. 13. Controller robustness with respect to different load conditions:
without rider, with an immobile rider and with a moving rider.

VI. CONCLUSION

This paper tackles the vertical stabilization of powered two-
wheelers (PWTs) by means of Control Moment Gyroscope
(CMG). The novelty of the paper lies in the fact that not
only the stabilizing control strategy is addressed, but also the
design of the gyroscopic actuator. This last point is particularly
relevant when outlooking a real use of such devices in the
development, for instance of PWT-oriented ADAS, and it
is not properly addressed in literature. In fact, the space
and weight constraints typical of PWTs make the actuator
design challenging. The overall co-design process is eventually
validated, showing the experimental stabilization of a real
vehicle.

The design of the CMG is framed within a genuine co-
design approach, where the solution of a multi-objective
optimization problem jointly provides both the main physical
and control system parameters. The proposed cost function en-
sembles different objectives, by means of a weighted sum; this
allows the designer to manage the relevance of each cost term
according to their needs. The paper exemplifies this approach
with a sensitivity analysis the uncovers the quantitative link
between the physical and the control parameters.

The control strategy is based on a full state feedback.
The inclusion of the swing angle and its integral provides
closed-loop robustness w.r.t. practical issues like biases in the
roll angle measure and driver movements on the saddle. The
final experimental validation shows that the joint actuator and
controller design succeeds in stabilizing a touring motorcycle
in realistic scenarios, using a relatively compact CMG. Such
results give an interesting outlook for the future employment
of CMGs in powered two-wheeler applications.
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