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Abstract We define a new class of random probability
measures, approximating the well-known normalized gen-
eralized gamma (NGG) process. Our new process is defined
from the representation of NGG processes as discrete mea-
sures where the weights are obtained by normalization of
the jumps of Poisson processes and the support consists of
independent identically distributed location points, however
considering only jumps larger than a threshold ε. There-
fore, the number of jumps of the new process, called ε-NGG
process, is a.s. finite. A prior distribution for ε can be elicited.
We assume such a process as the mixing measure in a mix-
ture model for density and cluster estimation, and build an
efficient Gibbs sampler scheme to simulate from the pos-
terior. Finally, we discuss applications and performance of
the model to two popular datasets, as well as comparison
with competitor algorithms, the slice sampler and a posteri-
ori truncation.
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1 Introduction

The major goal of this work is the definition of a new class 
of nonparametric priors, which can be considered as an 
approx-imation of the distribution of a homogeneous 
normalized random measure with independent increments, 
namely the normalized generalized gamma process. Any 
homogeneous normalized random measure with 
independent increments (NRMI) can be represented as a 
discrete random probabil-ity measure: the weights are 
obtained by normalization of the jumps (a countable set) of 
a Poisson process, while the support consists of a countable 
number of random points from some distribution. In this 
case, posterior inference is made difficult by the presence of 
infinite unknown parame-ters. NRMIs are a popular tool in a 
mixture context, where they are usually considered as 
mixing measures of para-metric densities for continuous 
data, and, as a consequence, also NRMI mixtures include 
infinite parameters. There are two main approaches to deal 
with this computational prob-lem, namely marginal and 
conditional Gibbs sampler algo-rithms for sampling from 
the posterior. The former inte-grate out the infinite 
dimensional parameter (i.e. the ran-dom probability), 
resorting to generalized Polya urn schemes (MacEachern 
1998); see Neal (2000) for a review on the subject. 
Recently, Favaro and Teh (2013) developed algo-rithms of 
both types for mixture models with NRMI mixing measures.

On the other hand, by a conditional algorithm we mean 
a Gibbs sampler imputing the nonparametric mixing mea-
sure and updating it as a component of the algorithm itself. 
The reference papers on conditional algorithms for Dirich-
let process mixture models are Papaspiliopoulos and Roberts 
(2008) and Walker (2007). The former builds a retrospective 
algorithm, while the latter proposes a slice sampler algorithm. 
The slice sampler has been extended to NRMI mixtures
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dimensional counterpart. As often done in Bayesian Non-
parametrics, we will consider this new discrete random 
prob-ability as the mixing measure in a Gaussian mixture 
model, which is a very flexible tool for density and cluster 
estimation problems. A prior distribution for ε is given, as 
well as for all the other scalar parameters defining the new 
process. As a main achievement of this paper, we design a 
blocked Gibbs sampler algorithm to simulate from the 
posterior. Moreover, we discuss guidelines for choosing the 
prior on ε.

For illustration purposes, we fitted our mixture model to 
two popular datasets: the Galaxy data, and the Yeast cell 
cycle data, which is an interesting multivariate dataset 
consisting of gene expression profiles measured at 9 
different times. Den-sity estimates are shown for the two 
applications, together with a thorough robustness analysis of 
the estimates with respect to prior choice, in particular in 
order to investigate the effect of the approximation 
parameter ε. In addition, for the Galaxy data, we compare 
our algorithm to a conditional method, the slice sampler by 
Griffin and Walker (2011), and to the simple adaptive 
truncation method in Argiento et al.(2010); in particular, the 
integrated autocorrelation times of the number of clusters 
and of the deviance of the estimated density show evidence 
in favor of the performances of our algorithm.

In Sect. 2 we introduce notation on homogeneous 
NRMIs, while in Sect. 3 we define the new ε-NGG process, 
show convergence in distribution to a NGG process and 
describe its posterior, given a sample from it. Section 4 
introduces ε-NGG mixtures and describes the MCMC 
algorithm for computing its posterior; besides, we provide 
an interpretation of parameter ε and suggest a family of 
marginal priors for ε itself. Section 5 (Galaxy data) and 6 
(Yeast cell cycle data) discuss the two applications; in 
particular, Sect. 5.1 presents the comparison between our 
model and the other two from the literature. The article ends 
with wrap-up of the proposed model as well as with possible 
future developments in Sect. 7. Proofs are grouped in the 
Appendices.

2 Homogeneous normalized random measures

In this section we sketch the basic ingredients to construct 
homogeneous NRMIs in order to smooth the introduction of 
our new prior. Further details can be found in James et al.
(2009) and Regazzini et al. (2003) and the references 
therein. Let Θ ⊂ Rm for some positive integer m. A ran-dom 
measure μ on Θ is completely random if for any finite 
sequence B1, B2,..., Bk of disjoint Borel sets in Θ, μ(B1), 
μ(B2), ... , μ(Bk ) are independent. A purely atomic 
completely random measure is defined (see Kingman 1993, 
Sect. 8.2) by μ(·) = 

∑
j 1 Jj δτ j (·), where the {(Jj ,τj )} j 1 are 

the points of a Poisson
≥ 
process on R+ ×Θ. We denote b

≥
y 

ν(ds, dτ) the intensity of the mean measure of such a Pois-

in Griffin and Walker (2011). See also Favaro and Walker 
(2013).

Conditional algorithms are called truncation methods 
here if the infinite parameter (i.e. the mixing measure) is 
approxi-mated by truncation of the infinite sum defining the 
process. Truncation can be achieved a posteriori, when one 
approxi-mates the infinite parameter P given the data, as 
described in Gelfand and Kottas (2002) for the DPM model. 
On the other hand, truncation can be applied a priori to 
approximate the nonparametric mixing distribution with a 
finite dimensional random probability measure. In this case, 
a simpler mixture model has to be implemented. In the latter 
framework, pioneer papers for DPM models are Ishwaran 
and James (2001) and Ishwaran and Zarepour (2000, 2002). 
For instance, Ishwaran and James (2001) consider a 
(blocked) Gibbs sampler for a finite approximation of the 
stick-breaking prior in order to deal with a finite number of 
random variables, which are updated in “blocks”. Barrios et 
al. (2013) propose an a posteriori truncation algorithm for 
NMRI mixtures using the Ferguson-Klass representation of 
completely random measures (Ferguson and Klass 1972). 
Of course, when using truncation algorithms, the key-point 
is the choice of the truncation level; Argiento et al. (2010) 
propose a simple adaptive truncation method evaluating an 
upper bound in probability for the jumps excluded from the 
summation. Recently, an a priori truncation method has 
been introduced by Griffin (2014), who proposes an 
adaptive truncation algorithm for posterior inference with 
priors either of stick-breaking or NRMI type.

If we needed a motivation for conditional algorithms, 
with or without truncation, we should keep in mind that they 
are able to provide a full Bayesian analysis. On the other 
hand, as pointed out in Griffin (2014), there are two 
motivations for truncation: the study of the properties of the 
prior distribution, which is not our primary goal, and simpler 
calculation of posterior inference using these priors. Instead, 
with regard to theoretical results on approximation of 
Dirichlet processes based on the distributional equation for a 
DP given in Sethu-raman (1994), we refer here to Muliere 
and Tardella (1998) and Favaro et al. (2012).

In this work we introduce a new truncation prior by defin-
ing a random probability measure which depends (among 
the others) on a parameter ε, controlling the degree of 
approximation of the truncation method. In particular, our 
prior is a truncated version of a normalized generalized 
gamma (NGG) process (Lijoi et al. 2007), where this new 
random probability measure is built from the representation 
of the weights of a NGG process as normalized points of a 
Poisson process; however, in this representation, we 
consider only points larger than the threshold ε. We refer to 
this random probability measure as ε-NGG process. 
Conditionally on ε, our process is finite dimensional either a 
priori and a posteriori. To justify our proposal, we show that, 
for ε going to zero, the finite dimensional ε-NGG prior 
converges to its infinite



son process. A completely random measure is homogeneous
if ν(ds, dτ) = ρ(s)dsP0(dτ), where ρ(s) is the density of a
non-negative measure onR+, while P0 is a probability mea-
sure on Θ . If μ is homogeneous, the support points, that is
{τ j }, and the jumps of μ, {J j }, are independent, and the τ j ’s
are independent identically distributed (iid) randomvariables
from P0, while {J j } are the points of a Poisson process on
R+ with mean intensity ρ. Furthermore, we assume that ρ

satisfies the following regularity condition:
∫ +∞

0
min{1, s}ρ(s)ds < ∞,

∫ +∞

0
ρ(s)ds = +∞.

(1)

If T := μ(Θ) = ∑
j≥1 J j , the former condition in (1)

guarantees that P(T < +∞) = 1, while the latter yields
P(T = 0) = 0. Therefore, a random probability measure
(r.p.m.) P can be defined through normalization of μ:

P := μ

μ(Θ)
=

∞∑

j=1

J j
T

δτ j =
∞∑

j=1

Pjδτ j . (2)

Following James et al. (2009) we refer to P in (2) as a 
homogeneous normalized random measure with independent 
increments (HNRMI). The definition of HNRMIs appeared in 
Regazzini et al. (2003) first. An alternative construction of 
HNRMI can be given in terms of Poisson-Kingman models 
as in Pitman (2003).

In particular, in this paper we are going to propose a new 
r.p.m. on the ground of a HNRMI, namely the normalized 
generalized gamma process, introduced in Lijoi et al. (2007). 
We use the same notation as in Argiento et al. (2010). By a 
NGG(σ, κ, ω,  P0) process P we denote the HNRMI as in 
(2) where the mean intensity of the Poisson process defining 
the jumps is ρ(s) = (κ/Γ (1 − σ)) s−1−σ e−ωs I(0,+∞)(s), 
and 0 ≤ σ ≤ 1, κ, ω ≥ 0. This parametrization is not unique, 
as the scaling property in Pitman (2003) shows, since 
(σ, κ, ω,  P0) and (σ, sσ κ, ω/s, P0), for any s > 0, give the 
same distribution for P . When ω > 0 and σ = 0, the Dirich-
let process (DP) is recovered.

One of the main arguments in favor of NGG process, 
instead of DP, is its higher flexibility in clustering. For 
instance, when considering a sample of size n from a NGG 
process, the distribution of the number Kn of distinct val-
ues in the sample has a further degree of freedom, σ , which 
tunes its variance, contrary to the DP case, where the dis-
tribution of Kn can be highly peaked. The parameter σ also 
drives a richer reinforcement mechanism in the predictive 
distributions of the sample. Moreover, NGG processes are 
of Gibbs-type, a class of r.p.m.s which stands out for their 
mathematical tractability (see Lijoi et al. 2008).
    Recent works that include NGG processes as an ingredient in 
their models are Caron (2012) and Caron and Fox (2014),

both on statistical networks: the former for bipartite random 
graphs, while the latter for sparse and exchangeable random 
graphs. Griffin et al. (2013) and Lijoi et al. (2014) propose a 
vector of dependent NGG processes for comparing distribu-
tions. See also Chen et al. (2012) for an application of such 
multivariate priors in a dynamic topic modeling context.

3 ε-NGG processes

The goal of this section is the definition of a finite dimen-
sional random probability measure that is an approximation 
of the NGG process with parameters (σ, κ, ω,  P0), intro-
duced above. The idea is the following: it is straightforward 
to show that, for any ε > 0, all the jumps {J j } of μ larger 
then a threshold ε are still a Poisson process, with mean inten-
sity ρ̃ε(s) := ρ(s)I(ε,+∞)(s). Moreover, the total number of 
these points is Poisson distributed, i.e. Nε ∼ P0(Λε) where

Λε :=
∫ +∞

ε

ρ(x)dx = κωσ

Γ (1 − σ)
Γ (−σ, ωε), (3)

and Γ (a, x) = ∫ +∞
x ta−1e−t dt is the incomplete gamma

function. Since Λε < +∞ for any ε > 0, Nε is almost
surely finite. In addition, conditionally to Nε, the points
{J1, . . . , JNε } are iid from the density

ρε(s) = 1

ωσ Γ (−σ, ωε)
s−σ−1e−ωs

I(ε,+∞)(s),

thanks to the well-known relationship between Poisson and
Bernoulli processes; see, for instance, Kingman (1993),
Sect. 2.4. Observe that ρε is defined by restricting ρ to the
interval (ε,+∞) first, and then normalizing by Λε. How-
ever, in this case, while P(

∑Nε

j=1 J j < +∞) = 1, the
condition on the right of (1) is not satisfied by ρε, so that
P(

∑Nε

j=1 J j = 0) > 0, or, in other terms,P(Nε = 0) > 0 for
any ε > 0. To overcome this problem, we add onemore point
J0, independent on the previous J ′

j s, but identically distrib-
uted, so that we consider Nε +1 iid points {J0, J1, . . . , JNε }.
We are ready to define an ε−NGG process as:

Pε =
Nε∑

j=0

Pjδτ j = 1

Tε

Nε∑

j=0

J jδτ j , (4)

where Tε = ∑Nε

j=0 J j , τ j
iid∼ P0, {τ j } and {J j } independent.

We denote Pε in (4) by ε−NGG(σ, κ, ω, P0) process.
Observe that Pε is a proper species sampling model (Pit-

man 1996) with a random number Nε+1 of different species.
Let θ := (θ1, . . . , θn) be a finite sample from a species sam-
pling model P . We denote by θ∗ := (θ∗

1 , . . . , θ∗
k ) the vector



of its unique distinct values. Then, θ induces a random parti-
tion pn := {C1, . . . ,Ck} on the set Nn := {1, . . . , n}, where
C j = {i : θi = θ∗

j } for j = 1, . . . , k and #Ci = ni for
1 ≤ i ≤ k. The marginal law of θ has unique characteri-
zation in terms of θ∗ and the exchangeable partition pn as
follows:

L ( pn, θ
∗
1 , . . . , θ∗

k )= p(n1, . . . , nk)
k∏

j=1

L (θ∗
j ),

where p is the exchangeable partition probability function 
(eppf) associated to P (see Pitman 1996); the eppf p induces 
a probability law on the set of the partitions of Nn .

An analytic expression of the eppf of Pε defined in (4) 
can be recovered resorting to (30) in Pitman (1996): if Pε ∼ 
ε−NGG(σ, κ, ω,  P0), then its eppf is

pε(n1, . . . , nk)=
∫ +∞

0
(u+ω)kσ−n

k∏

i=1

Γ (ni − σ, (u+ω)ε)

× κk−1

Γ (1 − σ)k−1

Λε,u + k

ωσ Γ (−σ, ωε)
eΛε,u−Λε

un−1

Γ (n)
du, (5)

for any n1, . . . , nk positive integers such that
∑k

i=1 ni = n,
where

Λε,u :=
∫ +∞

ε

κ

Γ (1 − σ)
x−1−σ e−(ω+u)xdx

= κ(u + ω)σ

Γ (1 − σ)
Γ (−σ, (u + ω)ε).

(6)

Details of the proof of (5) are in the Appendices.
Now we state the main distributional result on Pε, that

is convergence in distribution of the sequence of ε-NGG
processes to the NGG process; the proof of the following
proposition requires, as a preliminary result, to show con-
vergence of the sequence of the eppfs pε(n1, . . . , nk) to the
eppf associated to the NGG process as ε → 0; see Lemma 1
in the Appendices.

Proposition 1 Forany ε > 0, let Pε bea ε-NGG(σ, κ, ω, P0)
process. Then we have

Pε
d→ P as ε → 0,

process in James et al. (2009). We will denote by allocated
jumps of the process the values Pl∗1 , Pl∗2 , . . . , Pl∗k in (4) such
that there exists a corresponding location for which τl∗i = θ∗

i ,
i = 1, . . . , k. The remaining values are called non-allocated
jumps. We use the superscript (na) for random variables
related to non-allocated jumps. Before stating the proposi-
tion, we introduce the random variable U := Γn/Tε, where
Γn ∼ gamma(n, 1), being Γn and Tε independent. It will be
clear that this variable is decisive when simulating posterior
trajectories of ε−NGG processes.

Proposition 2 If Pε is an ε−NGG(σ, κ, ω, P0) process, then
the conditional distribution of Pε, given θ∗ and U = u,
satisfies the following distributional equation

P∗
ε (·) d= wP(na)

ε,u (·) + (1 − w)

k∑

j=1

P(a)
j δθ∗

k
(·)

where

1. P(na)
ε,u (·), the process of non-allocated jumps, is distrib-

uted according to an ε−NGG(σ, κ, ω + u, P0) process,
given that exactly Nna jumps of the process were
obtained, and the posterior law of Nna is

Λε,u

k + Λε,u
P1(Λε,u) + k

k + Λε,u
P0(Λε,u),

being Λε,u as defined in (6), and denoting Pi (λ) the
shifted Poisson distribution on {i, i + 1, i + 2, . . .} with
mean i + λ, i = 0, 1;

2. the allocated jumps {P(a)
1 , . . . , P(a)

k } associated to the
fixed points of discontinuity θ∗ = (θ∗

1 , . . . , θ∗
k ) of P∗

ε

are obtained by normalization of J (a)
j

ind∼ gamma(n j −
σ, u + ω)I(ε,+∞), for j = 1 . . . , k;

3. P(na)
ε,u (·) and {J (a)

1 , · · · , J (a)
k } are independent, condi-

tionally to l∗ = (l∗1 , . . . , l∗k ), the vector of locations of
the allocated jumps;

4. when Nna = 0,w is defined as 0, while if Nna is different
from 0, then w = Tε,u/(Tε,u + ∑k

j=1 J
(a)
j ), where Tε,u

is the total sum of the jumps in representation of P(na)
ε,u (·)

as in (4);
5. the posterior law of U given θ∗ has density

fU |θ∗(u|θ∗) ∝ un−1(u + ω)kσ−n(Λε,u + k)eΛε,u

×
k∏

i=1

Γ (ni − σ, (u + ω)ε)I(0,+∞)(u).

Observe that this proposition is merely a characterization
of the posterior of an ε-NGG process. As in the infi-
nite dimensional case, the posterior distribution of an ε-
NGG(σ, κ, ω, P0) process, conditionally onU and θ , can be

where P is a NGG(σ, κ, ω,  P0) process. Moreover, as

ε → +∞, Pε 
d→ δτ0 , where τ0 ∼ P0.

As before, let θ = (θ1, . . . , θn) be a sample from Pε, 
a ε-NGG(σ, κ, ω,  P0) process as defined in (4), and let 
θ∗ = (θ1

∗, . . . , θk
∗) be the (observed) distinct values in θ . 

The following proposition gives a “finite dimensional” ver-
sion of the characterization of the posterior law of a NGG



described as the law of a random probability measure, which
is a mixture between a ε-NGG process and a discrete proba-
bility measure with support given by the (observed) distinct
values θ∗.

As a final remark in this section, we point out that our
approximation Pε (and the twopropositions above) holds true
for two particular cases of NGG processes too, namely the
Dirichlet and the normalized σ -stable process, also known
as the two parameters (σ, 0) Poisson-Dirichlet process, when
0 < σ < 1. In particular, the construction is as the one
described here, on the ground of the following expressions:

Λε = −κEi(−ωε),

ρε(s) = −s−1/Ei(−ωε)e−ωs
I(ε,+∞)(s)

for the Dirichlet process, where Ei(x)=∫ x
−∞ et/t dt , x < 0,

is the exponential integral function, and

Λε = κε−σ / (σΓ (1 − σ)) ,

ρε(s) = σεσ s−1−σ
I(ε.+∞)(s)

for the normalized σ -stable process.

4 ε-NGG process mixtures

Often, in Bayesian nonparametric problems, it happens that
discrete random probabilities, as our ε-NGG process, appear
as mixing measures in a mixture context. Indeed, we are
going to consider a mixture of Gaussian kernels as the distri-
bution of the i-th observation, where the mixing measure is
the ε-NGG(σ, κ, ω, P0) process. In the rest of paper we set
ω = 1 (since the original parameterization is not unique) and
change notation accordingly, i.e. ε-NGG(σ, κ, P0). Details
on the specific choices of P0 are illustrated in Sects. 5 and 6.
The model we assume is the following:

Xi |θi ind∼ k(·; θi ), i = 1, . . . , n

θ1, . . . , θn|Pε
iid∼ Pε

Pε ∼ ε − NGG(σ, κ, P0) process prior,

ε, σ, κ ∼ π(ε) × π(σ) × π(κ),

(7)

where k(·; θi ) is a parametric family of densities onX ⊂ Rp,
for all θ ∈ Θ . In the rest of the paper, we assume theGaussian
kernel, where θi denotes the mean and the covariance matrix.
Remember that P0 is a non-atomic probabilitymeasure onΘ;
it is straightforward to see that E(Pε(A)) = P0(A) for any
Borel set A and any ε ≥ 0. Model (7) will be addressed here
as ε−NGG hierarchical mixturemodel. It is well known that
thismodel is equivalent to assume that the Xi ’s, conditionally
on Pε, are independently distributed according to the random
density

f (x) =
∫

Θ

k(x; θ)Pε(dθ) =
Nε∑

j=0

Pj k(x; τ j ). (8)

In general, computation of posterior inference for (7), when
Pε is substituted by a NGG process P , is not straightforward,
since this model assumes an infinite number of parameters.
As we mentioned in the Introduction, different approaches
have been proposed in the literature. Here we exploit a prior
truncation approach; as a matter of fact, from the algorith-
mic point of view, the finite dimensionality of the ε − NGG
process is a key point, since it allows expressing our r.p.m. in
terms of a finite number of random variables. In particular,
we are able to build a blockedGibbs sampler to update blocks
of parameters, which are drawn from multivariate distribu-
tions. The parameter is (Pε, ε, σ, κ, θ), and the posterior is
proportional to the product of the conditional distribution of
the data, given the parameter, times the prior, i.e.

L (X|θ)L (θ |Pε)L (Pε, ε, σ, κ)

= L (X, θ |Pε)L (Pε|ε, σ, κ)L (ε, σ, κ).
(9)

The conditional law L (X, θ |Pε) can be expressed as fol-
lows:

L (X, θ |Pε) =
n∏

i=1

Pε(θi )k(Xi ; θi )

=
⎛

⎝
∏

i∈C1

k(Xi ; θ∗
1 ) . . .

∏

i∈Ck

k(Xi ; θ∗
k )

⎞

⎠

×
⎛

⎝
∑

l∗1 ,...,l∗k

Pn1
l∗1

. . . Pnk
l∗k

δτl∗1
(θ∗

1 ) . . . δτl∗k
(θ∗

k )

⎞

⎠

= 1

T n
ε

∑

l∗1 ,...,l∗k

⎛

⎝Jn1l∗1

∏

i∈C1

k(Xi ; θ∗
1 ) . . . Jnkl∗k

∏

i∈Ck

k(Xi ; θ∗
k )

⎞

⎠, (10)

whileL (Pε|ε, σ, κ) is the finite dimensional distribution of
Pε in Sect. 3, and the joint lawL (ε, σ, κ) = π(ε)π(σ )π(κ)

will be elicited in Sects. 5 and 6. In addition, we provide some
guidelines on the choice of π(ε) and discuss the prior mean
of Nε at the end of this section. We use the same notation as
in the proof of Proposition 2.We augment the state space and
apply Proposition 2, considering also the random variableU .
Therefore, the sample space of the Gibbs sampler is the set of
all values of the parameter (θ, Pε, ε, u, σ, κ). Consequently,
the joint law of data and parameters can bewritten as follows:

L (X, θ , u, Pε, ε, σ, κ)

= L (X|θ , u, Pε, ε, σ, κ)L (θ, u, Pε|ε, σ, κ)L (ε, σ, κ)

=
n∏

i=1

k(Xi ; θi )L (θ, u, Pε|ε, σ, κ)π(ε)π(σ )π(κ)



= un−1

Γ (n)

Nε∏

j=0

(
e−u J j ρε(J j )P0(τ j )

) Λ
Nε
ε e−Λε

Nε! (11)

× π(ε)π(σ )π(κ)
∑

l∗1 ,...,l∗k

⎛

⎝Jn1l∗1

∏

i∈C1

k(Xi ; θ∗
1 )δτl∗1

(θ∗
1 )

· · · Jnkl∗k

∏

i∈Ck

k(Xi ; θ∗
k )δτl∗k

(θ∗
k )

⎞

⎠ ,

where we used the hierarchical structure in (7). Note that
L (θ , u, Pε|ε, σ, κ) coincides with distribution in (16). Full
details of the blocked Gibbs sampler can be found in Appen-
dix 6; however, in the following steps, we sketch all the full-
conditionals:

1. Sampling from L (u|X, θ , Pε, ε, σ, κ): since the joint
law of data and parameter (see (11)) depends on u only
through its prior density, this conditional distribution is
equal to the prior of U , that is the gamma distribution
with parameters (n, Tε).

2. Sampling from L (θ |u, X, Pε, ε, σ, κ): by (11), each
θi , for i = 1, . . . , n, has discrete law with support
{τ0, . . . , τNε } and probabilities equal to P(θi = τ j ) ∝
J j k(Xi ; τ j ).

3. Sampling from L (Pε, ε, σ, κ|u, θ , X): this step is not
straightforward. In the Appendix 6 we show that it can
be split into two consecutive substeps:

3a. Sampling from L (ε, σ, κ|u, θ , X): a Gibbs sampler
strategy will achieve it. For a detailed description
of the full conditionals (i) L (ε|σ, κ, u, θ , X), (ii)
L (σ |ε, κ, u, θ , X) and (iii) L (κ|ε, σ, u, θ , X), we
refer to formulas (23), (24), (25) in the Appendices.

3b. Sampling from L (Pε|ε, σ, κ, u, θ , X): via charac-
terization of the posterior in Proposition 2, since this
distribution is equal toL (Pε|ε, σ, κ, u, θ). As a mat-
ter of fact, we have to sample (i) the number Nna of
non-allocated jumps, (ii) the vector of the unnormal-
ized non-allocated jumps J (na), (iii) the vector of
the unnormalized allocated jumps J (a), the support
of the allocated (iv) and non-allocated (v) jumps.

of the NGG process. Here we have designed the algorithm 
when ε, σ, κ are a priori independent, and possibly degener-
ate. However, it is easy to extend the algorithm in Fig. 1 to 
the case of a priori dependence. As a first remark, we stress 
that a large ε may easily lead to a prior for Pε degenerate
on δτ0 , τ0 ∼ P0, since less jumps in (2) will be considered 
in definition (4). Equivalently, from (3), it is easy to check 
that E(Λε) → 0 for ε → +∞. On the other hand, the 
statistical goal here is the analysis of the prior and the algo-
rithm for ε small, because this leads to an approximation 
of NGG process mixtures. Since T denotes the sum of all 
unnormalized jumps defining the NGG process (see (2)), we 
consider this random variable, or a summary of it (e.g. E(T )) 
to select the jumps to include in (4). As a guideline, we sug-
gest to assume ε random on a bounded interval (0, δ), with 
δ given by the minimum between a small number (0.1, say) 
and E(T ). For instance, in experiment (C) in Sect. 5, we fix a  
prior for ε (when κ is fixed) that is a scaled beta on (0, δ). As  
an alternative, we recommend to fix a prior with full support 
(0, +∞), but in such a way that most mass is concentrated 
around 0. See Bianchini (2015) for further details.

In our opinion, parameter ε can be considered either as a 
“true” parameter as σ and κ , and the prior on it should be 
given on the ground of the prior information we have, or as 
a “tuning” parameter useful to approximate the exact NGG-
process mixture, if it is credited to be “true” model. In the 
latter case, even if it is assumed random, ε has to be “small”. 
On the other hand, if we do not believe in the infinite mixture 
model, but our prior belief supports a finite mixture model, 
a prior on ε favoring large values would be a better choice.

It is also worth describing prior mean and variance of Nε, 
the number of jumps (minus 1) in the Pε definition:

E(Nε) = E(E(Nε|ε, σ, κ))=E (Λε)= E

(

κ
Γ (−σ, ε)

Γ (1 − σ)

)

,

Var(Nε) = Var (E(Nε|ε, σ, κ)) + E (Var(Nε|ε, σ, κ))

= Var(Λε) + E(Λε)

= Var

(

κ
Γ (−σ, ε)

Γ (1 − σ)

)

+ E

(

κ
Γ (−σ, ε)

Γ (1 − σ)

)

.

As far as Λε (i.e. the conditional mean of Nε) is concerned,
the effect of κ is linear, while the influence of (ε, σ ) is given
by Γ (−σ, ε)/Γ (1 − σ), and it is antithetic. For any fixed
σ ∈ [0, 1), this function converges to +∞ when ε → 0
and to 0 when ε → +∞, and it decreases with ε. On the
other hand, for any ε > 0, a qualitative study of the function
σ �→ Γ (−σ, ε)/Γ (1 − σ) shows that it has a maximum
located at a point that is closer to 1 as ε gets smaller. For
this reason, when we want to approximate a NGG process
with a large σ , we need to assume a very small ε; of course,
this behavior is not surprising, since, when σ is large, NGG

Summing up, our algorithm is outlined in Fig. 1. With 
regard to 3b. v, we do not directly apply Proposition 2, but  
add an acceleration step (see for instance Argiento et al. 
2010) sampling from the distribution in Fig. 1. When sam-
pling from non-standard distributions, we acknowledge that 
Accept–Reject or Metropolis–Hastings algorithms have been 
exploited.

We believe that a broader discussion on the prior L (ε, 
σ ,κ)  of the scalar parameters of the ε-NGG process is needed, 
or at least on ε, which is new with respect to the parameters



Fig. 1 Blocked Gibbs sampler scheme; the conditioning arguments of all full conditionals have been cut out to simplify notation

mixtures and the parametric hierarchical mixture

X i |θi ind∼ k(·, θi ), θi iid∼ P0
are close under any distance metrizing weak convergence.

5 Galaxy data

This super-popular dataset contains n = 82 measured veloc-
ities of different galaxies from six well-separated conic 
sections of space. Values are expressed in Km/s, scaled 
by a factor of 10−3. We report posterior estimates for 
different sets of hyperparameters of the ε−NGG mix-
ture model (7) when k(·; θ)  is the Gaussian density on 
R and θ = (μ, σ 2) stands for its mean and variance. 
Moreover, P0(dμ, dσ 2) = N (dμ; m0, σ

2/κ0) × inv − 
gamma(dσ 2; a, b); here N (m0, σ 2/κ0) is the Gaussian 
distribution with m0 mean and σ 2/κ0 variance, and inv − 
gamma(a, b) is the inverse-gamma distribution with mean 
b/(a −1) (if a > 1). We set m0 = x̄n = 20.8315, κ0 = 0.01, a 
= 2, b = 1 as proposed first in Escobar and West (1995).

We did an extensive robustness analysis with respect to ε, 
σ , κ; see Bianchini (2014a). Here we shed light on five sets 
of hyperparameters only, to understand sensitivity of the 
estimates (A) when ε varies, but it is not random, (B) when 
σ varies (but it is not random), then (C) when ε is assumed 
random and σ and κ are fixed, (D) when both σ and κ are 
random and ε is fixed, and, after that, (E) when E(Nε) is set 
equal to 50.

We have implemented our Gibbs sampler in C++; the code 
is available on request from the second author. Tests were 
made on a laptop with Intel Core i7 2670QM processor, with 
6 GB of RAM. Every run produced a final sample size of 
10,000 iterations, after a thinning of 10 and an initial burn-in 
of 10,000 iterations. Every time the convergence was checked 
by standard R package CODA tools.

With reference to (A), we set σ = 0.4 and κ = 0.45, 
and ε = 10−6, 10−3, 10−1, 1. Figure 2 shows the predictive 
density estimates under different values of ε: all the estimates 
are similar and they fit well the data. Observe that, when ε 
increases, more jumps J j ’s are cut out of the sum defining the 
process Pε (see (4)) and, consequently, less components in
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Fig. 3 Posterior distributions of the number Kn of groups under the
ε−NGGmixturewith hyperparameter set (A). a ε = 10−6,b ε = 10−3,
c ε = 10−1, d ε = 1

Table 1 Posterior (and prior) summaries of Kn under case (B)

σ Prior mean Posterior mean Posterior variance

0.001 3 6.13 1.73

0.1 4.06 7.18 2.39

0.2 5.6 8.74 4.25

0.3 7.8 10.49 6.39

0.4 10.9 12.36 9.30

0.5 15.3 14.06 11.49

0.6 21.5 15.90 14.61

0.7 30.2 17.67 17.66

0.8 42.3 19.05 20.16

ble, since it would “adjust” for the number of jumps of the
process Pε that must be considered. Furthermore, on one
hand, if ε increases, the process will be significantly differ-

ent from the NGG process (indeed, Pε
d→ δτ0 ), since, in this

case, many small jumps will not be included in (4). As in
the previous cases, density estimates are pretty good and we
do not include them here. Figure 4 shows the posterior mean
of Kn as a function of σ for three different prior on ε. The
increasing trend inE(Kn|data) is milder when ε is beta (red
stars) or uniform distributed (blue diamonds) than when ε

is equal to 10−6 (green dots). It is worth remarking that the
prior distribution of Nε makes an impact on the run-time,
of course; for instance, if the prior mean of Nε is large, the
run-time will be large as well. For this reason we have com-

Fig. 2 Density estimates for different values of ε, while  σ = 0.4 and  
κ = 0.45, case (A). The shaded region denotes 90 % CI around the 
density estimates for ε = 10−6

the mixture (8) are considered. In particular, the prior mean 
of Nε is equal to 188.63, 10.86, 0.90, 5.6 · 10−2 under the 
four different values of ε; the last two values are very small, 
but ε = 10−1, or 1, yields a model which is pretty far from 
the NGG-mixture. Therefore the posterior estimate of the 
number Kn of groups, i.e. the number of unique values among 
(θ1, . . . , θn) in (7), will be concentrated on smaller integer 
values as ε increases (see Fig. 3). It is worth underlining that, 
as another consequence of the smaller number of components 
in the mixture (8) when ε increases, we have observed a huge 
gain in run-time: for instance, with our machine, the run-time 
ranges from approximately 7 minutes (ε = 10−6) to less than 
1 minute (ε = 1).

The second set (B) of hyperparameters is specified by ε = 
10−6 and κ = 0.45, while σ ranges in {0.001, 0.1, . . .  , 0.8}. 
The posterior density estimates are similar to those obtained 
before, and for this reason they are not reported here. On 
the other hand, we are interested to understand the effect of 
σ on the posterior distribution of Kn , as shown in Table 1. 
Note that we are also including the Dirichlet process mixture 
model here (for σ = 0.001  0 and ε small). As expected, the 
posterior mean of Kn , as well as its variance, increases with σ .

For set (C) of hyperparameters, we have considered 
σ ∈ {0.001, 0.1, 0.2, . . .  , 0.8}, κ = 0.45 and ε ran-
dom, uniformly distributed on the interval (0, δ), with δ = 
min(0.1, E(T ) = κ)  = 0.1 (non-informative prior) or with a 
scaled beta distribution on the same interval with mean equal 
to 0.25δ and variance 0.05δ2 (a more informative prior). 
When ε is random, the model is expected to be more flexi-
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Fig. 4 Posterior mean of Kn as a function of σ , under different priors
for ε in experiment (C): degenerate on 10−6 (green dots), uniform (blue
diamonds) and scaled beta (red stars)

Table 2 Prior mean and variance of Nε for cases (B) and (C)

σ (B) (C) Uniform (C) beta

E(Nε) = Var(Nε) E(Nε) Var(Nε) E(Nε) Var(Nε)

0.001 5.99 1.24 1.44 1.72 2.2

0.1 12.26 1.42 1.84 2.12 3.54

0.2 28.38 1.61 2.55 2.68 7.64

0.3 71.41 1.85 4.22 3.51 27.98

0.4 188.63 2.12 9.09 4.82 +∞
0.5 506.9 2.42 +∞ 7.12 +∞
0.6 1345.3 2.75 +∞ 11.85 +∞
0.7 3405.1 3.1 +∞ +∞ +∞
0.8 7730.4 3.37 +∞ +∞ +∞

puted prior means, variances andmedians of Nε (see Table 2)
under (B) and (C); the medians are not reported here, but,
for example, when the prior mean is infinite (σ = 0.7, 0.8),
both medians are equal to 3. Run-times of experiments (C)

are smaller than (B), and, in fact, prior means (or medians)
are smaller.

As far as robustness with respect to σ is concerned, we
should acknowledge that, asσ increases,more computational
problems come up, because of the incomplete gamma func-
tion, appearing in the expression of ρε given in Sect. 3, that
is harder to be numerically evaluated.

Looking at the posterior distribution of ε in Fig. 5, data
suggest that small values of ε are the “best” fit, when the prior
of ε is uniform. In particular, increasing σ , and consequently
increasing the prior expected number of components in the
ε−NGG mixture, we get that the posterior of ε is concen-
trated on smaller values, which implies larger values for Kn

a posteriori.
We have considered case (D), when both σ and κ are ran-

dom, and ε is small (ε = 10−4). In particular, we set four

different priors π(σ  )  × π(κ)  = beta(a1, b1) × gamma(c1, 
d1), with (a1, b1, c1, d1) ∈{(2, 5, 2, 2), (10, 23, 1.1, 8), (1.1, 
30, 1.1, 8), (10, 23, 100, 50)}; the prior information on 
(σ, κ), and consequently on Kn , is quite different among 
these four cases: diffuse prior marginals first, then two con-
flicting prior marginal beliefs, and last prior marginal beliefs 
in agreement. For all priors we have got density estimates 
similar to those reported in Fig. 2, while the posterior dis-
tribution of Kn is in accordance to the prior information. In 
particular, σ influences the posterior variance of Nna , the  
number of non-allocated jumps: in fact, if a priori σ is con-
centrated on large values, then the tail of the posterior dis-
tribution of Nna is heavy. Figure 6 shows the scatterplots 
of posterior values of (σ, κ); contour plots of the priors are 
superimposed. Note that, in panels (b) and (c), the posterior 
is in strong disagreement with the prior, since the prior on 
(σ, κ) has been assigned too restrictive in these two cases.

Finally, to better understand the effect of E(Nε) on our 
algorithm, we fixed four different sets of hyperparameters 
for case (E), with E(Nε) = 50 for κ = 5: (a) ε  = 0.025 
and σ = 0.025, (b) ε  uniform on (0, 0.1) and σ = 0.025,
(c) ε  = 10−4 and σ = 0.0035, (d) ε  = 10−4 and
σ ∼ beta(0.11, 5.42). This experiment aims at showing the 
influence of antithetic parameters ε and σ on the posterior of 
Nε, the prior mean of Nε being fixed. Here we report only 
prior and posterior histograms of Nε. From Fig.  7, it is clear  
that, in these cases, prior and posterior of Nε do not substan-
tially differ since the prior mean of Nε is sufficiently large 
to explain the estimated number of groups under the mix-
ture. On the other hand, if ε or σ are random (panels (b) 
and (d)), Nε tends to favor smaller values a posteriori. This 
confirms the larger flexibility of the model when the parame-
ters are random. We underline once more that even if both σ 
and ε influence Nε, they are quite different in their meaning 
and in their statistical usage: σ is a parameter of the “exact” 
NGG-mixture itself (refer to the literature for its interpreta-
tion), while ε is the degree of approximation of our Pε, that 
we assume random only to gain more flexibility and lower 
computational costs.

Finally, we mention that a gamma prior can be given to ε. 
In particular, Bianchini (2015) analyzes the same dataset 
with different gamma priors for ε, all of them concentrating 
most mass around 0.

5.1 Comparison with other methods

As we mentioned in the Introduction, there are many other 
computational methods that can be used to fit NGG-mixture 
models. Here we compare our algorithm to an exact method, 
i.e. the two slice sampler algorithms in Griffin and Walker 
(2011), and the simple adaptive truncation method in 
Argiento et al. (2010). The choice of the former was rec-
ommended by the referees, and we agree that a comparison
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Fig. 5 Posterior distribution of ε for experiment (C), together with U (0, δ) prior (dashed). a σ = 0.001, b σ = 0.1, c σ = 0.2, d σ = 0.5, e
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Fig. 7 Histograms of the prior and posterior (light grey) values of  Nε in 
the test cases (E): a ε = 0.025, σ = 0.025; b ε uniform on (0, 0.1), σ = 
0.025; c ε = 10−4, σ = 0.0035; d ε = 10−4, σ ∼ beta(0.11, 5.42)

tion strategy from the posterior point of view, while here the
truncation is a priori. We used the Matlab code for the two
slice samplers in Griffin and Walker (2011) available online

Fig. 6 Scatterplots of posterior values of (σ, κ) with contour levels of 
the prior for case (D)

between ours and an exact method (as the slice sampler) is 
needed. On the other hand, the latter method is the main 
competitor, since it is a conditional algorithm using a trunca-



Table 3 Estimates of integrated autocorrelation times for the deviance, τ̂D , and number of groups, τ̂C , and run-times, using different methods

σ σ and κ fixed σ or κ random

0.001 0.1 0.2 0.3 0.4 0.5 (i) (ii) (iii)

Slice 1 τ̂D 118.9 70.4 31.7 12.14 9.5 8.4 161.7 43.3 280.0

τ̂C 188.4 158.9 146.4 129.0 124.7 80.4 263.9 142.0 363.7

Slice 2 τ̂D 84.9 17.2 5.0 1.3 1.0 1.0 33.4 101.1 114.6

τ̂C 201.6 112.8 219.2 198.5 90.8 52.1 145.6 47.8 161.2

A posteriori truncation 
Argiento et al. (2010)

τ̂D 22.1 15.8 5.2 3.0 2.6 2.2 – – –

τ̂C 27.6 18.3 12.7 11.3 9.2 9.2 – – –

Run-time 42min 23s 1h 54min 2h 35min 5h 6min 14h 30min ∼48h

ε = 10−6 τ̂D 25.3 8.5 2.1 2.0 2.5 1.6 8.5 3.0 22.3

τ̂C 30.1 25.2 28.0 35.0 30.2 18.0 196.3 12.6 47.9

Run-time 1min 28s 56s 1min 30s 3min 8min 17min

ε ∼ Uni f (0, δ) τ̂D 59.6 48.4 13.7 12.0 2.2 7.0 15.3 6.3 19.7

τ̂C 103.0 71.6 56.6 63.4 28.8 59.6 51.7 37.0 75.6

Run-time 48s 31s 35s 38s 43s 48s

at the journal Supplemental page. For the second method, we 
used the code described in Argiento et al. (2010), available 
on request from the authors.

In order to compare the algorithms, we computed the inte-
grated autocorrelation time τ for two variables: the number of 
clusters and the deviance D of the estimated density, defined 
as

D = −2
n∑

i=1

log

⎛

⎝
k∑

j=1

n j

n
k(xi ; θ∗

j )

⎞

⎠ .

The integrated autocorrelation time controls the accuracy of 
Monte Carlo estimates computed using the MCMC chain 
and provides a measure of the efficiency of the method. The 
same indexes have been also used in Papaspiliopoulos and 
Roberts (2008) and Griffin and Walker (2011) to assess the 
performance of their methods. An estimator for τ is

τ̂ = 1

2
+

C−1∑

l=1

ρ̂l ,

where C is a threshold value, chosen as the minimum lag
l such that |ρ̂l | < 2/

√
G (see Kalli et al. 2011, for further

details) and ρ̂l is the estimated autocorrelation at lag l. Obvi-
ously, a small value of τ implies good mixing and hence an
efficient method.

For the aim of comparison, we ran 100,000 iterations with 
an extra burn-in of 10,000 iterations and computed the value 
of integrated autocorrelation time of the two variables men-
tioned above for the three algorithms and for each set of 
hyperparameters. For the algorithm in Argiento et al. 
(2010), we fixed the truncation level M in the sum defining 
the NGG process so that

P

⎛

⎝
+∞∑

j=M+1

J̃ j ≤ 0.1 E(T )

⎞

⎠ = 0.99,

where { J̃ j } is the decreasing sequence of the jumps. We
selected hyperparameters as in experiment (B), while σ

ranges in {0.001, 0.1, . . . , 0.5}. Moreover, we consider the
cases where ε is uniform on (0, δ), like in (C), and (i)
σ ∼ beta(1, 19), κ = 0.45, (ii) σ = 0.1, κ ∼ gamma(2, 2),
(iii) σ ∼ beta(1.1, 30), κ ∼ gamma(1.1, 8).

It is clear from Table 3 that, when κ and σ are fixed,
both truncation methods are generally more efficient than 
the slice samplers and provide very similar values of the 
integrated autocorrelation times; in addition, note that our 
algorithm achieves very good performances when ε is fixed. 
Specifically, the values of τ̂D are the smallest under our a 
priori truncation algorithm, while the best τ̂C s are obtained 
under the truncation method in Argiento et al. (2010), at the 
cost of much longer run-times (see Table 3). Observe that 
run-times of the two truncation methods might be compared, 
since the algorithm in Argiento et al. (2010) was coded in C 
language and the computations were carried out on the same 
machine; it is apparent that the algorithm proposed in this 
work is much faster. In cases (i), (ii) and (iii), where σ and κ 
are assumed random, algorithm in Argiento et al. (2010) 
cannot be applied, while Matlab codes for the slice samplers 
allow these cases too. For all these experiments (but τ̂C 
under Slice 2-(i)), the values of the integrated 
autocorrelation times show that our algorithm outperforms 
the two slice samplers. The better performance of the 
truncation algorithms is not surprising; as noted by Griffin 
and Walker (2011), “the slice sampler introduces auxiliary 
variables to help simulation which will slow convergence 
through over-conditioning”.



This comment also applies when ε is random: we gain in
run-time during the simulation, but the efficiency decreases,
due to the larger autocorrelation of the variables. Summing
up, in this particular example, our method with ε = 10−6

outperforms the competitors.

6 Yeast cell cycle data

We fitted our model to a multivariate dataset used in the
literature for clustering gene expression profiles, usually
called Yeast cell cycle data (see Cho et al. 1998). A gene
expression data set from a microarray experiment can be
represented by a real-valued matrix

[
Xi j , 1 ≤ i ≤ n,

1 ≤ j ≤ p
]
, where the rows (X1, . . . , Xn) contain the

expression patterns of genes and are our data points. Each
entry Xi j is the measured expression level of gene i at
time j . The Yeast cell cycle dataset contains n = 389
gene expression profiles, observed at 17 different time val-
ues, one every 10 minutes from time zero. We consider
only a part of the data, and filter them: the final dataset
(n = 389, p = 9) is the same as in Argiento et al. (2014).
We assume the Gaussian kernel k(·; θi ) = Np(·; θi ) where
θi = (μi ,Σi ) and Σi , the covariance matrix, is assumed
diagonal with entries (σ 2

1,i , . . . , σ
2
p,i ). Here P0(dμ, dΣ) =

Np (dμ|m0,Σ/s0) × ∏p
k=1 inv − gamma(dσ 2

k | a, b).
We made a thorough robustness analysis, with respect to
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Fig. 8 Posterior distribution of ε for experiment (G): σ = 0.001 (left)
and σ = 0.5 (right). The prior is U (0, 0.01) (dashed)

θ , as in Step 2. of the algorithm (see Fig. 1), depends only on
the parametric kernel, evaluated at data points, yielding that
Nε + 1 and Kn coincide. In this case, the prior means (and
variances) of Nε are 9.32, 7.69, 6.06, 4.44, respectively, for
the four different values of ε.

For experiment (G), the choice of hyperparameters
implies that the priormean of Nε increases from3.61 to 14.44
as σ increases, while the prior variance grows from 4.16 to
649.64. Figure 8 illustrates the posterior of ε with σ = 0.001
(left) and σ = 0.5 (right). It is clear that ε assumes pretty
“large” values: data do not fancy the nonparametric model
(ε = 0). In all the experiments, density estimates seem to fit
the data well. Figure 9 shows all the unidimensional marginal
predictive densities for case (G). We have not observed sub-
stantial differences among the predictive density estimates in
all the experiments we run.

For experiment (H), we set a vague prior for κ , and
a more informative prior on σ to speed up and improve
the mixing; in this case, both prior mean and variance of
Nε are very large. The posterior of (σ, κ) is displayed in
Fig. 10, showing a noteworthy update of the prior to the
posterior.

The reference partition into five groups inCho et al. (1998)
was obtained by visual inspection. In order to provide cluster
estimates with our model (7), we adopt a standard approach
in the Bayesian framework. First of all, we recall that (7)
induces a prior for the random partition pn = {C1, . . . ,Ck}
of the data labels (see notation in Sect. 3), and, as a con-
sequence, cluster estimates are based on its posterior. As
such an estimate we consider the partition p̂n minimizing the
so-called Binder loss function with equal misclassification
costs, using the same approach as in Argiento et al. (2014).
To compare different cluster estimates, we evaluate the pos-
terior expectation E(H( pn)|data) when the function H is
a standard tool as the silhouette coefficient or the adjusted
Rand index. We compared cluster estimates for more sets
of hyperparameters than those reported here; see Bianchini
(2014a). In Fig. 11 we report one of the best cluster esti-
mate, whichwas obtainedwhen hyperparameters are those of
case (H).

the choice of P0 and (ε, σ, κ)-prior. We were able to com-
pute the log-pseudo marginal likelihood (LPML) for every 
set of hyperparameters; however, here we report posterior 
inference for the set of hyperparameters which is most in 
agreement with the prior information given by the refer-
ence partition of Cho et al. (1998): m0 = 0, s0 = 1, 
a = 3, b = 2, so that Var(μ) = Ip and E(Σ) = Ip. 
To understand the effect of ε, σ, κ , first we set σ = 0.001 
and κ = 0.7, so that E(Kn) = 5 as in the reference parti-
tion, and let ε vary in {10−6, 10−5, 10−4, 10−3} (case (F)), 
then ε uniformly distributed over the interval (0, 0.01), σ ∈ 
{0.01, 0.1, 0.2, . . .  ,  0.5} and κ = 0.7 (case (G)). Finally, we 
set ε = 10−4, σ ∼ beta(2, 15) and κ ∼ gamma(2, 0.1)
(case (H)).

The posterior inference was computed via MCMC chains 
as before, with a final sample size of 5,000, after a thinning of 
20 and a burn-in of 5,000. As far as case (F) is concerned, we 
do not report the inference, but make only one comment: a 
priori, we have to assume ε on rather small values, otherwise 
the model would get stuck into a parametric one (remember 
that for ε → +∞ our model is parametric). From a com-
putational point of view, what happens is that, if ε is fairly
large, the jumps J j

′ s are approximately independently sam-
pled from a degenerate distribution on ε, and therefore, they
assume the same value; consequently, the full-conditional of



Fig. 9 Marginal density estimates for experiment (G) when σ = 0.001, κ = 0.7, ε ∼ U (0, 0.01). The shaded regions denote 90% CI’s around
the density estimates
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Fig. 10 Posteriors of σ (left), κ (center), and (σ, κ) (right). The priors are superimposed as gray lines

The Silhouette coefficient in any group can be computed,
obtaining

(a) (b) (c) (d) (e) (f)
0.22 0.23 0.22 0.04 0.18 0.14

Compared to other experiments we did, these figures indicate
adequate clustering. Note that there is only one group (d),

with a coefficient near to 0: indeed, it has a large empirical 
variance with respect to the other clusters. On the other 
hand, while the first two clusters are very similar to the first 
two in the reference partition in Cho et al. (1998), in the rest 
of the groups we seem to tide up their partition. The 
posterior mean of the overall Silhouette coefficient is 0.2.
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different from the NGG process, with a new prior: since it
is finite dimensional, the inference will be quite simple. Fur-
thermore, the precision parameter ε can be considered as a
random variable, once we have elicited a prior for it: in this
case, the data and the prior, via the posterior, drive the degree
of approximation. Of course, under this model, the poste-
rior distribution must be computed via simulation methods:
a Gibbs sampler algorithm has been built to reach this goal.
All the updating steps are as easy to implement as those in
the DPMmodel, but the new model is more flexible. In addi-
tion, thanks to the finite approximation, there is no need to
integrate out the mixing component (i.e. the infinite dimen-
sional parameter) itself, thus pursuing a full nonparametric
Bayesian inference, in order to get posterior estimates of lin-
ear and non linear functionals of the population distribution.

We have illustrated our proposal through a density esti-
mation problem: thanks to an extensive robustness analysis,
the role and the influence of the parameters ε, σ and κ of
our prior on the mixing of the chain and on posterior esti-
mates have been made clear; moreover, the robustness of
the model with respect to the choice of the hyperparameters
has been checked. As a conclusion, even if both parameters

Fig. 11 Bayesian cluster estimates for experiment (H)

As a last remark in this section, we would like to point 
out that all the cluster estimates, here and in Bianchini 
(2014a), were robust with respect to the choice of the prior 
of (ε, σ, κ), while, on the contrary, they are very sensible 
with respect to P0.

7 Conclusions

We have proposed a new model for density and cluster esti-
mates in the Bayesian nonparametric framework. In partic-
ular, a finite dimensional process, the ε-NGG process, has 
been defined, which converges in distribution to the well-
known NGG process, when ε tends to 0. Here, the ε-NGG 
process is the mixing measure in a mixture model.

An interesting achievement is that, as ε varies, a large 
range of models can be obtained: from a nonparametric NGG 
mixture model, when ε decreases to 0, to a parametric model, 
when ε assumes large values. Hence, on one hand, the model 
can be used as an approximation of a NGG mixture model on 
which many theoretical results are available in the literature. 
On the other hand, our process can be assumed as a model



σ and ε influence the number of groups in this new mixture
model, they are quite different in the meaning: σ is a parame-
ter of the “exact” NGG-mixture itself, while ε is the degree
of approximation of Pε, that we assume random only to gain
more flexibility and lower computational costs. In addition to
density estimation, a clustering problem has also been tack-
led in the multivariate case; the cluster estimates are pretty
satisfactory.

As far as the drawbacks of the model are concerned, the
first issue consists in the choice of the mean distribution P0.
As in each Bayesian nonparametric mixture model, espe-
cially when the dimension of data is large, P0 strongly affects
the estimates and the mixing of the MCMC chains. A second
problem concerns the parameter σ : when it assumes values
close to 1, on one hand the computation becomes difficult
because of the presence of the incomplete gamma functions
in the algorithm, which are very unstable in this case, while,
on the other, correlation between U and ε heavily increases.
Moreover, the number of components in the mixing distribu-
tion (4) grows very fast with σ , at least as far as σ reaches σ0,
the argmax of Γ (−σ, ε)/Γ (1 − σ) (σ0 is close to 1), slow-
ing down the run-time of the algorithm. On the other hand,
when σ is larger than σ0, our Pε may fail to approximate the
“exact” NGG process, unless ε becomes smaller. However,
if σ is close to 1, the NGG-mixture model itself is very close
to a parametric mixture model.

In this paper, we have detailed the ε-approximation of
a class of homogeneous normalized random measures with
independent increments, the NGG processes. This construc-
tion is based on the specific features of ρ, the mean intensity
of the process defining the jumps of the “exact” randomprob-
ability measure (i.e., ρ has an asymptote in 0 and has finite
mass between 1 and +∞). Consequently, in general, the ε-
version of any HNRMI can be defined, considering Λε =∫ +∞
ε

ρ(x)dx and ρε(s) = (1/Λε)ρ(s)I(ε,+∞)(s). However,
the proof of Propositions 1 and 2 in this more general setting
and follow-up analysis are the subject of future research.
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8 Appendices

8.1 Appendix 1: Proof of (5)

First observe that, since Nε has a Poisson distribution with
parameter Λε, we have

pε(n1, . . . , nk) =
+∞∑

Nε=0

pε(n1, . . . , nk |Nε)
Λ

Nε
ε

Nε! e
−Λε . (12)

Then, formula (30) in Pitman (1996) yields

pε(n1, . . . , nk |Nε) = I{1,...,Nε+1}(k)
∑

j1,..., jk

E

(
k∏

i=1

Pni
ji

)

,

where the vector ( j1, . . . , jk) ranges over all permutations of
k elements in {0, . . . , Nε}. Using the gamma function iden-
tity,

1

T n
ε

=
∫ +∞

0

1

Γ (n)
un−1e−uTεdu, (13)

we have:

pε(n1, . . . , nk |Nε)

=
∑

j1,..., jk

∫ k∏

i=1

Jniji
T ni

ε

L (d J0, . . . , d JNε )

=
∑

j1,..., jk

∫ +∞

0
du

(
un−1

Γ (n)
.

k∏

i=1

∫ +∞

0
Jniji e

−J ji uρε(J j )d J ji

×
∏

j /∈{ j1,..., jk }

∫ +∞

0
e−J j uρε(J j )d J j

⎞

⎠

Substituting the expression of ρε in Sect. 3:

pε(n1, . . . , nk |Nε)

=
∑

j1,..., jk

∫ +∞

0
du

( 1

Γ (n)
un−1

×
k∏

i=1

∫ +∞

ε

J ji
ωσ Γ (−σ, ωε)

J−σ−1
ji

e−(ω+u)J j d J ji

×
∏

j /∈{ j1,..., jk }

∫ +∞

0

1

ωσ Γ (−σ, ωε)
J−σ−1
j e−(ω+u)J j d J j

)

=
∑

j1,..., jk

∫ +∞

0

( 1

Γ (n)
un−1

×
k∏

i=1

(u + ω)σ−ni Γ (ni − σ ; (u + ω)ε)

ωσ Γ (−σ, ωε)

×
(

(u + ω)σ Γ (−σ ; (u + ω)ε)

ωσ Γ (−σ, ωε)

)Nε+1−k )
du.

We have crossed out the indicator function in all previous
lines. If we switch the finite sum and the integral, since the
integrand function does not depend on the position of the
clusters ji ’s, i = 1, . . . , k, but only on the sizes ni , and there
are (Nε +1)(Nε) . . . (Nε +1−k) = (Nε + 1)!/(Nε +1−k)!
sequences of k distinct elements from {0, . . . , Nε}, we get:



p(n1, . . . , nk |Nε) = I{1,...,Nε+1}(k)
∫ +∞

0

(
un−1

Γ (n)

× (Nε + 1)!
(Nε + 1 − k)!

k∏

i=1

(u + ω)σ−ni Γ (ni − σ ; (u + ω)ε)

ωσ Γ (−σ, ωε)

×
(

(u + ω)σ Γ (−σ ; (u + ω)ε)

ωσ Γ (−σ, ωε)

)Nε+1−k )

du.

Observe that, because of the indicator function in the above
formula, summation in (12) has to be taken for Nε from k−1
to +∞. Then, by the change of variable Nna = Nε + 1 − k
in the summation (Nε +1−k is the number of non-allocated
jumps), simple calculations give

pε(n1, . . . , nk)

=
+∞∑

Nna=0

∫ +∞

0

(
un−1

Γ (n)
(u+ω)kσ−n

k∏

i=1

Γ (ni −σ, (u+ω)ε)

× 1

ωσ Γ (−σ, ωε)

κk−1

Γ (1 − σ)k−1

Nna + k

Nna !

×
(

κ(u + ω)σ

Γ (1 − σ)
Γ (−σ, (u + ω)ε)

)Nna

e−Λε

)

du.

By Fubini’s theorem, we can switch integration and summa-
tion, and introduce Λε,u as defined in (6), so that

pε(n1, . . . , nk) =
∫ +∞

0

(
un−1

Γ (n)
(u + ω)kσ−n

×
k∏

i=1

Γ (ni − σ, (u + ω)ε)
1

ωσ Γ (−σ, ωε)

κk−1

Γ (1 − σ)k−1

×
+∞∑

Nna=0

Nna + k

Nna ! ΛNna
ε,u e−Λε

)

du,

that is (5), since

+∞∑

Nna=0

Nna + k

Nna ! ΛNna
ε,u = eΛε,u

(
Λε,u + k

)
.

8.2 Appendix 2: Lemma 1

We report this simple lemma for a thorough understanding
of Lemma 2.

Lemma 1 Let (an) and (bn) be two sequences of real num-
bers, such that

lim
n→+∞(an + bn) = l, lim inf

n→+∞ an = a0, lim inf
n→+∞ bn = b0,

where l, a0, b0 are finite, and a0 + b0 = l. Then

lim
n→+∞ an = a0, lim

n→+∞ bn = b0.

Proof By definition of lim inf and lim sup we have:

lim inf an + lim inf bn ≤ lim inf(an + bn)

≤ lim inf an + lim sup bn

≤ lim sup(an + bn) ≤ lim sup an + lim sup bn .

From the hypotheses we have

a0 + b0 = l = lim inf(an + bn) ≤ a0 + lim sup bn

≤ lim sup(an + bn) = l = a0 + b0,

so that lim sup bn = b0, but by hypothesis b0 = lim inf bn ,
and consequently

lim
n→+∞ bn = b0.

We prove similarly that limn→+∞ an = a0.

Of course, this lemma can be generalized to anyfinite number
of sequences.

8.3 Appendix 3: Lemma 2

Lemma 2 Let pε be the eppf of a ε−NGG(σ, κ, ω, P0)
process. Then for each n1, . . . , nk ∈ N with k ≥ 0 and∑k

i=1 ni = n, we have

lim
ε→0

pε(n1, . . . , nk) = p0(n1, . . . , nk), (14)

where p0(·) is the eppf of a NGG(σ, κ, ω, P0) process.

Proof Formula (5) can be restated as

pε(n1, . . . , nk) =
∫ +∞

0
fε(u; n1, . . . , nk)du

where fε denotes the integrand in the right hand side of (5)
itself. In addition, the eppf of a NGG(σ, κ, ω, P0) process
can be written as

p0(n1, . . . , nk) =
∫ +∞

0
f0(u; n1, . . . , nk)du

where

f0(u; n1, . . . , nk) = un−1

Γ (n)
(u + ω)kσ−n

k∏

i=1

Γ (ni − σ)

×
(

κ

Γ (1 − σ)

)k−1
κ

Γ (1 − σ)
exp

{

−κ
(ω+u)σ −ωσ

σ

}

;



see, for instance, Lijoi et al. (2007). We first show that

lim
ε→0

fε(u; n1, . . . , nk) = f0(u; n1, . . . , nk) for any u > 0.

This is straightforward by the following remarks:

1. limε→0 Γ (ni − σ, (u + ω)ε) = Γ (ni − σ), for any i = 1, 
2, . . . , k, by the Dominated Convergence The-orem, 
since ni − σ ≥ 1 − σ > 0;

2. since limε→0 Γ (−σ, ωε) = +∞ and

Γ (1 − σ, x) = −σΓ  (−σ, x) + x−σ e−x

(Gradshteyn and Ryzhik 2000), we have:

lim
ε→0

Λε,u + k

ωσ Γ (−σ, ωε)
= κ

Γ (1 − σ)
,

lim
ε→0

(
Λε,u − Λε

) = −κ
(ω + u)σ − ωσ

σ
.

Now let C = {C1, . . . ,Ck} be a partition of {1, . . . , n} with
group sizes (n1, . . . , nk), and let�n be the set all the possible
partitions of {1, . . . , n}, of any size k = 1, . . . , n. Of course,
by definition of eppf,

∑

C∈�n

p(n1, . . . , nk) = 1

and, in particular this holds for either pε and p0. Moreover,
by Fatou’s Lemma we have

p0(n1, . . . , nk) =
∫ +∞

0
lim
ε→0

fε(u; n1, . . . , nk)du

=
∫ +∞

0
lim inf

ε→0
fε(u; n1, . . . , nk)du

≤ lim inf
ε→0

∫ +∞

0
fε(u; n1, . . . , nk)du

= lim inf
ε→0

pε(n1, . . . , nk).

Suppose now that for a particular sequenceC ∈ �n , we have
p0(n1, . . . , nk) < lim inf

ε→0
pε(n1, . . . , nk). In this case

1 =
∑

C∈�n

p0(n1, . . . , nk) <
∑

C∈�n

lim inf
ε→0

pε(n1, . . . , nk)

≤ lim inf
ε→0

∑

C∈�n

pε(n1, . . . , nk) = 1,

that is a contradiction. Therefore we conclude that

p0(n1, . . . , nk) = lim inf
ε→0

pε(n1, . . . , nk),

for all n1, . . . , nk , all k. Summing up, we have proved so far
that:

– limε→0
∑

C∈�n
pε(n1, . . . , nk) = 1;

– lim infε→0 pε(n1, . . . , nk) = p0(n1, . . . , nk) for all
C = (C1, . . . ,Ck) ∈ �n ;

–
∑

C∈�n
p0(n1, . . . , nk) = 1.

By Lemma 1, equation (14) follows.

8.4 Appendix 4: Proof of Proposition 1

Asmentioned before, Pε is a proper species sampling model,
so that pε defines a probability law on the sets of all partitions
of Nn := {1, . . . , n}, once that we have set a positive integer
n. Therefore, we introduce (N ε

1 , . . . , N ε
k ), the sizes of the

blocks (in order of appearance), of the random partition Cε,n

defined by pε, for any ε ≥ 0. The probability distributions
of {(N ε

1 , . . . , N ε
k ), ε ≥ 0} are proportional to the values of

pε (for any ε ≥ 0) in (2.6) in Pitman (2006). Hence, by
Lemma 2, for any k = 1, . . . , n and any n,

(N ε
1 , . . . , N ε

k )
d→ (N 0

1 , . . . , N 0
k ) as ε → 0.

Here (N 0
1 , . . . , N 0

k ) denotes the sizes of the blocks (in order
of appearance), of the random partition C0,n defined by p0, 
the eppf of a NGG(σ, κ, ω,  P0) process. By formula (2.30) 
in Pitman (2006), we have
(

N ε
j

n

)
d−−−−→

n→+∞ (P̃ε
j )

ε→0

⏐
⏐
�d

(
N0

j
n

)
d−−−−→

n→+∞ (P̃j )

where Pj
ε and P̃j are the j-th weights of a ε-NGG and a 

NGG process (with parameters (σ, κ, ω,  P0)), respectively. 
Note that the sequences depending on n have only a finite 
number of positive weights. Recall that the weak convergence 
of a sequence of random probability measures is equivalent 
to the pointwise convergence of the Laplace transforms (see 
Kallenberg 1983, Theorem 4.2). Let f (·) be a continuous 
and bounded function on Θ . If we can invert the order of the 
limit operations below, then we have:

lim
ε→0

E
(
e− ∫

Θ f dμε
)

= lim
ε→0

lim
n→+∞E

(
e− ∫

Θ f dμε
n

)

= lim
n→+∞ lim

ε→0
E

(
e− ∫

Θ f dμε
n

)

= lim
n→+∞E

(
e− ∫

f dμ0
n

)
= E

(
e− ∫

f dμ0
)

.

(15)



Here we have introduced notation

με
n :=

∑

j

N ε
j

n
δτ j and με :=

∑

j

P̃ε
j δτ j , for any ε ≥ 0;

thus (15) proves the stated convergence, conditioning on {τ0,
τ1, τ2, . . .}, which are iid from P0.

To justify the interchange of the two limits above, wemust

prove that the sequence
{
E

(
e− ∫

f dμε
n

)
, n ≥ 1

}
converges

uniformly. To this end, it is sufficient to show that the differ-
ence between two next terms in the sequence does not depend
on ε; in fact, for any M > 0, since

|e−x − e−y | ≤ eM |x − y| for any x, y ∈ [−M, M],

we have

∣
∣
∣E

(
e− ∫

f dμε
n+1

)
− E

(
e− ∫

f dμε
n

)∣
∣
∣

≤ E
(∣
∣
∣e− ∫

f dμε
n+1 − e− ∫

f dμε
n

∣
∣
∣
)

≤ eME

(∣
∣
∣
∣

∫

f dμε
n+1 −

∫

f dμε
n

∣
∣
∣
∣

)

,

where M ≥ sup f . Let now Cε,n+1 be a random partition on
{1, . . . , n + 1} such that its restriction to {1, . . . , n} corre-
sponds to Cε,n . We distinguish two cases:

1. Cε,n+1 has the same number of clusters of Cε,n ; one of
these clusters (the j-th for instance) has onemore element
and, as a consequence, has size equal to n j + 1;

2. Cε,n+1 has one more cluster than Cε,n ; this cluster con-
tains only one element.

In both cases, it is not difficult to prove that

E

(∣
∣
∣
∣

∫

Θ

f dμε
n+1 −

∫

f dμε
n

∣
∣
∣
∣

)

≤ 2M

n + 1
,

8.5 Appendix 5: Proof of Proposition 2

The conditional distribution of θ is:

L (θ1, . . . , θn|Pε) =
n∏

i=1

Pε(θi ) =
n∏

i=1

Nε∑

j=0

(
Pjδτ j (θi )

)

=
Nε∑

l1=0

Pl1δτl1
(θ1)

Nε∑

l2=0

Pl2δτl2
(θ2) · · ·

Nε∑

ln=0

Plnδτln
(θn)

= I{1,...,Nε+1}(k)
1

(Tε)n

∑

l∗1 ,...,l∗k

J n1l∗1

. . . Jnkl∗k
δτl∗1

(θ∗
1 ) . . . δτl∗k

(θ∗
k ),

where (θ∗
1 , θ∗

2 , . . . , θ∗
k ) is the vector of the unique values in

the sample. We omit the indicator I{1,...,Nε+1}(k) till we need
it. Introducing the auxiliary variable U , by (13) we have:

L (θ , u|Pε) = 1

Γ (n)
un−1e−uTε

×
∑

l∗1 ,...,l∗k

(

Jn1l∗1
δτ∗

l∗1
(θ∗

1 ) . . . Jnkl∗k
δτ∗

l∗k
(θ∗

k )

)

.

Hence we have:

L (θ , u, Pε) = L (θ , u|Pε)L (Pε)

= un−1

Γ (n)
e−uTε

∑

l∗1 ,...,l∗k

(
Jn1l∗1

δτ∗
l∗1

(θ∗
1 ) . . . Jnkl∗k

δτ∗
l∗k

(θ∗
k )

)
L (Pε)

= un−1

Γ (n)

Nε∏

j=0

(e−u J j )
∑

l∗1 ,...,l∗k

(
Jn1l∗1

δτ∗
l∗1

(θ∗
1 ) . . . Jnkl∗k

δτ∗
l∗k

(θ∗
k )

)

×
Nε∏

j=0

(
ρε(J j )P0(τ j )

)
P0(Nε;Λε) (16)

= 1

Γ (n)
un−1

Nε∏

j=0

(
e−u J j ρε(J j )P0(τ j )

)

×
∑

l∗1 ,...,l∗k

(
Jn1l∗1

δτ∗
l∗1

(θ∗
1 ) . . . Jnkl∗k

δτ∗
l∗k

(θ∗
k )

)
P0(Nε;Λε)

where, in this proof,P0(Nε;Λε) is the density of the Poisson
distribution with parameter Λε, evaluated in Nε, and P0(τ )

is the density of P0 evaluated in τ .
The conditional distribution of Pε, given U = u and θ , is

as follows:

L (Pε|u, θ) = L (τ , J, Nε|u, θ)

= L (τ , J |Nε, u, θ)L (Nε|u, θ).
(17)

so that we are able to interchange the two limits. Finally, it 
is straightforward to show that the stated convergence fol-
low from the convergence in distribution conditioning on 
{τ0, τ1, τ2, . . .}, with an argument on Laplace transforms as 
before. This ends the first part of the Proposition, i.e. conver-
gence for ε → 0.

Convergence as ε → +∞ is straightforward as well. In 
fact, when ε increases to +∞, there are no jumps to consider 
in (4) but the extra J0, so that Pε degenerates on δτ0 .



The second factor in the right handside is proportional to

L (Nε, u, θ)

=
∫

d J0 . . . d JNεdτ0 . . . dτNεL (τ , J, Nε, u, θ)

=
∑

l∗1 ,...,l∗k

{[ k∏

i=1

∫

Jnil∗i
δτl∗i

(θ∗
i )e

−u Jl∗i ρε(Jl∗i )P0(τl∗i )d Jl∗i dτl∗i

]

×
[ ∏

j �={l∗1 ,...,l∗k }

∫

e−u J j ρε(J j )P0(τ j )d J j dτ j

]}

× 1

Γ (n)
un−1P0(Nε; Λε).

Observe that, for any j �= {l∗1 , . . . , l∗k },
∫

e−u J j ρε(J j )P0(τ j )d J jdτ j

=
∫ +∞

0
e−u J j ρε(J j )d J j

= 1

ωσ Γ (−σ, ωε)

∫ +∞

0
x−σ−1e(u+ω)x

I(ε,+∞)(x)dx

= (ω + u)σ

ωσ Γ (−σ, ωε)

∫ +∞

(ω+u)ε

e−y y−σ−1dy (18)

= (ω + u)σ Γ (−σ, (ω + u)ε)

ωσ Γ (−σ, ωε)
.

The integrand function in the second line of the for-
mula above is the kernel of the mean intensity of a ε-
NGG(σ, κ, ω + u, P0) process. On the other hand, for i =
1, . . . , k:

∫

Jnil∗i
δτl∗i

(θ∗
i )e

−u Jl∗i ρε(Jl∗i )P0(τl∗i )d Jl∗i dτl∗i

=
(∫

Jl∗i e
−u Jl∗i ρε(Jl∗i )d Jl∗i

) (∫

δτl∗i
(θ∗

i )P0(θ
∗
i )dθ∗

i

)

= P0(θ∗
i )

ωσ Γ (−σ, ωε)

∫ +∞

0
xni e−ux x−1−σ e−ωx

I(ε,+∞)dx

(19)

= (ω + u)σ−ni

ωσ

Γ (ni − σ, (u + ω)ε)

Γ (−σ, ωε)
P0(θ

∗
i ).

The integrand function in (19) is the kernel of a gamma den-
sity with parameters (ni − σ, u + ω), restricted to (ε,+∞).
Summing up, we have

L (Nε|u, θ) ∝ L (Nε, u, θ) = un−1

Γ (n)
P0(Nε;Λε)

×
∑

l∗1 ,...,l∗k

{(
(ω + u)kσ−n ∏k

i=1 Γ (ni − σ, (ω + u)ε)P0(θ∗
i )

ωσkΓ (−σ, ωε)k

)

×
(

(ω + u)σ(Nε+1−k)Γ (−σ, (u + ω)ε)Nε+1−k

ωσ(Nε+1−k)Γ (−σ, ωε)Nε+1−k

)}

= un−1

Γ (n)
P0(Nε; Λε)

(Nε + 1)!
(Nε + 1 − k)!

(ω + u)σk−n

ωσkΓ (−σ, ωε)k
(20)

× (ω + u)σNnaΓ (−σ, ε(ω + u))Nna

ωσNnaΓ (−σ, ωε)Nna

×
k∏

i=1

(

P0(θ
∗
i )Γ (ni − σ, ε(ω + u))

)

I{(Nε+1)≥k}.

As in the proof of formula (5), Nna = Nε + 1 − k is
the number of non-allocated jumps. Therefore, since k is
given, the conditional distribution L (Nε| u, θ) is identified
byL (Nna |u, θ); we have

L (Nna |u, θ) ∝ I(Nna≥0)
(ω + u)σk−n

ωσ Γ (−σ, ωε)

(Nna + k)

Nna !
×

(
κ(u + ω)σ

Γ (1 − σ)
Γ (−σ, (u + ω)ε)

)Nna

.

Let Λε,u be as in (6); it easily follows that

L (Nna |ε, u, θ) ∝ Nna + k

Nna ! e−Λε,uΛNna
ε,u

= Λε,u

(Nna − 1)!Λ
(Nna−1)
ε,u e−Λε,u + k

Nna !Λ
Nna
ε,u e−Λε,u (21)

= Λε,u

Λε,u + k
P1(Nna;Λε,u) + k

Λε,u + k
P0(Nna;Λε,u).

On the other hand, the first factor in the right handside of
(17) can be computed by the following comment. Denote by
l∗ = (l∗1 , . . . , l∗k ) is the vector of locations of the allocated
jumps. From (16), it is clear that

L (J, τ , l∗|Nna, u, θ)

= Jn1l∗1
δτ∗

l∗1
(θ∗

1 ) . . . Jnkl∗k
δτ∗

l∗k
(θ∗

k )

×
Nna+k−1∏

j=0

ρε(J j )P0(τ j )e
−u J j

=
(

k∏

i=1

Jnil∗i
δτ∗

l∗i
(θ∗

i )e
−u Jl∗i ρε(Jl∗i )P0(Jl∗i )

)

×
⎛

⎝
∏

j �={l∗1 ,...,l∗k }
e−u J j ρε(J j )P0(τ j )

⎞

⎠ . (22)

The first factor in (22) refers to the unnormalized allocated
process: the support is θ∗, while the jumps follows indepen-
dent restricted gamma densities, as clearly observed after
(19). This shows point 2. of the Proposition.
On the other hand, the second factor in (22) shows that the
non-allocated jumps are indeed the jumps of ε-NGG(σ , κ ,
ω + u, P0) process, given that exactly Nna jumps of the
process were obtained; moreover, the conditional distribu-
tion of Nna is described in (21). This shows point 1. of the
Proposition.



Point 3 follows straightforward from (22).
Normalization of the jumps (allocated and non-allocated)
gives 4.
With regard to 5., we need to integrate out Nε inL (Nε, u, θ)

displayed in (20). We have already made these computations
in the proof of formula (5), and thus fU |θ∗(u|θ∗) is propor-
tional to the integrand in (5).

8.6 Appendix 6: Details of the blocked Gibbs sampler

We explicitly derive every step of theGibbs sampler in Fig. 1,
starting from the joint distribution of data and parameters in
(11).

1. The first step is straightforward, since

L (u|X, θ , Pε, ε, σ, κ) ∝ L (u, X, θ , Pε, ε, σ, κ).

2. Thanks to the hierarchical structure of the model, the
following relation holds true:

L (θ |X, Pε, ε, σ, κ, u) ∝
n∏

i=1

k(Xi ; θi )

Nε∑

j=0

J jδτ j (θi )

=
n∏

i=1

Nε∑

j=0

J j k(Xi ; θi )δτ j (θi ) =
n∏

i=1

J j k(Xi ; τ j ),

and this proves Step 2.
3. As far asL (Pε, ε, σ, κ|u, θ , X) is concerned, we have

L (Pε, ε, σ, κ|u, θ , X) = L (Pε, ε, σ, κ|u, θ)

= L (Pε|ε, σ, κ, u, θ)L (ε, σ, κ|u, θ),

so that Step 3. can be split into two consecutive sub-
steps. First we simulate fromL (ε, σ, κ|u, θ) as follows:
we integrate out Nε (or equivalently Nna) from (20) and
obtain

L (ε, σ, κ|u, θ , X) ∝
+∞∑

Nna=0

L (Nna, ε, σ, κ|u, θ , X)

= un−1

Γ (n)

(
κ

Γ (1 − σ)

)k−1 k∏

i=1

[

Γ (ni − σ, ε(u + ω))

]

× (ω + u)σk−n

ωσ Γ (−σ, ωε)
eΛε,u−Λε

(
Λε,u + k

)
π(ε)π(σ )π(κ).

In practical terms, Step 3a can be obtained in three sub-
steps:

L (ε|u, θ , X) ∝
k∏

i=1

Γ (ni − σ, ε(u + ω))e(Λε,u−Λε)

× Λε,u + k

Γ (−σ, ωε)
π(ε), (23)

L (σ |u, θ , X) ∝ (u + ω)kσ

ωσ

Λε,u + k

Γ (−σ, ωε)
e(Λε,u−Λε)

×
k∏

i=1

Γ (ni − σ, ε(u + ω))Γ (1 − σ)1−kπ(σ), (24)

L (κ|u, θ, X) = p1gamma(α + k, R + β)

+ (1 − p1)gamma(α + k − 1, R + β), (25)

where

R = ωσ Γ (−σ, εω)

Γ (1 − σ)
− (ω + u)σ Γ (−σ, ε(ω + u))

Γ (1 − σ)

and p1 is equal to

(α + k − 1)(u + ω)σ Γ (−σ, ε(ω + u))

(α+k−1)(u+ω)σ Γ (−σ, ε(ω + u))+k(R + β)Γ (1 − σ)
.

Here we assume that π(κ) is gamma(α, β). Step 3.b
consists in sampling from L (Pε|ε, σ, κ, u, θ) and has
already been described in Sect. 4.
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