
Blockchain: Research and Applications 3 (2022) 100031
Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications
A scalable decentralized system for fair token distribution and seamless
users onboarding

Francesco Bruschi a,*, Manuel Tumiati b, Vincenzo Rana a, Mattia Bianchi b, Donatella Sciuto a

a Politecnico di Milano, Milano, 20133, Italy
b KNOBS srl, Milan, 20121, Italy
A R T I C L E I N F O

Keywords:
Blockchain
Tokens
Onboarding
Wallets
* Corresponding author.
E-mail addresses: francesco.bruschi@polimi.it (F

(M. Bianchi), donatella.sciuto@polimi.it (D. Sciuto)

https://doi.org/10.1016/j.bcra.2021.100031
Received 30 December 2020; Received in revised f
2096-7209/© 2021 The Authors. Published by Else
creativecommons.org/licenses/by/4.0/).
A B S T R A C T

Tokens are digital, transferable, and programmable assets and one of the most promising tools offered by
blockchains. They could enable a wide range of applications, from down to earth to futuristic. One of the main
issues in achieving wide adoption of tokens is onboarding: main platforms require users to deal with specific tools
such as wallets, transaction fees, key generation, and storage.

The most common solution to offer a familiar experience to naive users are custodial intermediaries, which
have the important drawback of centralizing the process, and keeping users away from the advantages of self-
sovereign assets control.

In this paper, we present a process for the distribution of digital tokens to end users, exploiting “physical”
objects for initial distribution. The process is aimed at making the onboarding of users not yet accustomed to
blockchain tools and concepts as easy as possible, in a secure and decentralized way.
1. Introduction

One of the possibilities introduced by the blockchain technology is to
represent digital assets that can be easily and securely owned through
cryptographic identifiers that can be generated autonomously by users.
The assets can be seamlessly transferred, and the logic and mechanics of
the transactions can be programmed reliably and transparently. Bitcoin
[1] itself, the system that historically introduced blockchains, can be seen
as a platform for the storage, ownership, and programmable transfer of a
certain value token, the bitcoin. If we focus on the bitcoin token, we
observe some peculiar features:

� it has a capped supply;
� it is minted/distributed with a predefined, deterministic mechanism
(as a reward for miners);

� it has one basic function (can be used to pay transaction fees in the
network);

The concept then underwent a process of abstraction, and frameworks
were conceived to design and develop other kinds of tokens, with different
. Bruschi), manuel.tumiati@knob

.

orm 16 September 2021; Accepte
vier B.V. on behalf of Zhejiang U
features. Omnilayer [2], one of the first programmable assets frameworks,
provided a layer on top of bitcoin. Upon it, one of thefirst (and as ofwriting,
still the most capitalized) stablecoin was built, Tether [3]. In 2012, Ether-
eum [4] introduced a fully programmable (Turing complete) blockchain.
From the verybeginning, the definition of a tokenwith custom featureswas
one of the motivating applications proposed for Ethereum. The idea stuck,
and two standard abstract interfaces, ERC20 [5] and ERC721 [6], were
defined tomaximize adoption and interoperability. Since then, a Cambrian
era of new tokens, services, securities, and utilities began, in which infa-
mous scamswere conceivedalongwithvery successful projects.A basic and
useful partition of tokens is between fungible and non fungible. Fungible
tokens are those that are interchangeable, such as dollar bills. Non fungible
tokens, in turn, have meaningfully individual features, such as collectibles,
or tickets for an event, etc. Fungible tokens can be used to represent, for
example, monetary-like value or access to services (in the latter case, they
are called utility tokens). Sometimes, like in the cases of ether (the token
with which computation is paid for in Ethereum) and bitcoin, the same
token can both serve as a utility and as a means of value exchange and
storage. Some applications of non fungible tokens include representation of
ownership of physical/virtual assets/objects, collectibles, etc.
s.it (M. Tumiati), vincenzo.rana@polimi.it (V. Rana), mattia.bianchi@knobs.it

d 22 September 2021
niversity Press. This is an open access article under the CC BY license (http://

mailto:francesco.bruschi@polimi.it
mailto:manuel.tumiati@knobs.it
mailto:vincenzo.rana@polimi.it
mailto:mattia.bianchi@knobs.it
mailto:donatella.sciuto@polimi.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2021.100031&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2021.100031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bcra.2021.100031

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
In most applications, the initial distribution of tokens is key. The best
token distribution strategy varies with the economic model underlying
the token (sometimes called token economy). Typical distribution stra-
tegies include Initial Coin Offerings (ICOs), in which tokens are put on
time-limited sales, sometimes with auction mechanisms and airdrops, in
which tokens are distributed for free to a set of users. Wewill reviewmost
of these strategies in Section 2. Another crucial dimension is the type of
ownership control that users are given. While in some cases, tokens are
aimed at users with some confidence with blockchain tools, other times it
is desirable to engage “crypto-naive” users. This can pose challenges such
as how to make the user pay the fees, and how to generate and keep the
keys. Currently, custodial ownership architectures in which an interme-
diary keeps the keys and pays for the fees, providing a “classical” inter-
face (user login), are the most considered option. Custodial models, in
spite of their friendliness, have many drawbacks, among which the
“recentralization” of the system, the natural counterparty risk, and the
introduction of more vulnerable moving parts in the system. Last but not
least, from a “pedagogical” point of view, they do not allow the users to
get accustomed to the features of blockchain assets ownership.

In this paper, we propose a system that aims at distributing tokens by
means of QR codes, and that does not require any software tools nor
previous acquaintance with any blockchain or crypto concepts. The
process is non custodial and completely decentralized. We then show an
implementation of the system, and show performance and cost figures
taken in a real-world usage context, along with a deep analysis of the
scalability of the proposed approach, in terms of both costs and
performance.

This article is an extended version of Ref. [7]. With respect to the
original paper, we analyze the performance limits of the proposed system
(latency, throughput, cost), and examine and review the main tools and
technologies available to improve scalability. After analyzing the
different options, we focus on optimistic rollups, and we experiment
using them to improve scalability. We then describe and analyze the
results obtained.

2. State of the art

There are different ways to distribute new tokens. In some cases,
tokens have a tangible value since their inception, and can then be sold in
exchange for other values (fiat, or other value tokens). Other times, to-
kens have no initial value (that is, no buyers are willing to pay value for
them), but have a role in bootstrapping the system. In some other cases,
tokens are non fungible representations of some assets that you want to
distribute (e.g., collectibles). In this section, we review the state of the art
of token distribution mechanisms and strategies.

2.1. Systems for the distribution of tokens

In Ref. [8], the authors review and analyze the main strategies for
token distribution mechanisms at genesis, that is, at the inception of the
system, be it a new blockchain or an application living on top of an
existing one. The review mainly focuses on fungible tokens, and it ac-
knowledges that token sales are the most frequent strategies. There are
different types though, including:

� Initial Coin Offerings (ICOs), in which tokens are sold, typically via
smart contracts, and paid in value tokens (e.g. ether);

� Initial Exchange Offerings (IEOs), similar to ICOs, except that the
tokens are put on sale on custodial exchange platforms, and thus
involve the role of an actor subject to some jurisdiction;

� Simple Agreement for Future Tokens (SAFTS), in which tokens are not
minted and sold upfront, but rather investors buy a promise to deliver
tokens [9]. This strategy is mainly aimed at accredited investors.

The article then reviews the strategies adopted by the main projects in
the blockchain/cryptocurrency space:
2

� Bitcoin didn't distribute any tokens at genesis. All the tokens (the
bitcoins) are continuously distributed as rewards for miners;

� Ethereum “pre-mined” some tokens, and then sold them in an “initial
coin offering” (the first in history);

� Z-cash has a mechanism that assigns part of the tokens minted
through mining to creators and early investors.

In addition, there are then strategies known as airdrops. In airdrops,
tokens are distributed to active users (for instance, to a subset of Ether-
eum addresses with a balance greater than zero). While airdrops can
easily target niche potential users, they may fail to generate engagement,
since the user receives something passively, without “skin in the game”.
In contrast, interactive airdrops request somemore or less costly action to
the user willing to acquire the tokens. There are different declinations of
interactive airdrops. In lockdrops, users can claim tokens by locking some
value in a contract, for a given amount of time. In this way, the user
shows a commitment and sustains a cost, in the form of opportunity lost
with the value locked. In Merkle mine, a number of tokens are minted
initially, and then users can reclaim them by providing a Merkle proof of
inclusion of their addresses in the network state at some block height.

2.2. Burner wallets

If the distribution aims at users not accustomed to blockchain inter-
action tools, there are many cognitive and practical obstacles they have
to overcome. For a pitiless but enjoyable representation of the paradoxes
that a newcomer has to face, see Ref. [10]. Some of the most relevant
barriers are:

� new users don't have a token custody application (a wallet);
� they cannot pay for the transaction fees (since they don't already have
the necessary value tokens).

One of the most radical approaches to these issues is a tool called
burner wallet, which was developed within the xdai project [11]. Xdai is
an Ethereum Virtual Machine compatible blockchain with specific fea-
tures, with a native value token, the xdai that can be swapped with the
dai stablecoin on the Ethereum mainnet. The network is intended as a
faster and lighter sidechain of Ethereum, for use cases such as payments.
The burner wallet is an application that allows the transfer of xdais to a
new user by means of a non custodial web app. If a sender wants to
transmit some xdais, it accesses Burner [12], a web application that
connects to the user's wallet and, with the sender's approval, sends the
tokens to a special contract. At the same time, the app generates a link
(and corresponding QR code) that redirects to a wallet created on the fly,
to which the tokens can be redeemed. The initial fees to redeem the to-
kens are paid by the system. In this way, the user that gets the link can
redeem the tokens, hold them in the wallet created on the fly (the burner
wallet), and transfer them at any time. The keys of the created account
are stored on the local storage of the browser. Application instructions
recommend transferring the received tokens to a safer place, such as a
cold storage wallet. The approach taken by the burner wallet significantly
lowers users' onboarding barriers. Still, there are some points of
centralization, among which the web server that provides the application
that, in the case of unavailability for some reasons, makes token collec-
tion impossible.

3. Gap to be filled

From the analysis of the state of the art, numerous strategies and
processes for the distribution of tokens emerge. Most strategies are either
aimed at crypto proficient users or are custodial. The approach that is
most “inclusive” towards crypto naive users is that of burner wallet,
which generates URLs redirecting to a web app wallet. The system is
limited to the xdai token, on the corresponding blockchain. It is then
appropriate to evaluate the possibility of a general system for the

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
distribution of tokens, be they fungible or non fungible, with the
following properties:

� minimal entering friction: no wallet should be required upfront, nor
any other specific app; even more important, no initial token should
be required to pay the initial transaction fees;

� the system should be maximally decentralized: user keys should not
be held or known by any third party; token acquisition should be
uncensorable, and the process should not rely on any server
controlled by a third party (ideally, not even the web server that
serves the app);

� it should be maximally fair: it should allow the possibility to assign
tokens to users as in a provably fair lottery.

In this paper, we present a system with those properties, that also
allows the distribution by means of physical objects, such as Near Field
Communication (NFC) tags or printed QR codes. After having described
the process and its implementation, we provide experimental perfor-
mance and cost figures of the system in a real use case.

4. How we fill the gap

To understand the simplicity of the user experience, let us describe
the steps that a user, Bob, has to follow in order to get onboarded and
receive a certain amount of tokens on a brand new wallet:

� Bob receives somehow (via e-mail, physical token, printed on a paper
sheet) a QR code;

� Bob scans the QR code with his smartphone camera;
� a popup appears on the smartphone asking Bob if he wants to open a
link (specified in the QR code) with the web browser;

� the browser opens the link and redirects Bob to a web application;
� the web application asks Bob to perform the following tasks:
– click on a button to generate a new account (a new wallet);
– click on a button to redeem the token associated with the QR code;

� at this point, the application notifies Bob that the token has been
received in his new wallet.

Bob is now the owner of the tokens, and he can use them in order to
buy a service or a product, or to download a uniquely crafted document
by simply proving ownership of the token.

Since a newwallet has been generated, the user is now able to redeem
new tokens just by scanning other QR codes, without the need to repeat
the entire flow from the start. This approach is also useful for the non-
crypto users to better understand what is happening under the hood
during the onboarding phase and it also increases the usability for
redeeming further tokens.
Fig. 1. Schema of the pr

3

Among other functionalities, the web application allows Bob to export
the credential of his wallet (i.e., the private key of the address), so that he
may transfer his wallet on other applications/tools (e.g., Metamask [13]).

4.1. System architecture

The overall system architecture is represented in Fig. 1. The on-chain
logic of the system is composed of two smart contracts, written in Solidity
[9] and deployed on the Ethereum mainnet. The contracts are:

� a webapp versioning contract [14];
� a token distribution contract [15].

The off-chain logic of the application is composed of:

� two web applications, stored on Interplanetary File System (IPFS)
[16,17];

� a transaction relaying server.
4.1.1. QR code generation
The first steps are the initial minting of the tokens and the generation

of the public/private key pairs (one for each token to be distributed).
Each token is in fact linked, within the smart contract and during the
minting phase, with the public key of a particular credential. The cor-
responding private key is used, combined with the URL of the web
application, to generate the QR code to be distributed to the users. This
QR code will then make it possible, for the user that receives it, to redeem
the token associated with the public key corresponding to the private key
contained in the QR code.

4.1.2. Webapp URL management
In the proposed system architecture, the HTML files of the web

application are provided through the IPFS [18]. This makes it possible to:

� avoid the centralization due to a single server providing the web
application to the users since IPFS is a decentralized file storage;

� guarantee the users that the application they are running on their
browser has not been altered/modified/hacked, since IPFS files are
addressed by their hashes.

The drawback of this solution is the impossibility of updating the
application after its deployment since any change of the HTML changes
the hash embedded in the QR code given to users. In the proposed ar-
chitecture, we solved this issue with a couple of HTML web applications
and a versioning smart contract that always contains the hash of the last
version of the web application.
oposed architecture.

1 https://github.com/OpenZeppelin/openzeppelin-contracts.
2 https://github.com/kabl/solidity-signature-verify.

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
4.1.3. Versioning contract and proxy app
The Versioning Contract is used to locate the latest version of the

wallet web application. To do so, it keeps track of all the application
versions by storing their hashes in a list. The contract offers a public
method that returns the last item on the list. Basically, the proxy appli-
cation (whose hash is embedded in the QR codes provided to the users)
only contains the logic to access the versioning smart contract, retrieving
the hash of the last version of the web application and redirecting the
user to it. The update of the web application, thus, requires only the
change of its HTML code, the computation of the new hash, and the
update of the versioning smart contract with this new hash.

4.1.4. Token Distribution App
The Proxy App redirects the user to the current version of the actual

Token Distribution App. This is essentially a wallet that can generate a
new Ethereum account (private key and address) on the spot and can
interact with the Token Distribution Contract on-chain. The wallet re-
ceives, in the URL encoded in the QR code, a unique private key, whose
corresponding public key is associated with one of the minted tokens.
The key allows the application, signing a request, to redeem the corre-
sponding token. To avoid transmitting the code to the IPFS gateway, this
is inserted in the fragment portion of the URL, and is thus available only
to the JavaScript application local to the device. The application then
allows the user to:

� generate a new Ethereum account;
� generate a redeeming transaction, that contains a request, signed with
the redeeming private key, to transfer a token to the newly generated
account;

� send the transaction to a relying server (described below);
� export the generated account.

4.1.5. Token Distribution Contract
The token distribution contract manages the creation of unique dig-

ital assets that can be redeemed only by users that prove to own the
rights. To serve this purpose, the contract implements an ERC721
interface and, for each non fungible token, keeps track of an asset (a PDF
document in our experiment) it is associatedwith. Moreover, the contract
stores a set of public keys that represent the ownership of the tokens.

All documents are first stored in IPFS, then the corresponding hash is
registered on the blockchain and associated with a newly minted token
calling a specific method, reserved to the contract owner. Some tokens
can also be marked differently from the others, in order, for instance, to
have “standard” and “premium” assets, as requested by the specific
experiment. Another method allows adding the public keys that will be
able to reclaim the tokens. Tokens and public keys are stored in different
lists and will be dynamically associated during the redeem process, so the
association is not known in advance. The private keys will be distributed
to the users to produce a valid signature verifiable by the corresponding
public keys.

4.1.6. Transaction relaying server
In order to make it possible for the users to redeem the token

without requiring them to pay for the transaction fee, the proposed
system architecture also envisages the use of a relay server. The web
application retrieved by the users from IPFS tries to connect with this
transaction relaying server, sending it a signed message that the server
can include in a new transaction, thus paying the transaction fees. The
token distribution smart contract is able to analyze the message sent by
the relay server, which includes the message signed by the user web
application, from which the token distribution smart contract can
retrieve the address to which the new minted token has to be sent. In
this context, the transaction relaying server cannot change the signed
message or forge a fake signed message, thus the user (the owner of the
private key) is the only one able to create and sign a valid message to
redeem the token.
4

Note that this is not a single point of failure since the users always
have the possibility of sending the transaction to the token distribution
smart contract autonomously, with the only drawback that they have to
pay for the transaction fees.

4.1.7. Properties
To summary, our solution has several properties:

� easy access: the decentralized application is web-based, therefore it
does not require downloading any external applications;

� availability over time: the decentralized application is built in a
single file and stored on IPFS, so anyone can keep it available by
pinning that file (the control over the availability is on the users'
hands);

� flexibility: users can choose whether to create a newwallet on the fly,
to get an address of an existing wallet fromMetamask, or to manually
insert the address in which they want to receive the token;

� security: the QR code mechanism and the cryptography layer ensure
that the relaying server can't act maliciously, “stealing” the requested
token;

� decentralization: the system is designed to work even without the
relaying server;

� openness: anyone can create his own interface to interact with the
smart contracts by following the redeeming protocol, which is pub-
licly available.

5. Experimental results

In this section, we present some details of the implementation and cost
and performance figure of the solution, measured during a public event in
which the systemwas used to distribute ERC721 tokens that gave the right
to download a document of which different versions were provided.

The interface of the Token Distribution contract is a redeem function
(named “getReport” in our experiment), that takes three arguments:

� the public key corresponding to the private key used to sign the
message;

� the receiver address;
� the signature of the message containing the receiver address.

By using the information provided, the function is able to check the
validity of the signature and compare the signer public key with the ones
previously registered in the smart contract. If the signature is valid and
has not been used yet, a token will be dynamically chosen and transferred
to the provided address. This dynamic association is done using a “fair
lottery”mechanism configured with a predefined probability that allows
one to randomly assign special assets to some users and the non-special
ones to others. To achieve an acceptable level of randomness in a
deterministic system, it is necessary to consider different entropy sources.
On the blockchain, miners have a little control on the current timestamp
(around 15 s in Ethereum) and information on previous blocks. This may
allow them to predict random numbers that rely only on these parame-
ters. Our approach, as the code shown in Fig. 2, was to use a combination
of block related values hashed together, a comparison between a byte
taken from that hash and a byte taken from the signature (that cannot be
known in advance by the system) in the function call. This makes it
almost impossible for a user (and not convenient for a miner) to try
predicting (or influencing) the outcome.

The contract uses two external libraries:

� ERC721 by OpenZeppelin to manage non fungible tokens1;
� Solidity-signature-verify verify the signature2.

https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/kabl/solidity-signature-verify

Fig. 2. getReport function.

Table 1
Versioning contract size.

Source Code Lines of code

Full Contract 20
Bytecode Bytes
Full bytecode Size 2063
Deployed bytecode 1402
Initialization and constructor code 661

Table 2
Token distribution contract size.

Source Code Lines of code

Full Contract (including libraries) 1326
Report Contract (excluding libraries) 120
Bytecode Bytes
Full bytecode Size 17228
Deployed bytecode 16318
Initialization and constructor code 910

Table 3
Versioning contract—gas analysis.

Solc version:
0.5.16þcommit.9c3226ce

Optimizer:
false

Runs:
200

Block limit:
6721975 gas

Methods 11 gwei/gas

Contract Method Min Max Avg # calls eur
(avg)

DappURLResolver newUrl – – 91714 2 –

Deployments % limit
DappURLResolver – – 566787 8.4% –

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
5.1. Contract size

Tables 1 and 2 provide an overview of the contract size considering
source code and the bytecode generated. In this specific case, as high-
lighted in Table 1, a significant portion of code comes from external li-
braries, leaving room for further optimizations.

5.2. Gas analysis

Table 3 provides a detailed analysis of the transactions needed for
contract deployment and methods execution, including cost in terms of
gas and estimation in euro (considering a gas price of 11 gwei and the
eur/eth change fixed to 195.43). As shown in Table 4, transaction costs
for the whole project are sustainable with the given number of function
calls (“# calls”), considering that the only infrastructure needed in
addition to IPFS pinning and blockchain is the relay server.

5.3. Landing web application

The entry point of the system is a simple landing page that interacts
with the versioning contract, retrieves the latest application hash, and
redirects the user to the corresponding version of the Token Distribution
application stored on IPFS, preserving the URL fragment.

When the user lands on this page, the underlying application in-
stantiates the versioning contract and retrieves the link to the latest
5

application by calling the getCurrentUrl function. Once done, the appli-
cation redirects the user to the token distribution application forwarding
all the parameters that are present in the URL fragment. The proxy
application, after bundling, has a size of 403.96 KB.
5.4. Token redeem application

The web application is developed in Preact [19], a modern JavaScript
framework with a small footprint and high performance, and ethers.js
[20], a fully featured JavaScript library to handle blockchain interactions
and wallet management. After loading the token redeem application, the

Table 4
Token distribution contract—gas analysis.

Solc version: 0.5.16þcommit.9c3226ce Optimizer: false Runs: 200 Block limit: 6721975 gas

Methods 11 gwei/gas

Contract Method Min Max Avg # calls eur (avg)
Report addReport 124631 169695 124854 450 0.27
Report addSpecialReport 124694 154822 125405 50 0.27
Report getReport 245963 276107 247655 500 0.53

Deployments % limit
Report – – 4604336 68.5% 9.81

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
user can decide to create a new wallet or to specify his own address
manually or through the Metamask extension, if present. Then, the
application allows the user to ask for his token. When the user starts the
redeem process, the application reads a private key from the URL frag-
ment, generates the signature, and sends a transaction to the smart
contract. At the end of the process, the token will be transferred to the
address specified in the contract call. In order to reach the maximum
level of transparency, the application has been published on IPFS, which
guarantees decentralization and immutability. The application bundle
had been packed in a single HTML file paying attention to the bundle size
to be smaller as possible. The token distribution application, after
bundling, has a size of 993.20 KiB.

5.5. IPFS gateway

Since not all web browsers are yet able to retrieve documents directly
from the IPFS network, gateways play an important role in making the
service available to everyone. Two of the major gateways, Cloudflare
[21] and Infura [22] were taken into consideration and compared in
terms of reliability and performance. Finally, Cloudflare solution was
chosen, also due to its gzip support.

5.6. Relayer service

Since we assumed that users had no value token to pay the redeeming
transaction, a transaction relayer service was introduced.

The relayer service runs on a remote server and is divided into two
interacting processes. The first offers a simple HTTP server able to receive
HTTP requests from the redeem webapp, and only allows POST requests
with three components:

� the signature of a message containing the target address that will
receive the token, signed with the private key retrieved from the QR
code;

� the corresponding public key;
� the address that will receive the token.

The information is then forwarded through a queue to the second
process, which uses the private key of an external account in order to
execute the token requests previously stored in the database. Those re-
quests are first analyzed in order to check their legitimacy in two steps.
First, the signature is decoded using the given public key, and the result
must be equal to the given address that is going to be the recipient of the
token; then the public key related to the scanned QR code must be
verified as eligible by asking the smart contract if it has already been
redeemed. These checks prevent illicit use of the relayer service, which
could lead malicious users to force the system to submit failing trans-
actions, draining all the available funds.

Once verified the legitimacy of a request, the relayer service proceeds
to send the transaction to the smart contract, through an address pre-
loaded with ethers, specifying the receiver address. Upon completion, the
token is sent to the address specified.

It is impossible for the said service to manipulate the recipient
address, inasmuch as also the smart contract performs the same checks on
6

incoming token requests. Censorship actions are also not viable possi-
bilities, since this service is offered as only one of the possibilities to
request tokens. If it was down, the user could send the transaction
autonomously, provided that he got some ether to pay the fee.

5.7. Real event application

The entire process described was used during an event held at the end
of January 2020 at Politecnico di Milano. The system distributed tokens
that entitled participants to download the annual report of the Block-
chain and Distributed Ledger Observatory. A total of five hundred unique
tokens were minted. Among those, fifty tokens were graded “winners”
and only one of them was the first prize, granting the owner the possi-
bility to attend some future courses. Five hundred private keys were
printed on small chips in the form of QR codes and distributed among the
participants. Once scanned with a smartphone, that QR code redirected
the user to the web application, allowing it to request a token, through
the relayer service. In the first hour of the event, more than 100 tokens
(114) were successfully redeemed, other 190 tokens were distributed
during the rest of the conference (3 h) and a total of 370 tokens were
assigned overall. The cost of every transaction was US $0.27 (0.00125
Ether) and globally 881 transactions were submitted, including the first
500 for minting the tokens. The details of the transaction can be explored
at the address of the contract with an Ethereum blockchain explorer such
as Etherscan [15].

6. Scalability analysis

As known, two issues in using public blockchains are fees volatility
and scalability. In the remainder, we consider different strategies for
reducing fees and improving the throughput and latency of our system.
Among all the different possibilities, we consider two approaches: side-
chains and rollups, for which actual implementations currently exist.
First we analyze and review their principles and their operations, and
then we propose an experiment with a particular kind of rollups, the so-
called “optimistic rollups”.

6.1. Sidechains

Sidechains [23–25] are blockchains that run with “lighter” consensus
mechanisms (for example, Proof of Authority (PoA) [26,27]), that allow
the system to run with lower latency and higher throughput, at the ex-
penses of decentralization and resistance to certain forms of attacks (e.g.,
collusion of majority of validators). The trade-off should be justified by
the value handled by the sidechain: the value handled by the chain
should be lower than by the cost of the attacks.

Most sidechains strive to connect to one main, highly capitalized
blockchain, such as Ethereum, (which is often referred to as the mainnet)
for two reasons: to inherit part of the security features of the mainnet, and
to be interoperable with the assets and smart contracts active there.

Sidechains can be connected to the mainnet with different mecha-
nisms. One is to periodically commit their state on mainnet, sealing it
from future tampering [28]. State commitments can also be used to ac-
cess the state of the parent chain from the sidechain, for example, if the

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
commitment has the form of a Merkle root, it is possible for the logic on
the sidechain to evaluate proofs about the parent chain state. It is also
possible to two-way commit states (sidechain state is committed on the
parent chain every so often, and vice versa), allowingmechanisms for the
transfer of tokens and assets back and forth from/to the parent chain and
sidechain [29].

Another connection mechanism is represented by bridges: they allow
communication, potentially in various ways, with the mainnet. A
particular kind of bridge is token bridges, which provide the possibility to
send and receive tokens to and from the sidechain, but the mechanism
can be generalized to any form of communication. Bridges usually rely on
trusted oracles, responsible for relaying messages from one chain to the
other. To reduce centralization, oracle activity is typically distributed
among different actors. It makes sense to entitle validators of a PoA
sidechain to act as information relayer towards the mainnet since they
can control the state of the sidechain anyway.

The main advantage of side chains is their extreme flexibility: there is
almost complete freedom over any parameter of the chain/system:
consensus mechanism, scripting capabilities, account model, etc. On the
other hand, the main problems are reliance on oracles for the commu-
nication to/from the mainnet and weaknesses related to the sidechain
consensus (e.g., in a PoA sidechain, validators collusion can easily bring
to censorship, funds freezing, etc).

In the Ethereum ecosystem, one of the main examples of sidechains is
the xdai PoA sidechain, which we have already discussed in relation to
burner wallets in Section 2.2.
6.2. Rollups

Another category of scaling strategies is rollups [30]. In rollups,
transactions data is committed on the mainnet, but the execution (state
evolution, storage, and computation of side effects) is performed off
chain, and only the effects are “actuated” on chain. In other words,
transactions are bundled and “rolled up”, executed elsewhere, and their
effects translated on chain. This allows enjoying the major benefits of the
main blockchain (data availability, security, and incensurability).

The general question is: how is it possible to ensure that the
computation performed off chain is correct? There are different mecha-
nisms and technologies with which the problem can be addressed. The
two main and more current approaches are zero knowledge proofs and
optimistic virtual machines.

ZK-Rollups Zero Knowledge (or ZK-) rollups [31] use, as the name
suggests, zero knowledge proofs to guarantee that the effects of many
transactions are correctly taken into account and compounded. More-
over, ZK rollups exploit particular representations of transactions that use
less information (e.g., sender and receiver are coded as indexes in an
address book rather than as Ethereum addresses).

The basic idea is that a contract manages funds (either ethers or to-
kens) on behalf of its users, and keeps track of who owns what, in a way
not dissimilar to a centralized exchange. A user can enroll/register in the
system, and then can deposit, send and receive ethers and tokens from
other users. The transfers among users only affect the internal state of the
rollup, while deposits and withdrawals also affect other accounts. The
state of the contract only contains the Merkle roots of the information of
the users (address, balance, nonce). When a user wants to perform an
operation, they specify the required information (his index in the address
book, the recipient index, the amount, the fee he's willing to pay), sign it,
and send it to a relayer. Relayers take batches of transactions, put them in
a definite order, compute the effect on the state and the side effects
(transfers of ethers and tokens), compute the newMerkle root, and create
a ZK-snark [32,33] that demonstrates that:

� all the transactions were correctly signed;
� the cumulative effect of the transactions (state update þ effects) is
correct.
7

A crucial point is that anyone can play as a relayer. A user that thinks
that relayers are censoring his transaction could just act as a relayer of
himself, and post the update to the contract. Relayers are economically
incentivized to include transactions since users can devote a portion of
the transfer as a fee to the relayer that includes their transaction. The
economic dynamics are similar to that of miners.

Since information is included in transactions and in logs, anyone can
access all the information needed to create proofs, even if only Merkle
roots are stored in the blockchain state. Transactions and log information
cost much less than state storage, but have nonetheless a high degree of
availability, guaranteed by being recorded on chain.

ZK-rollup can lower the cost of ethers transfers by 24x and of ERC20
token transfers by 50x [34]. The main advantages of ZK rollups are:

� more than order of magnitude savings in gas cost;
� Zero knowledge proofs make it impossible for a relayer to claim false
consequences of users transactions.

While the main disadvantages are:

� ZK proofs verification systems currently used for rollups require an
initial trusted setup: it is necessary to produce entropy data that must
be destroyed after setup. If the entropy data is kept or known, it is
possible to forge proofs of false claims. It is possible to generate,
temporarily use, and then destroy entropy with protocols that offer a
so-called “any-trust” guarantee: it suffices only one honest participant
in the procedure to guarantee that the entropy has indeed been
destroyed. These protocols are effective but require complex a “so-
cial” setup (participants have to be many or trustworthy).

� they work only for assets transfer, not for general smart contracts.

Let's consider whether zk-rollups would be applicable or convenient
in our system, to accelerate token distribution and lower fees. Our system
is composed of:

� an initial distribution system (a lottery);
� an ERC721 token.

While the exchange of the tokens could be accelerated and made
cheaper by a zk-rollup mechanism, the initial distribution would be not.
So, all in all, the advantages would be limited or marginal.

6.2.1. Optimistic rollups
Another type of rollups is “optimistic rollups” [35]. As in zk-rollups,

the logic being scaled (e.g., a smart contract) is represented on chain
with a commitment to the current state, while the state information
itself is kept off-chain. Users submit transactions that are bundled by
validators. Validators, in turn, compute the effect of a batch of trans-
actions and call an on-chain contract with an assertion about the evo-
lution of the state due to the transactions in the batch, and about the
effects, such as ether transfers outside the contract, token transfers, and
calls to other contracts.

Validators also insert the users transactions on-chain, via transaction
data or in logs, so that all the information about all the transactions is
available. While in zk-rollups validators also generated and submitted
correctness proofs that were checked by a smart contract, optimistic
rollups exploit another mechanism.

When a validator submits an assertion, he has to put down some
stake. The effects of the assertion are not executed immediately. Rather,
they are delayed by a “challenge period”. Anybody can check whether his
assertion is correct, because the transaction data is available, and their
effects can be simulated. If anybody sees that the assertion is not correct,
he can challenge the validator that posted it. The challenge is regulated
by some on-chain logic. The system is designed to guarantee that, if a
validator makes an untrue assertion, anyone can demonstrate that to the
logic on-chain.

Table 5
Gas Cost comparison between rollup and L1 methods execution.

Function Arbitrum: gas
required for
calldata

Arbitrum: gas required for
the whole L1 transaction

Ethereum
Mainnet Gas

Contract
creation

266.279 303.238 4604.336

addReport 3.252 40.211 124.854

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
Once the validator is proved wrong, his stake is slashed, and the
assertion is invalidated. The mechanisms for managing and resolving
challenges vary among implementations. In Arbitrum 3 the validator
and the challenger engage a first round in which they narrow down,
through repeated bisections, the disagreement on the execution to a
single instruction. At that point, the offending instruction is simulated
by the logic on-chain, and the dispute is resolved. This mechanism
features a trust property called any-trust: a single active honest actor is
enough to guarantee that the effects of the transactions are correctly
taken into account and executed.

The advantages of this solution are:

� with respect to sidechains, optimistic rollups offer stronger guaran-
tees with lower trust assumptions (a single honest actor can force
correct behavior);

� with respect to sidechains, interoperability with the mainnet is easier,
since the control logic is executed already on it;

� with respect to zk-rollups, optimistic rollup works with arbitrary
smart contracts and not just token transfers.

The main disadvantage of optimistic rollups is their strong asyn-
chronicity: since a proper time for actors to challenge a validator assertion
must be guaranteed, any transaction effect can be considered finalized by
other smart contracts only after the challenge period. According to esti-
mates [36], the correct sizing of the challenge period could go from a few
hours to some days. Meanwhile, the assets accounted for in the rolled up
contract cannot be transferred to other addresses. Note that, however, an
external observer knows that a transaction will be correctly executed right
after it is written on-chain, and well before the expiration of the challenge
period. This could open up the possibility to lend liquidity in exchange for
tokens that have been transferred in a rollup but are frozen until challenge
period expiration. For instance, Alice could transfer 10 ethers to Bob inside
a rollup. Bob, after Alice's transaction has been recorded on-chain, is sure
that he will get, at the end of the challenge period, the 10 ethers. Mean-
while, he can lend the same amount on L1 to Alice for a fee.

6.3. Application to the token distribution system

At the moment, there are different implementations of optimistic
rollups, the two main ones being Offchain Labs Arbitrum, and Opti-
mism4. Arbitrum has recently developed a testnet environment for their
solution. We used Arbitrum to experiment with porting the token dis-
tribution system to L2.

The idea is to deploy both the contract that represents the tokens
(ERC721) and the distribution lottery on L2, and then to allow users to
exchange tokens efficiently on L2, and the possibility to, of course,
transfer them on L1 (for instance, to exchange them on OpensSea [37]).
We focused in particular on the evaluation of the costs to create and
distribute tokens within the rollup.

6.4. Scalability experiments

The Arbitrum Rollup provides a fully functional local environment
and a public testnet built on top of the Kovan Ethereum testnet5. The
validators network that is responsible for executing transactions off-
chain provides a JSON-rpc interface that is compatible with web3 spec-
ifications [38] through a provider wrapper library, allowing it to interact
in the same way as the Ethereum network. It is then possible to use the
same tools (e.g., Truffle) to deploy contracts on L2.

We ran an experiment by directly interacting with the Arbitrum
rollup network and we analyzed the transaction details using the
3 https://offchainlabs.com.
4 https://optimism.io/.
5 https://kovan-testnet.github.io/website/.

8

provided explorer interface. We focused on the main three steps needed
for our application to work, which are:

� Contract Creation: we deployed the token distribution contract
directly on the rollup chain;

� addReport: we set up the smart contract by registering a new report;
� getReport: we called the function that allows the user to redeem the
token associated with the previously added report.

We observed that, for each function call, a copy of the calldata of the
transaction is sent by aggregators to L1 to the global inbox contract (see
sendL1Message method). In order to reduce costs, multiple function calls
can be batched in a single L1 transaction.

6.4.1. Costs analysis
Table 5 compares the gas required for directly calling the contract

functions on the Ethereum network with the gas required for registering
the call data of the same function on the Arbitrum global inbox contract.
Since Arbitrum supports the registration of batch transactions, the cost
may change according to the number of transactions to the same contract
that will be included in the batch. For that reason, we decided to consider
the worst case scenario in which only one transaction is included in the
batch mentioned above.

The table has four columns that represent, respectively:

1. the function that is executed in the transaction;
2. the exact amount of gas that is needed to include the calldata in the

transaction sent to the global inbox;
3. the amount of gas in column two to which we added the fixed amount

(36.959) needed for calling the sendL1Message function on the global
inbox contract with no data;

4. the amount of gas we measured during the live event in which
interacting with the contract directly on the Ethereum main net.

As shown in Table 6, given the gas price for a standard transaction at
the time of writing (28 gwei) and the current EUR/ETH exchange rate
(484.92 EUR/ETH), the cost for running the contract on the Ethereum
main network is very high compared to the Arbitrum counterpart.

At the time of writing this article, the Arbitrum project is still under
development, therefore transactions inside the rollup network are
completely free of charge. The protocol is designed to measure the
computational resources needed for the aggregators and validators to
execute transactions within the side chain (arbgas [39]). According to the
Arbitrum documentation, the fee that will be necessary at the main net
launch will be much lower than the current cost in the Ethereum main
net.

6.4.2. Latency analysis
Since every side chain block must be committed on the mainnet, the

block time cannot be lower than the mainnet. Even if this commitment
has a challenging period in which it can be reverted if not valid, it is not
necessary to wait until the block is finalized to accept its transactions.
Since optimistic rollup is fork-free and all block data is available on-
chain, it is always possible to perform client-side validation to check
and accept them immediately.

https://offchainlabs.com
https://optimism.io/
https://kovan-testnet.github.io/website/

Table 6
Fiat cost comparison.

Function
cost

Arbitrum: gas
required for
the whole L1
transaction

Cost Ethereum
Mainnet Gas

Cost

Contract
creation

303.238 4.18 € 4604.336 62.52 €

addReport 40.211 0.55 € 124.854 1.70 €

getReport 40.977 0.57 € 247.655 3.37 €

F. Bruschi et al. Blockchain: Research and Applications 3 (2022) 100031
7. Conclusions

We described a framework for the distribution of tokens to final users
new to blockchain tools. The system is completely decentralized, non
custodial, and provides a seamless user experience. The process was
tested on the Ethereum main net during an event held at Politecnico di
Milano in January 2020. Observations show that costs are comparable to
those of a centralized solution, even though they could be further
reduced by using new experimental technologies such as rollups. Further
possible work includes the evaluation of distributed key generation for
the generation of the redeeming keys.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Satoshi Nakamoto, A Peer-To-Peer Electronic Cash System, 2008. Available online:
https://nakamotoinstitute.org/bitcoin/. (Accessed 18 December 2020).

[2] Omnilayer protocol specification, 2020. Available online: https://github
.com/OmniLayer/spec. Accessed: 18 Dec 2020.

[3] Tether: Fiat currencies on the Bitcoin blockchain, 2016. Available online: https:
//tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf. Accessed: 18
Dec 2020.

[4] Vitalik Buterin, Ethereum White Paper: A Next Gerneration Smart Contract and
Decentralized Application Platform, 2014. Available online: https://bravenewcoi
n.com/insights/ethereum-white-paper-a-next-generation-smart-contract-and-dece
ntralized. (Accessed 18 December 2020).

[5] F. Vogelsteller, V. Buterin, ERC-20 Token Standard, 2015. Available online: https://
eips.ethereum.org/EIPS/eip-20. (Accessed 18 December 2020).

[6] W. Entriken, D. Shirley, J. Evans, et al., ERC-721: Non Fungible Token Standard,
2018. Available online: https://eips.ethereum.org/EIPS/eip-721. (Accessed 18
December 2020).

[7] F. Bruschi, M. Tumiati, V. Rana, et al., A decentralized system for fair token
distribution and seamless users onboarding, IEEE Symposium on Computers and
Communications 2020; 7–10 Jul 2020; Rennes, France. IEEE, Piscataway, NJ, USA
(2020) 1–6.

[8] SmithþCrown, Introduction to token distribution mechanisms, 2019. Available
online: https://sci.smithandcrown.com/research/introduction-token-distribut
ion-mechanisms. (Accessed 18 Dec 2020).

[9] Solidity language documentation, 2016. Available online: https://solidity.readthed
ocs.io/en/v0.6.7/. Accessed: 18 Dec 2020.

[10] How dapps work, 2018. Available online: https://www.youtube.com/watch?
v¼XVZxjVJz4ds]. Accessed: 18 Dec 2020.

[11] XDai documentation. Available online: https://www.xdaichain.com/. Accessed: 18
Dec 2020.

[12] Burner Wallet Collective, Available online: https://burnerwallet.co/. Accessed: 18
Dec 2020.

[13] Metamask. Available online: https://metamask.io/. Accessed: 18 Dec 2020.
9

[14] Versioning contract on etherscan, 2020. Available online: https://etherscan.io/a
ddress/0x5d4F8c5AD3F0F1C6ccc95A89F6f3624B4e21bf81. Accessed: 18 Dec
2020.

[15] Distribution contract on etherscan, 2020. Available online: https://etherscan.io/a
ddress/0x9a2b38227b28ddd7d683f1801dd43444c090867b. Accessed: 18 Dec
2020.

[16] Proxy web application on IPFS, Available online: https://cloudflare-ipfs.com/ip
fs/QmeA3j1DabhSja197Y7J4N7tPQY6nGroLVr6nePcfXBraJ. Accessed: 18 Dec
2020.

[17] Platform web application on IPFS, Available online: https://cloudflare-ipfs.com/ip
fs/QmcvcUdseESddXB5M9YGCvegspGoNyu386UjReo3G4GQvL. Accessed: 18 Dec
2020.

[18] J. Benet, IPFS-content addressed, versioned P2P file system, arXiv, 2014 preprint.
arXiv :1407.3561.

[19] Preact Library, Available online: https://preactjs.com/. Accessed: 18 Dec 2020.
[20] Etherjs Library, Available online: https://docs.ethers.io/ethers.js/html/. Accessed:

18 Dec 2020.
[21] IPFS gateway ⋅ Cloudflare distributed web gateway docs, Available online: htt

ps://developers.cloudflare.com/distributed-web/ipfs-gateway. Accessed: 18 Dec
2020.

[22] Ethereum API—IPFS API gateway—ETH nodes as a service—Infura, Available
online: https://infura.io. Accessed: 18 Dec 2020.

[23] B.N. Musungate, B. Candan, U.C. Çabuk, et al., Sidechains: highlights and
challenges, 2019 Innovations in Intelligent Systems and Applications Conference
(ASYU); 31 Oct–2 Nov 2019; Izmir, Turkey. IEEE, Piscataway, NJ, USA, 2020, pp.
1–5.

[24] C. Worley, A. Skjellum, Blockchain tradeoffs and challenges for current and
emerging applications: generalization, fragmentation, sidechains, and scalability,
in: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData); 30 Jul–3 Aug 2018;
Halifax, NS, Canada., IEEE, Piscataway, NJ, USA, 2018, pp. 1582–1587.

[25] R.M. Parizi, S. Homayoun, A. Yazdinejad, et al., Integrating privacy enhancing
techniques into blockchains using sidechains, in: 2019 IEEE Canadian Conference of
Electrical and Computer Engineering (CCECE); 5–8 May 2019; Edmonton, AB,
Canada., IEEE, Piscataway, NJ, USA, 2019, pp. 1–4.

[26] X.F. Liu, G.S. Zhan, X.M. Wang, et al., MDP-based quantitative analysis framework
for proof of authority, in: 2019 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery; 2 Jan 2020; Guilin, China., IEEE,
Piscataway, NJ, USA, 2019, pp. 227–236.

[27] N.A. Asad, M.T. Elahi, A.A. Hasan, et al., Permission-based blockchain with proof of
Authority for secured healthcare data Sharing, in: 2020 2nd International
Conference on Advanced Information and Communication Technology; 28–29 Nov
2020; Dhaka, Bangladesh, IEEE, Piscataway, NJ, USA, 2020, pp. 35–40.

[28] S. Johnson, P. Robinson, J. Brainard, Sidechains and interoperability, arXiv. 2019.
preprint. arXiv: 1903.04077.

[29] A. Back, M. Corallo, L. Dashjr, et al., Enabling blockchain innovations with pegged
sidechains, 2014. Available online: https://blockstream.com/sidechains.pdf.
Accessed: 18 Dec 2020.

[30] Layer 2 scaling, Rollups, 2021. Available online: https://Eth
ereum.org/en/developers/docs/layer-2-scaling/#rollups. Accessed: 15 Sep 2021.

[31] Layer 2 scaling, Zk-rollups, 2021. Available online: https://Eth
ereum.org/en/developers/docs/layer-2-scaling/#zk-rollups. Accessed: 15 Sep
2021.

[32] J. Groth, On the size of pairing-based non-interactive arguments, in: 35th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques; 8–12 May 2016; Vienna, Australia., Springer, Berlin, Heidelberg,
Germany, 2016, pp. 305–326.

[33] B. Parno, J. Howell, C. Gentry, et al., Pinocchio: nearly practical verifiable
computation, 2014 IEEE Symposium on Security and Privacy;19–22 May 2013;
Berkeley, CA, USA. IEEE, Piscataway, NJ, USA (2013) 238–252.

[34] V. Buterin, An incomplete guide to rollups, 2021. Available online: https://vitali
k.ca/general/2021/01/05/rollup.html. Accessed: 6 Jan 2021.

[35] Layer 2 scaling, Optimistic rollups, 2021. Available online: https://Eth
ereum.org/en/developers/docs/layer-2-scaling/#optimistic-rollups. Accessed: 15
Sep 2021.

[36] The optimistic rollup dilemma, 2020. Available online: https://medium.com/sta
rkware/the-optimistic-rollup-dilemma-c8fc470ca10c. Accessed: 15 Sep 2021.

[37] OpenSea. Available online: https://opensea.io/. Accessed: 18 Dec 2020.
[38] Web3 API reference, Available online: https://web3js.readthedocs.io/en/v1.3.4/

web3.html. Accessed: 18 Dec 2020.
[39] ArbGas and running time in Arbitrum ⋅ Offchain Labs dev center, Available online:

https://developer.offchainlabs.com/docs/arbgas. Accessed: 18 Dec 2020.

https://nakamotoinstitute.org/bitcoin/
https://github.com/OmniLayer/spec
https://github.com/OmniLayer/spec
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://bravenewcoin.com/insights/ethereum-white-paper-a-next-generation-smart-contract-and-decentralized
https://bravenewcoin.com/insights/ethereum-white-paper-a-next-generation-smart-contract-and-decentralized
https://bravenewcoin.com/insights/ethereum-white-paper-a-next-generation-smart-contract-and-decentralized
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref7
https://sci.smithandcrown.com/research/introduction-token-distribution-mechanisms
https://sci.smithandcrown.com/research/introduction-token-distribution-mechanisms
https://solidity.readthedocs.io/en/v0.6.7/
https://solidity.readthedocs.io/en/v0.6.7/
https://www.youtube.com/watch?v=XVZxjVJz4ds]
https://www.youtube.com/watch?v=XVZxjVJz4ds]
https://www.youtube.com/watch?v=XVZxjVJz4ds]
https://www.xdaichain.com/
https://burnerwallet.co/
https://metamask.io/
https://etherscan.io/address/0x5d4F8c5AD3F0F1C6ccc95A89F6f3624B4e21bf81
https://etherscan.io/address/0x5d4F8c5AD3F0F1C6ccc95A89F6f3624B4e21bf81
https://etherscan.io/address/0x9a2b38227b28ddd7d683f1801dd43444c090867b
https://etherscan.io/address/0x9a2b38227b28ddd7d683f1801dd43444c090867b
https://cloudflare-ipfs.com/ipfs/QmeA3j1DabhSja197Y7J4N7tPQY6nGroLVr6nePcfXBraJ
https://cloudflare-ipfs.com/ipfs/QmeA3j1DabhSja197Y7J4N7tPQY6nGroLVr6nePcfXBraJ
https://cloudflare-ipfs.com/ipfs/QmcvcUdseESddXB5M9YGCvegspGoNyu386UjReo3G4GQvL
https://cloudflare-ipfs.com/ipfs/QmcvcUdseESddXB5M9YGCvegspGoNyu386UjReo3G4GQvL
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref18
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref18
https://preactjs.com/
https://docs.ethers.io/ethers.js/html/
https://developers.cloudflare.com/distributed-web/ipfs-gateway
https://developers.cloudflare.com/distributed-web/ipfs-gateway
https://infura.io
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref24
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref25
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref26
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref26
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref26
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref26
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref26
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref27
https://blockstream.com/sidechains.pdf
https://Ethereum.org/en/developers/docs/layer-2-scaling/#rollups
https://Ethereum.org/en/developers/docs/layer-2-scaling/#rollups
https://Ethereum.org/en/developers/docs/layer-2-scaling/#zk-rollups
https://Ethereum.org/en/developers/docs/layer-2-scaling/#zk-rollups
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref32
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref33
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref33
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref33
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref33
http://refhub.elsevier.com/S2096-7209(21)00026-9/sref33
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://Ethereum.org/en/developers/docs/layer-2-scaling/#optimistic-rollups
https://Ethereum.org/en/developers/docs/layer-2-scaling/#optimistic-rollups
https://medium.com/starkware/the-optimistic-rollup-dilemma-c8fc470ca10c
https://medium.com/starkware/the-optimistic-rollup-dilemma-c8fc470ca10c
https://opensea.io/
https://web3js.readthedocs.io/en/v1.3.4/web3.html
https://web3js.readthedocs.io/en/v1.3.4/web3.html
https://developer.offchainlabs.com/docs/arbgas

	A scalable decentralized system for fair token distribution and seamless users onboarding
	1. Introduction
	2. State of the art
	2.1. Systems for the distribution of tokens
	2.2. Burner wallets

	3. Gap to be filled
	4. How we fill the gap
	4.1. System architecture
	4.1.1. QR code generation
	4.1.2. Webapp URL management
	4.1.3. Versioning contract and proxy app
	4.1.4. Token Distribution App
	4.1.5. Token Distribution Contract
	4.1.6. Transaction relaying server
	4.1.7. Properties

	5. Experimental results
	5.1. Contract size
	5.2. Gas analysis
	5.3. Landing web application
	5.4. Token redeem application
	5.5. IPFS gateway
	5.6. Relayer service
	5.7. Real event application

	6. Scalability analysis
	6.1. Sidechains
	6.2. Rollups
	6.2.1. Optimistic rollups

	6.3. Application to the token distribution system
	6.4. Scalability experiments
	6.4.1. Costs analysis
	6.4.2. Latency analysis

	7. Conclusions
	Declaration of competing interest
	References

