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with elCU-CRD being the largest (> 130 K) and AmsterdamUMCDB the
smallest (>23 k). ICU mortality and intensity of treatment also varied,
with 28-day mortality rates and frequency of ventilation being lowest
in elCU-CRD. Frequency of lab values tended to be highest in MIMIC-
IV, while frequency of vital signs was highest in AmsterdamUMCDB.
Conclusion. Several high-quality ICU databases are currently availa-
ble. The research question, and thus required sample size, presence of
covariates and frequency of measurements, should inform which data-
base to use. Due to the underlying differences between the datasets,
we suggest using at least two databases to ensure generalizability of
findings.
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Introduction. Well validated models exist only for dichotomous out-
come prognosis after traumatic brain injury (TBI). Dichotomisation,
however, fails to capture the broad continuum of outcomes which may
be crucial for shared decision-making and treatment stratification in
the ICU. On the other hand, multiclass TBl outcome prediction perfor-
mance is poor, especially for intermediate outcomes, but it is unclear
whether this is due to inflexible modelling strategies (i.e., model com-
plexity and outcome encoding) or inadequate disease characterisation
by existing predictors.

Objectives. We assess multiclass prediction of the Glasgow Outcome
Scale—Extended (GOSE) [1] at 6 months from standard TBI predic-
tors as a function of endpoint encoding (multinomial vs ordinal) and
model complexity (logistic regression vs deep learning).

Methods. We use data from a prospective cohort of 3,573 patients
from the CENTER-TBI [2] study, extracted using Opal [3]. We use the
IMPACT [4] extended predictor set (10 covariates collected within 24 h
of ED/ICU admission) including age, clinical severity scores, second-
ary insult indicators, CT characteristics, and lab values. Missing values
are multiply imputed (m=100), and we train 4 multiclass prediction
model types: multinomial logistic regression (MLR), ordinal logis-
tic regression (OLR), neural network with a multinomial output layer
(DeepM), and neural network with an ordinal output layer (DeepO).
Model performance and calibration is assessed with repeated cross-
validation (20 repeats, 5 folds). We also calculate predictor significance
(Shapley values) [5].

Results. As shown in Fig 1, discrimination of GOSE does not vary
significantly with model type based on 95% Cls. Even the most
flexible models yield AUCs with only modest discrimination (AUC
between 0.61 and 0.66) for intermediate outcomes. MLR, OLR, and
DeepO predictions are well-calibrated to true GOSE distributions,
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but DeepM learns to negatively bias predictions of GOSE 8 to
increase sensitivity to intermediate outcomes. Classification perfor-
mance is consistently poor (mean accuracy <46%) due to excessive
categorisation into GOSE 1 or GOSE 8 effectively reducing a mul-
ticlass problem to a dichotomous one. Based on paired Wilcoxon
tests for predictor significance (a=0.05) age, motor Glasgow Coma
Score, Marshall CT classification, and pupil reactivity are the most
significant while the lab values (glucose and Hb) and presence of
an epidural haematoma are the least.
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Fig. 1: Receiver operating characteristic (ROC) curves of the best-performing model type per each

GOSE score at 6 months post-injury on the validation sets. The values in each box represent the
mean area under the curve (with 95% confidence interval in parentheses) per model type.

Conclusion. Since the poor performance of GOSE prediction models
is independent of complexity and outcome encoding, it follows that
features known to predict dichotomous outcomes are insufficient
for multiclass prediction. This result suggests that either admission
characterisation is incomplete for intermediate outcomes or these
outcomes are better explained by events during ICU stay. This moti-
vates the search for a better classification of TBI that is related to a
more nuanced understanding of outcome.
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Introduction. Sepsis is one of the major causes of mortality in ICU
with an occurrence up to 40% worldwide [1]. It is considered a seri-
ous public health issue with 1 in 3 hospitalizations that end in death
with sepsis [2]. Sepsis showed a strong influence on cardiovascular
functioning in terms of both myocardial and cardiac autonomic dys-
function [3]. The major effects of sepsis on the cardiovascular system
can be summarized as follows: a systolic and diastolic cardiac dysfunc-
tion, an increased heart rate despite an overall reduction in autonomic
modulation of heart activity and an impairment in the baroreflex
sensitivity.

Objectives. Our study is aimed at exploring the ability of ECG and
arterial blood pressure (ABP) waveforms, recorded in the first hour of
ICU stay, in recognizing patients with sepsis with an Al-based physi-
ological and cardiovascular monitoring tool.

Methods. We extracted the first hour of ECG and ABP waveforms
of patients admitted in the ICU, from the publicly available MIMIC-
Il database on PhysioNet [4,5]. The final population includes 142
patients, 50% of whom with sepsis.

The ECG and ABP signals were processed in order to extract the R-peak
occurrences from the ECG and the systolic, diastolic and onset occur-
rences and values from the pressure signal. 68 features were extracted
from the heart rate and blood pressure variability domain through
mathematical modelling of the closed loop cardiovascular system,
which allowed also for the extraction of baroreflex gain [6]. Finally, 7
confoundings comprising the undergoing sedative and vasoactive
agent treatment and mechanical ventilation as well as age, gender,
diabetes and hypertension were included.

A logistic regression model was then trained on a 80% training set and
tested on the remaining 20% of data.

Results. Best results on the test set show an AUROC=0.91 and
AUPRC=0.90, thus highlighting the ability of continuously recorded
vital signs in recognizing septic patients.
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The figure depicts the results of the explainability analysis on model
decision rules. The model’s strategy results to be consistent with previ-
ously summarized clinical considerations about sepsis. Indeed, a lower
(impaired) baroreflex gain despite the high systolic pressure values is
associated with a higher probability of being septic. Similarly, the sec-
ond plot shows that an increased heart rate (low RR-interval) is associ-
ated with higher sepsis probability and this probability increases when
a reduced sympatho-vagal balance (LF/HF) is observed, corresponding
to a reduced sympathetic activity or to an overall reduction of auto-
nomic activity.

Conclusion. Our results show that continuously recorded patients
vital signs may help in automatic early identification of sepsis in
the early hours of ICU stay. The proposed Al-based physiological

’
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monitoring also allows for the extraction of indices able to describe
the state of the cardiovascular control system and providing key
insights on cardiovascular functioning.
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Introduction. ICU delirium is frequent, associated with unfavorable
outcomes, increased costs, and may be preventable. There is an unmet
need for accurate methods to predict risk of delirium. Here, we trained
machine learning models to predict ICU delirium using physiological
and clinical features in large clinical database.

Objectives. The aim of this study was to leverage machine learn-
ing applied to early physiological and clinical data to predict delir-
ium onset using physiological and clinical features in large clinical
database.

Methods. The first model (A) was designed to predict delirium onset
at any time during the ICU stay. Data from the first 24 h following ICU
admission were extracted from the multi-center elCU database. A
second “dynamic” model (B) was built to predict onset of delirium in
the next hour to twelve hours. Features extracted from data included
demographics, medical history, labs, medications, nurse charting,
comorbidities, treatments, and physiological time series. Similar fea-
tures were extracted from the MIMIC-IIl database for external valida-
tion. The top features were analyzed using logistic regression (LR),
random forest (RF), or Shapley values, and then a statistically pruned
feature space for each model was obtained. These pruned feature
spaces included about 150 variables, with slight variations depend-
ing on the model, lead time, and data window used. For both mod-
els, three algorithms were evaluated: LR, RF, and gradient boosting
[CatBoost]). Model performance was evaluated using nested cross-
validation and area under the receiver operating characteristic curve



