The value of 3D-speckle tracking longitudinal strain for the assessment of left ventricular function recovery in ischemic heart failure patients undergoing surgical remodeling: the RECOVERY-IN study

S. Castelvecchio¹, M. Frigelli², F. Sturla², M. Citarella¹, O.A. Pappalardo², V. Milani³, F. Guastafierro¹, L. Menicanti¹, E. Votta⁴

¹ IRCCS Policlinico San Donato, Department of Cardiac Surgery, Milan, Italy; ² IRCCS Policlinico San Donato, 3D and Computer Simulation

Laboratory, San Donato Milanese, Italy; ³ IRCCS Policlinico San Donato, Scientific Directorate, San Donato Milanese, Italy; ⁴ Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milan, Italy

On behalf of RECOVER-IN

Funding Acknowledgement: Type of funding source: Private hospital(s). Main funding source(s): IRCCS Policlinico San Donato is a clinical research hospital partially funded by the Italian Ministry of Health.

Background: Three-dimensional (3D) speckle-tracking echocardiography is largely employed to evaluate left ventricle (LV) morphology and function. **Purpose:** To investigate LV function before and after surgical ventricular reconstruction (SVR) through the analysis of global (GLS) and segmental (SLS) longitudinal strain, and the derived mechanical dispersion (MD).

Methods: Twenty patients eligible for SVR, with previous LV remodelling and ischemic heart failure (HF), received 3D echocardiographic evaluation before SVR and at 6-months follow-up; 15 normal controls, matched by age and BSA, were enrolled. Standard off-line GLS analysis was performed with 4D LV-ANALYSIS[®]; advanced segmental analysis was accomplished automatically through in-house numerical post-processing. (-6.7% vs. -19.6%, P<0.0001) as confirmed by SLS at each LV segment basal, mid and apical level (P<0.0001); MD was higher than in controls (P<0.001) and markedly increased from basal to apical LV segment. After SVR, GLS significantly improved from -6.7% to -11.3% (P<0.0001). Analysis of variance showed that SLS recovery was higher in the basal region (7.25%) than in both mid (4.06%, P=0.001) and apical (1.92%, P<0.0001) segments, respectively, with adjustment for baseline values.

Conclusions: After SVR, LV longitudinal strain mostly improves in the basal segments, outlining the role of the remote myocardium in enhancing LV function through an extensive volume reduction; post-surgical MD reduction indicates a more homogeneous myocardial contraction.

Results: Before SVR, GLS deteriorated compared to normal subjects

		Normal	Pre-SVR	Post-SVR	P-value		
					Pre-SVR vs. Normal	Pre-SVR vs. Post-SVR	Post-SVR vs. Norma
EDVi [ml/m ²]		63.1 (58.7, 70.3)	121.4 (99.2, 152.9)	79.3 (64.6, 104.5)	< 0.0001	< 0.0001	0.0085
ESVi [ml/m ²]		25.0 (20.9, 27.0)	90.8 (67.6, 126.7)	51.6 (34.9, 64.6)	< 0.0001	0.0002	< 0.0001
EF [%]		60.0 (59.1, 65.8)	27.1 (21.4, 33.3)	42.3 (28.5, 44.1)	< 0.0001	0.0009	< 0.0001
GLS [%]		-19.6 (-20.8, -17.4)	-6.7 (-9.5, -5.3)	-11.3 (-12.3, -9.6)	< 0.0001	< 0.0001	< 0.0001
SLS [%]	Basal	-19.3 (-20.5, -17.1)	-9.4 (-11.0, -6.8)	-12.9 (-15.7, -10.6)	< 0.0001	< 0.0001	< 0.0001
	Mid	-18.2 (-20.5, -16.6)	-5.8 (-8.4, -2.9)	-10.6 (-12.0, -7.9)	< 0.0001	0.0010	< 0.0001
	Apical	-18.6 (-21.6, -17.0)	-3.4 (-7.2, -0.7)	-7.6 (-9.4, -5.11)	< 0.0001	0.0064	< 0.0001
MD [ms]	Basal	36 (27, 48)	64 (45, 104)	45 (30, 61)	0.0024	0.0049	0.4993
	Mid	28 (24, 30)	79 (59, 140)	60 (42, 107)	< 0.0001	0.0172	< 0.0001
	Apical	22 (19, 29)	113 (78, 178)	85 (42, 131)	< 0.0001	0.0136	< 0.0001

Data expressed as median (IQR). Wilcoxon test: Pre-SVR vs Post-SVR; Mann-Whitney U test: Pre-SVR vs Normal, Post-SVR vs Normal.

24