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1 Introduction

Let us consider a stochastic evolution equation of the type

du+Audt = F (u) dt+B(u) dW, u(0) = u0, (1)

where A is a linear maximal monotone operator on a Hilbert space of functions
H, the coefficients F and B satisfy suitable integrability assumptions, and W
is a cylindrical Wiener process. Precise assumptions on the data of the Cauchy
problem 1 are given in §2 below. Our goal is to establish a maximum principle for
(local) mild solutions to (1), i.e. to provide sufficient conditions on the operator
A and on the coefficients F and B such that positivity of the initial datum u0

implies positivity of the solution u (see Theorem 2 below).
A simpler problem was studied in [10], where coefficients F and B are as-

sumed to be Lipschitz continuous. Here we simply assume that F and B satisfy
rather minimal integrability conditions and that a local mild solution exists. On
the other hand, in [10] the linear operator A need only generate a positivity
preserving semigroup, while here we require that A generates a sub-Markovian
semigroup.

We refer to [10] for a discussion about the relation of other positivity results
for solutions to stochastic partial differential equations with ours. It is how-
ever probably worth pointing out that most existing results seem to deal with
equations in the variational setting (see, e.g., [1, 7, 8, 13]).
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As an application, we provide an alternative, more direct proof of the posi-
tivity of forward rates in the Heath-Jarrow-Morton [5] framework with respect
to the one in [10]. This is obtained, as is now classical, viewing forward curves
as solutions to the so-called Musiela stochastic PDE (see, e.g., [3, 11]).

2 Assumptions and main result

Let (Ω,F ,P) be a probability space endowed with a complete right-continuous
filtration (Ft)t∈[0,T ], with T > 0 a fixed final time, on which all random ele-
ments will be defined. Identities and inequalities between random variables are
meant to hold P-almost surely, and two stochastic processes are declared equal,
unless otherwise stated, if they are indistinguishable. The σ-algebra of progres-
sively measurable subsets of Ω × [0, T ] will be denoted by R. We shall denote
a cylindrical Wiener process on a separable Hilbert space U by W . Standard
notation and terminology of stochastic calculus for semimartingales will be used
throughout (see, e.g., [12]). In particular, given an adapted process X and a
stopping time τ , Xτ will denote the process X stopped at τ . Similarly, if X is
also càdlàg, Xτ− stands for the process X pre-stopped at τ .

For any separable Hilbert spaces E1 and E2, we use the symbols L (E1, E2)
L 2(E1, E2) for the space of linear continuous and Hilbert-Schmidt operators
from E1 to E2, respectively. The space of continuous bilinear maps from E1×E1

to E2 will be denoted by L2(E1;E2). The n-th order Fréchet and Gâteaux
derivatives of a function Φ : E1 → E2 at a point x ∈ E1 are denoted by DnΦ(x)
and Dn

GΦ(x), respectively, omitting the superscript if n = 1, as usual.

We shall work under the following standing assumptions.

(A1) There exists an open set O in Rd, d ≥ 1, and a Borel measure µ such that
H = L2(O, µ).

The norm and scalar product on H will be denoted by ‖·‖ and 〈·, ·〉, respectively.

(A2) A is a linear maximal monotone operator on H such that its resolvent is
sub-Markovian and is a contraction with respect to the L1(O, µ)-norm.

Recall that the resolvent of A, i.e. the family of linear continuous operators on
H defined by

Jλ := (I + λA)−1, λ > 0,

is said to be sub-Markovian if, for every λ > 0 and every φ ∈ H such that
0 ≤ φ ≤ 1 a.e. in O, one has 0 ≤ Jλφ ≤ 1 a.e. in O.

(A3) F : Ω×[0, T ]×H → H and B : Ω×[0, T ]×H → L 2(U,H) are R⊗B(H)-
measurable, and there exists a constant C > 0 such that

−〈F (ω, t, h), h−〉+
1

2

∥∥1{h<0}B(ω, t, h)
∥∥2

L 2(U,H)
≤ C‖h−‖2L2(O)

for all (ω, t, h) ∈ Ω × [0, T ] ×H. In particular, note that choosing h = 0 yields
F (·, 0) = 0 and B(·, 0) = 0.
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(A4) u0 ∈ L0(Ω,F0;H)

Definition 1 A local mild solution to the Cauchy problem (1) is a pair (u, τ),
where τ is a stopping time with τ ≤ T , and u : [[0, τ [[→ H is a measurable adapted
process with continuous trajectories such that, for any stopping time σ < τ , one
has

(i) S(t− ·)F (u)1[[0,σ]] ∈ L0(Ω;L1(0, t;H)) for all t ∈ [0, T ];
(ii) S(t− ·)B(u)1[[0,σ]] ∈ L0(Ω;L2(0, t; L 2(U,H))) for all t ∈ [0, T ],

and

u = S(·)u0 +

∫ ·
0

S(· − s)F (s, u(s)) ds+

∫ ·
0

S(· − s)B(s, u(s)) dW (s).

The last identity is to be understood in the sense of indistinguishability of pro-
cesses defined on the stochastic interval [[0, τ [[. Here the stochastic convolution
is defined on [[0, σ]], for every stopping time σ < τ , as(∫ t

0

S(t− s)B(s, u(s))1[[0,σ]](s) dW (s)

)
t∈[0,σ]

.

The main result is the following.

Theorem 2 Let (u, τ) be a local mild solution to the Cauchy problem (1) such
that, for every stopping time σ < τ , one has

(i) F (u)1[[0,σ]] ∈ L0(Ω;L1(0, T ;H));
(ii) B(u)1[[0,σ]] ∈ L0(Ω;L2(0, T ; L 2(U,H))).

If u0 ≥ 0 a.e. in O, then uτ−(t) ≥ 0 a.e. in O for all t ∈ [0, T ].

3 Auxiliary results

The arguments used in the proof of Theorem 2 (see §4 below) rely on the fol-
lowing results, that we recall here for the reader’s convenience. The first is a
continuous dependence result for mild solutions to stochastic evolution equa-
tions in the form (1) with respect to the coefficients and the initial datum. This
is a consequence of a more general statement proved in [9, Corollary 3.4]. Let

(u0n)n ⊂ L0(Ω,F0;H),

(fn)n, f ⊂ L0(Ω;L1(0, T ;H)),

(Gn)n, G ⊂ L0(Ω;L2(0, T ; L 2(U,H)))

be such that the H-valued processes fn, f , Gnv, and Gv are strongly measurable
and adapted for all v ∈ U and n ∈ N. Then the Cauchy problems

dun +Aun dt = fn dt+Gn dW, un(0) = u0n,

and
du+Audt = f dt+GdW, u(0) = u0,

admit unique mild solutions un and u, respectively.
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Proposition 3 Assume that

u0n −→ u0 in L0(Ω;H),

fn −→ f in L0(Ω;L1(0, T ;H)),

Gn −→ G in L0(Ω;L2(0, T ; L 2(U,H))).

Then un → u in L0(Ω;C([0, T ];H)).

The second result we shall need is a generalized Itô formula, the proof of
which can be found in [10].

Proposition 4 Let G : H → R be continuously Fréchet differentiable and DG
be Gâteaux differentiable, with D2

GG : H → L2(H;R) such that (ϕ, ζ1, ζ2) 7→
D2
GG(ϕ)[ζ1, ζ2] is continuous, and assume that G, DG, and D2

GG are polyno-
mially bounded. Moreover, let the processes f ∈ L0(Ω;L1(0, T ;H)) and Φ ∈
L0(Ω;L2(0, T ; L 2(U,H))) be measurable and adapted, and v0 ∈ L0(Ω,F0;H).
Setting

v := v0 +

∫ ·
0

f(s) ds+

∫ ·
0

Φ(s) dW (s),

one has

G(v) = G(v0) +

∫ ·
0

(
DG(v)f +

1

2
Tr
(
Φ∗D2

GG(v)Φ
))

(s) ds

+

∫ ·
0

DG(v(s))Φ(s) dW (s).

Finally, we recall an inequality for maximal monotone linear operators with
sub-Markovian resolvent, due to Brézis and Strauss (see [2, Lemma 2]).3

Lemma 5 Let β : R → 2R be a maximal monotone graph with 0 ∈ β(0). Let
ϕ ∈ Lp(O) with Aϕ ∈ Lp(O), and z ∈ Lq(O) with z ∈ β(ϕ) a.e. in O, where
p, q ∈ [1,+∞] and 1/p+ 1/q = 1. Then∫

O
(Aϕ)z ≥ 0.

We include a sketch of proof for the reader’s convenience, assuming for simplicity
that β : R → R is continuous and bounded. Let j : R → R+ a (differentiable,
convex) primitive of β and

Aλ :=
1

λ

(
I − (I + λA)−1

)
=

1

λ
(I − Jλ), λ > 0,

the Yosida approximation of A. It is well known that Aλ is a linear maximal
monotone bounded operator on H and that, for every v ∈ D(A), Aλv → Av as

3 For a related inequality cf. also [14, Lemma 5.1].
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λ→ 0. Let v ∈ D(A). The convexity of j implies, for every λ > 0,〈
Aλv, β(v)

〉
L2 =

1

λ

〈
v − Jλv, j′(v)

〉
L2

≥ 1

λ

(∫
O
j(v)−

∫
O
j(Jλv)

)
=

1

λ

(
‖j(v)‖L1 − ‖j(Jλv)‖L1

)
.

Since Jλ is sub-Markovian and j is convex, the generalized Jensen inequality for
positive operators (see [4]) and the contractivity of Jλ in L1 imply that∥∥j(Jλv)

∥∥
L1 ≤

∥∥Jλj(v)
∥∥
L1 ≤

∥∥j(v)
∥∥
L1 ,

i.e. that 〈
Aλv, β(v)

〉
L2 ≥ 0

for every λ→ 0. Passing to the limit as λ→ 0 yields 〈Av, β(v)〉L2 ≥ 0.

4 Proof of Theorem 2

The proof is divided into two parts. First we show that a local mild solution u
to (1) can be approximated by strong solutions to regularized equations. As a
second step, we show that such approximating processes are positive, thanks to
a suitable version of Itô’s formula.

4.1 Approximation of the solution

Let (u, τ) be a local mild solution to (1). Let σ be a stopping time with σ < τ ,
so that u : [[0, σ]]→ H is well defined, and set

ū := uσ ∈ L0(Ω;C([0, T ];H)),

F̄ := F (·, u)1[[0,σ]] ∈ L0(Ω;L1(0, T ;H)),

B̄ := B(·, u)1[[0,σ]] ∈ L0(Ω;L2(0, T ; L 2(U,H))).

Note that, by assumption (A3), F (·, 0) = 0 and B(·, 0) = 0, hence

F̄ = F (·, u)1[[0,σ]] = F (·, u1[[0,σ]]),

B̄ = B(·, u)1[[0,σ]] = B(·, u1[[0,σ]]).

In particular, one has

ū(t) := S(t)u0 +

∫ t

0

S(t− s)F̄ (s) ds+

∫ t

0

S(t− s)B̄(s) dW (s) (2)

for all t ∈ [0, T ] P-a.s., or, equivalently, ū is the unique global mild solution to
the Cauchy problem

dū+Aū dt = F̄ dt+ B̄ dW, ū(0) = u0.
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Recalling that Jλ ∈ L (H,D(A)) for all λ > 0, one has

F̄λ := JλF (·, u)1[[0,σ]] = JλF̄ ∈ L0(Ω;L1(0, T ;D(A))),

B̄λ := JλB(·, u)1[[0,σ]] = JλB̄ ∈ L0(Ω;L2(0, T ; L 2(U,D(A)))),

u0λ := Jλu0 ∈ L0(Ω,F0;D(A)),

where the second assertion is an immediate consequence of the ideal property of
Hilbert-Schmidt operators. The process uλ : Ω × [0, T ]→ H defined as

uλ(t) := S(t)u0λ+

∫ t

0

S(t− s)F̄λ(s) ds+

∫ t

0

S(t− s)B̄λ(s) dW (s), t ∈ [0, T ],

(3)
therefore belongs to L0(Ω;C([0, T ];D(A))) and is the unique global strong solu-
tion to the Cauchy problem

duλ +Auλ dt = F̄λ dt+ B̄λ dW, uλ(0) = u0λ,

i.e.

uλ +

∫ ·
0

Auλ(s) ds = u0λ +

∫ ·
0

F̄λ(s) ds+

∫ ·
0

B̄λ(s) dW (s) (4)

in the sense of indistinguishable H-valued processes. Furthermore, since Jλ is
contractive and converges to the identity in the strong operator topology of
L (H,H) as λ→ 0, i.e. Jλh→ h for every h ∈ H, one has

u0λ −→ u0 in L0(Ω;H),

F̄λ −→ F̄ in L0(Ω;L2(0, T ;H)),

B̄λ −→ B̄ in L0(Ω;L2(0, T ; L 2(U,H))),

where the second convergence follows immediately by the dominated convergence
theorem, and the third one by a continuity property of Hilbert-Schmidt operators
(see, e.g., [6, Theorem 9.1.14]). Finally, thanks to Proposition 3, we deduce that

uλ −→ ū in L0(Ω;C([0, T ];H)). (5)

4.2 Positivity

Let us introduce the functional

G : H −→ R+,

G : ϕ 7−→ 1

2

∫
O
|ϕ−|2,

as well as the family, indexed by n ∈ N, of regularized functionals

Gn : H −→ R+,

Gn : ϕ 7−→ 1

2

∫
O
gn(ϕ),
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where gn : R→ R+ is convex, twice continuously differentiable, identically equal
to zero on R+, strictly positive and decreasing on R−, such that (g′′n) is uniformly
bounded, and g′n(r) → −r− as n → ∞ for all r ∈ R. The existence of such an
approximating sequence is well known (see, e.g., [15, §3] for details). One can
verify (see, e.g., [10]) that, for every n ∈ N, Gn is everywhere continuously
Fréchet differentiable with derivative

DGn : H −→ L (H,R) ' H,
DGn : ϕ 7−→ g′n(ϕ),

and that DGn : H → H is Gâteaux differentiable with Gâteaux derivative given
by

D2
GGn : H −→ L (H,H) ' L2(H;R),

D2
GGn : ϕ 7−→

[
(ζ1, ζ2) 7→

∫
O
g′′n(ϕ)ζ1ζ2

]
.

Furthermore, the map (ϕ, ζ1, ζ2) 7→ D2
GGn(ϕ)(ζ1, ζ2) is continuous. Proposition 4

applied to the process uλ defined by (4) then yields

Gn(uλ) +

∫ ·
0

〈
Auλ, DGn(uλ)

〉
(s) ds

= Gn(u0λ) +

∫ ·
0

DGn(uλ(s))B̄λ(s) dW (s)

+

∫ ·
0

(
DGn(uλ)F̄λ +

1

2
Tr
(
B̄∗λD

2
GGn(uλ)B̄λ

))
(s) ds

(6)

Recalling that g′n : R→ R is increasing, Lemma 5 implies that

〈Auλ, DGn(uλ)〉 = 〈Auλ, g′(uλ)〉 ≥ 0, (7)

hence also, denoting a complete orthonormal system of U by (ej),∫
O
gn(uλ(t)) ≤

∫
O
gn(u0λ) +

∫ t

0

g′n(uλ(s))B̄λ(s) dW (s)

+

∫ t

0

g′n(uλ(s))F̄λ(s) ds+
1

2

∫ t

0

∞∑
j=0

∫
O
g′′n(uλ(s))

∣∣B̄λ(s)ej
∣∣2 ds

for every t ∈ [0, T ] and n ∈ N. We are now going to pass to the limit as n→∞
in this inequality. Recalling that (g′′n) is uniformly bounded and that the paths
of uλ belong to C([0, T ];H) P-a.s., the dominated convergence theorem yields∫

O
gn(uλ(t)) −→ 1

2

∥∥u−λ (t)
∥∥2 ∀t ∈ [0, T ],∫

O
gn(u0λ) −→ 1

2

∥∥u−0λ∥∥2
.
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Note that u0 is positive and Jλ is positivity preserving, hence u0λ = Jλu0 is also
positive and, in particular, u−0λ is equal to zero a.e. in O. Let us introduce the
(real) continuous local martingales (Mn)n∈N, M , defined as

Mλ,n
t :=

∫ t

0

g′n(uλ(s))B̄λ(s) dW (s),

Mλ
t := −

∫ t

0

(u−λ (s)B̄λ(s) dW (s).

One has, by the ideal property of Hilbert-Schmidt operators,

[
Mλ,n −Mλ,Mλ,n −Mλ

]
t

=

∫ t

0

∥∥(g′n(uλ(s)) + u−λ (s))B̄λ(s)
∥∥2

L 2(U,R)
ds

≤
∫ t

0

∥∥g′n(uλ(s)) + u−λ (s)
∥∥2∥∥B̄λ(s)

∥∥2

L 2(U,H)
ds

for all t ∈ [0, T ]. Recalling that uλ ∈ L0(Ω;C([0, T ];H)) and g′n(r) → −r− for
every r ∈ R, it follows by the dominated convergence theorem that [Mλ,n −
Mλ,Mλ,n −Mλ]→ 0, hence that Mλ,n →Mλ, as n→∞, i.e. that∫ t

0

g′n(uλ(s))B̄λ(s) dW (s) −→ −
∫ t

0

u−λ (s)B̄λ(s) dW (s)

for all t ∈ [0, T ]. Similarly, the pathwise continuity of uλ and the dominated
convergence theorem yield∫ t

0

g′n(uλ(s))F̄λ(s) ds −→ −
∫ t

0

u−λ (s)F̄λ(s) ds

for all t ∈ [0, T ] as n → ∞. Finally, the pointwise convergence g′′n → 1R− and
the dominated convergence theorem imply that∫ t

0

∞∑
j=0

∫
O
g′′n(uλ(s))

∣∣B̄λ(s)ej
∣∣2 ds −→ ∫ t

0

∞∑
j=0

∫
O
1{uλ(s)<0}

∣∣B̄λ(s)ej
∣∣2 ds

for all t ∈ [0, T ] as n→∞. We are thus left with

∥∥u−λ (t)
∥∥2 ≤

∫ t

0

(
−2〈u−λ (s), F̄λ(s)〉+

∞∑
j=0

∫
O
1{uλ(s)<0}

∣∣B̄λ(s)ej
∣∣2) ds

−
∫ t

0

u−λ (s)B̄λ(s) dW (s).

Let us now take the limit as λ→ 0: if follows from the convergence property (5)
and the continuous mapping theorem that∥∥u−λ (t)

∥∥2 −→
∥∥ū−(t)

∥∥2
.
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Recalling that F̄λ = JλF (ū), which converges pointwise to F (ū), one has∫ t

0

−2
〈
u−λ (s), F̄λ(s)

〉
ds −→

∫ t

0

−2
〈
ū−(s), F (s, ū(s))

〉
ds

Appealing again to (5), it is not difficult to check that

1{ū(s)<0} ≤ lim inf
λ→0

1{uλ(s)<0} a.e. in O ∀s ∈ [0, T ].

Hence it follows from Fatou’s lemma that∫ t

0

∞∑
j=0

∫
O
1{uλ(s)<0}

∣∣B̄λ(s)ej
∣∣2 ds −→ ∫ t

0

∞∑
j=0

∫
O
1{ū(s)<0}

∣∣B(s, ū(s))ej
∣∣2 ds.

Let us define the real continuous local martingales (Mλ)λ>0, M , defined as

Mλ
t := −

∫ t

0

u−λ (s)B̄λ(s) dW (s),

Mt := −
∫ t

0

ū−(s)B̄(s) dW (s).

One has[
Mλ −M,Mλ −M

]
t

=

∫ t

0

∥∥u−λ (s)B̄λ(s)− ū−(s)B̄(s)
∥∥2

L 2(U,R)
ds,

where, by the ideal property of Hilbert-Schmidt operators and the contractivity
of Jλ,∥∥u−λ B̄λ − ū−B̄∥∥L 2(U,R)

≤
∥∥(u−λ − ū

−)B̄λ
∥∥

L 2(U,R)
+
∥∥ū−(B̄λ − B̄)

∥∥
L 2(U,R)

≤
∥∥u−λ − ū−∥∥∥∥B̄∥∥L 2(U,H)

+
∥∥ū−∥∥∥∥B̄λ − B̄∥∥L 2(U,H)

.

Since uλ converges to ū in the sense of (5) and, as already seen, B̄λ → B̄ in
L0(Ω;L2(0, T ; L 2(U,H))), the dominated convergence theorem yields, for every
t ∈ [0, T ], [

Mλ −M,Mλ −M
]
t
−→ 0,

thus also ∫ t

0

u−λ (s)B̄λ(s) dW (s) −→
∫ t

0

ū−(s)B(s, ū(s)) dW (s).

Recalling assumption (A3), one obtains, for every t ∈ [0, T ],

‖ū−(t)‖2 ≤ 2C

∫ t

0

‖ū−(s)‖2 ds− 2

∫ t

0

ū−(s)B(s, ū(s)) dW (s),

thus also, integrating by parts,

e−2Ct‖ū−(t)‖2 ≤ −2

∫ t

0

e−2Csū−(s)B(s, ū(s)) dW (s) =: M̃t.
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The process M̃ is a positive local martingale, hence a supermartingale, with
M̃(0) = 0, therefore M is identically equal to zero. This implies that ‖ū−(t)‖ = 0
for all t ∈ [0, T ], hence, in particular, that u(t) is positive a.e. in O for all
t ∈ [0, T ]. By definition of ū, we deduce that

uσ ≥ 0 a.e. in Ω × [0, T ]×O

for every σ < τ . Since σ is arbitrary, this readily implies that

u ≥ 0 a.e. in [[0, τ [[×O,

thus completing the proof of Theorem 2.

Remark 6 In [10] the substantially weaker assumption was made that −A gen-
erates a positive semigroup. This was possible because F and B were assumed to
be Lipschitz continuous. In fact, in this case the process uλ, strong solution of
the equation obtained by replacing A with its Yosida approximation Aλ in (1),
i.e.

duλ +Aλuλ dt = F (uλ) dt+B(uλ) dW, uλ(0) = u0,

converges to the unique mild solution u to (1), and the positivity of uλ, for ev-
ery λ > 0, was shown. In the more general situation considered here, where F
and B are not supposed to be Lipschitz continuous, it is not even clear whether
the above regularized equation admits a solution at all. For this reason we in-
troduced a different approximation scheme in §4.1, that implies the need for an
estimate such as (7), which in turn is satisfied if −A generates a sub-Markovian
semigroup, rather than just a positive one.

5 Positivity of forward rates

Musiela’s stochastic PDE can be written as

du+Audt = β(t, u) dt+

∞∑
k=1

σk(t, u) dwk(t), u(0) = u0, (8)

where −A is (formally, for the moment) the infinitesimal generator of the semi-
group of translations, (wk)k∈N is a sequence of independent standard Wiener pro-
cesses, σk is a random, time-dependent superposition operator for each k ∈ N,
as well as β, and u takes values in a space of continuous functions, so that
u(t, x) := [u(t)](x), x ≥ 0, models the value of the forward rate prevailing at
time t for delivery at time t + x. In order to exclude arbitrage (or, more pre-
cisely, in order for the corresponding discounted bond price process to be a local
martingale), β needs to satisfy the so-called Heath-Jarrow-Morton no-arbitrage
condition

β(t, v) =

∞∑
k=1

σk(t, v)

∫ ·
0

[σk(t, v)](y) dy.
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In order for (8) to admit a solution with continuous paths, a by now standard
choice of state space is the Hilbert space Hα, α > 0, which consists of absolutely
continuous functions φ : R+ → R such that∥∥φ∥∥2

Hα
:= φ(∞)2 +

∫ ∞
0

|φ′(x)|2eαx dx <∞.

Under measurability, local boundedness, and local Lipschitz continuity condi-
tions on (σk), one can rewrite (8) as

du+Audt = β(t, u) dt+B(t, u) dW (t), u(0) = u0, (9)

where A is the generator of the semigroup of translations on Hα, W is a cylin-
drical Wiener process on U = `2, and B : Ω × R+ × H → L 2(U,H) is such
that

∞∑
k=1

∫ ·
0

σk(s, v(s)) dwk(s) =

∫ ·
0

B(s, v(s)) dW (s).

Under such assumptions on (σk), (8) admits a unique local mild solution with
values in Hα. If (σk) satisfy stronger (global) boundedness and Lipschitz conti-
nuity assumptions, then the local mild solution is in fact global. For details we
refer to [3], as well as to [10].

Positivity of forward rates, i.e. of the mild solution to (8), is established in
[10] by proving positivity of mild solutions in weighted L2 spaces to regular-
ized versions of (8). Such an approximation argument is employed because the
conditions on (σk) ensuring (local) Lipschitz continuity of the coefficients in the
associated stochastic evolution (9) equation in Hα do not imply (local) Lipschitz
continuity of the coefficients if state space is changed to a weighted L2 space.

Thanks to Theorem 2, we can give a much shorter, more direct proof of the
(criterion for the) positivity of forward rates. Let L2

−α denote the weighted space
L2(R+, e

−αx dx), and note that Hα is continuously embedded in L2
−α =: H. Let

us check that assumptions (A1), (A2), and (A3) are satisfied. Assumption (A1)
holds true with the choice O = R+, endowed with the absolutely continuous
measure m(dx) := e−αx dx. As far as assumption (A2) is concerned, a simple
computation shows that A + αI is monotone on L2

−α, and, by standard ODE
theory, one also verifies that the range of A + αI + I coincides with the whole
space L2

−α, therefore A+ αI is maximal monotone. Even though A itself is not
maximal monotone, this is clearly not restrictive, as the “correction” term αI
can be incorporated in β without loss of generality. To verify that the resolvent
Jλ ∈ L (H) of A + αI is sub-Markovian, let y ∈ H, so that Jλy ∈ D(A) is the
unique solution yλ to the problem

yλ − λy′λ + λαyλ = y.

If 0 ≤ y ≤ 1 a.e. in R+, then we have, multiplying both sides by (yλ − 1)+, in
the sense of the scalar product of H, that

(1 + λα)
〈
yλ, (yλ − 1)+

〉
−α − λ

〈
y′λ, (yλ − 1)+

〉
−α

=
〈
y, (yλ − 1)+

〉
−α ≤

〈
1, (yλ − 1)+

〉
−α.
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Here and in the following we denote the scalar product and norm of L2
−α simply

by 〈·, ·〉−α and ‖·‖−α, respectively. Since〈
yλ, (yλ − 1)+

〉
−α −

〈
1, (yλ − 1)+

〉
−α =

∥∥(yλ − 1)+
∥∥2

−α, (10)

we obtain∥∥(yλ − 1)+
∥∥2

−α −
λ

2

∫ ∞
0

d

dx
((yλ − 1)+)2(x)e−αx dx+ λα

〈
yλ, (yλ − 1)+

〉
−α ≤ 0,

where, integrating by parts,

− λ

2

∫ ∞
0

d

dx
((yλ − 1)+)2(x)e−αx dx

= −λα
2

∫ ∞
0

((yλ(x)− 1)+)2e−αx dx+
λ

2
((yλ(0)− 1)+)2

= −λα
2

〈
yλ, (yλ − 1)+

〉
−α +

λα

2

〈
1, (yλ − 1)+

〉
−α +

λ

2
((yλ(0)− 1)+)2

≥ −λα
2

〈
yλ, (yλ − 1)+

〉
−α.

Rearranging the terms yields

∥∥(yλ − 1)+
∥∥2

−α +
λα

2

〈
yλ, (yλ − 1)+

〉
−α ≤ 0,

where the second term on the left-hand side is positive by (10). Therefore
‖(yλ − 1)+‖−α = 0, which implies that yλ ≤ 1 a.e. in R+. A completely similar

argument, i.e. scalarly multiplying the resolvent equation by y−λ , also shows that
yλ ≥ 0 a.e. in R+, thus completing the proof that Jλ is sub-Markovian. We
still need to show that Jλ is contractive in L1

−α. Let y, z ∈ H and yλ := Jλy,
zλ := Jλz, so that

(yλ − zλ)− λ(yλ − zλ)′ + λα(yλ − zλ) = y − z. (11)

Define the sequences of functions (γk), (γ̂k) ⊂ RR as

γk : r 7→ tanh(kr), γ̂k : r 7→
∫ r

0

γk(s) ds,

and recall that, as k → ∞, γk converges pointwise to the sign function, and
γ̂k converges pointwise to the absolute value function. Scalarly multiplying (11)
with γk(yλ − zλ) yields

(1 + λα)
〈
yλ − zλ, γk(yλ − zλ)

〉
−α − λ

〈
(yλ − zλ)′, γk(yλ − zλ)

〉
−α

=
〈
y − z, γk(yλ − zλ)

〉
−α ≤

∥∥y − z∥∥
L1

−α

,
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where, integrating by parts,〈
(yλ − zλ)′, γk(yλ − zλ)

〉
−α

=

∫ ∞
0

(
γk(yλ − zλ)(x)(yλ − zλ)′(x)

)
e−αx dx

=

∫ ∞
0

d

dx
γ̂k(yλ − zλ)(x)e−αx dx

= −γ̂k(yλ(0)− zλ(0)) + α

∫ ∞
0

γ̂k(yλ − zλ)(x)e−αx dx

≤ α
∫ ∞

0

γ̂k(yλ − zλ)(x)e−αx dx.

This implies〈
yλ − zλ, γk(yλ − zλ)

〉
−α

+ λα
〈
yλ − zλ, γk(yλ − zλ)

〉
−α − λα

∫ ∞
0

γ̂k(yλ − zλ)(x)e−αx dx

≤
∥∥y − z∥∥

L1
−α

.

Taking the limit as k → ∞, the sum of the second and third term on the left-
hand side converges to zero by the dominated convergence theorem, while the
first term on the left-hand side converges to ‖yλ − zλ‖L1

−α
, thus proving that

∥∥yλ − zλ∥∥L1
−α

≤
∥∥y − z∥∥

L1
−α

,

i.e. that the resolvent of A+αI is contractive in L1
−α. We have thus shown that

assumption (A2) holds for A+αI. Moreover, assumption (A3) is satisfied if, for
example,

|σk(ω, t, x, r)|1{r≤0} . r−.

for all k ∈ N and (ω, t, x) ∈ Ω × R2
+ (see [10], where also slightly more general

sufficient conditions are provided). Since all integrability assumptions of The-
orem 2 are satisfied, as it follows by inspection of the proof of well-posedness
in Hα (see [3, 10, 11]), we conclude that, under the above assumptions on (σk),
forward rates are positive at all times.
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