
����������
�������

Citation: Tayyab, S.M.; Chatterton, S.;

Pennacchi, P. Intelligent Defect

Diagnosis of Rolling Element

Bearings under Variable Operating

Conditions Using Convolutional

Neural Network and Order Maps.

Sensors 2022, 22, 2026. https://

doi.org/10.3390/s22052026

Academic Editors: Andrea Cataldo

and Yolanda Vidal

Received: 12 January 2022

Accepted: 1 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Intelligent Defect Diagnosis of Rolling Element Bearings under
Variable Operating Conditions Using Convolutional Neural
Network and Order Maps
Syed Muhammad Tayyab , Steven Chatterton * and Paolo Pennacchi

Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milan, Italy;
syedmuhammad.tayyab@polimi.it (S.M.T.); paolo.pennacchi@polimi.it (P.P.)
* Correspondence: steven.chatterton@polimi.it; Tel.: +39-02-2399-8442

Abstract: Vibration analysis is an established method for fault detection and diagnosis of rolling
element bearings. However, it is an expert oriented exercise. To relieve the experts, the use of Artificial
Intelligence (AI) techniques such as deep neural networks, especially convolutional neural networks
(CNN) have gained the attention of researchers because of their image classification and recognition
capability. Most researchers convert the vibration signal into representative time frequency vibration
images such as spectrograms and scalograms. These images are used as inputs to train the CNN
model for fault diagnosis. Commonly, fault diagnosis is performed under same operating conditions,
where models are trained and deployed for prediction under the same operating conditions. However,
outside the laboratory environment, in real world applications, different operating conditions, such
as variable speed, may be encountered. With the change in speed, the characteristic frequencies of the
vibration signal will also change, which will result in changing the vibration image. Consequently,
the performance of the CNN model may drop significantly for prediction under different operating
conditions. Accessing the training data from all potential operating conditions may not be feasible
for most real-world applications. Therefore, there is a need to find some signal properties which
are invariant to change in operating conditions and only change due to change in health state so
that models trained under one set of operating conditions may predict correctly under different
operating conditions. This paper proposes a defect diagnosis method for rolling element bearings,
under variable operating conditions (speed and load) based on CNN and order maps. These maps
exhibit consistent properties under varying speed; therefore, they can be used to train the CNN
model for fault diagnosis under variable speed. The effect of load change on these order maps is
experimentally studied and it is found that the proposed method can undertake fault diagnosis on
rolling element bearings under variable speeds and loads with high accuracy.

Keywords: rolling element bearings; intelligent defect diagnosis; artificial intelligence; convolutional
neural network; variable operating conditions; order maps

1. Introduction

Rolling element bearings are a vital part of rotating machines as they support the
shaft, take load, and reduce the friction between different components. Their health status
has a significant effect on the performance and availability of industrial machinery. As
they are one of the most vulnerable components of rotating machines, bearing faults are
a major cause of machine defects [1]. Bearing failure may cause serious damage to a
machine and may result in the unavailability of important machinery, leading to financial
loss and serious safety hazards. Therefore, the early defect diagnosis of rolling element
bearings is crucial for the uninterrupted availability and operation of machines. To manage
the potential failure of machinery, accurate fault detection and the diagnosis of bearings
has gained significant researcher attention. Different methods have been introduced by
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researchers defectto diagnose the s of rolling element bearings, though vibration signal
analysis in the time domain, frequency domain and time frequency domain have been
most widely used [2,3]. However, it is an expert oriented task, and human involvement in
general is not very effective or efficient in terms of responding quickly to large volumes
of data. To minimize human dependency, intelligent condition monitoring techniques
are attracting the attention of researchers. Over the past two decades, researchers have
proposed many new approaches related to artificial intelligence techniques or conventional
machine learning (ML) techniques [4], such as, the use of artificial neural networks (ANN)
for rolling element bearing fault diagnosis [5,6], the principal omponent analysis (PCA)
-based feature selection scheme for machine defect classification [7], a support vector
machine (SVM) -based approach for machine condition monitoring and fault diagnosis [8], a
bearing defect diagnosis approach, based on ANN and SVM [9,10], a hierarchical diagnosis
network approach for fault pattern recognition in rolling element bearings [11], and the
intelligent defect diagnostics of bearings and gears using k-nearest neighbors (KNN) as
classifier along with the genetic algorithm (GA) [12].

Furthermore, Zhou et al. presented a study in whichthe K-mean algorithm was used
to label the un-labelled signals [13]. A comparison of the performance between ANN
and KNN was carried out by Gunerkar et al. [14]. The study was performed on rolling
element bearings based upon a feature extracted after wavelet transform. J. P. Patel com-
pared the performance of ANN with SVM for bearing fault diagnosis [15]. Tian et al.
presented a bearing defect diagnosis method based on spectral kurtosis and cross corre-
lation [16]. The method was validated by experiments using a machinery fault simulator.
R. Zhang et al. undertook a fault diagnosis of a rolling element bearing using a k-mean
singular value decomposition dictionary learning algorithm and a back propagation neural
network [17]. Amar et al. used vibration spectrum imaging to train the ANN classi-
fier for bearing fault diagnosis [18]. Khan and Kim trained a KNN classifier for bearing
fault diagnosis under different speeds using features extracted from grayscale vibration
images. The grey scale image textures were encrypted using the local binary pattern opera-
tor [19]. Ankush Mehta et al. used a combination of infrared thermography and different
machine learning techniques for bearing fault diagnosis. They used two-dimensional
discrete wavelet transform for feature extraction from thermal images. PCA was used
for dimensionality reduction. KNN, linear discriminant analysis, and SVM were used
as classifiers. A comparison of the performance of all three classifiers was also carried
out [20]. Wu et al. proposed a bearing fault diagnosis technique through kernel matrix
construction-based support vector machine [21].

The process of fault diagnosis through conventional machine learning techniques
mainly consists of data acquisition, features extraction, features selection and finally fault
classification or health state prediction. Classical machine learning algorithms are con-
sidered superficial because of their limited learning and generalization ability; therefore,
they cannot extract important information from large, complex, and non-linear data. Al-
though classical machine learning techniques have reduced human intervention in the
fault diagnosis process, to apply classical ML techniques for bearing fault diagnosis, the
correct features extraction and selection process is crucial, and this is still a labor-oriented
exercise and requires expert knowledge to some extent. To further reduce human inter-
vention in the bearing fault diagnosis process, techniques based on deep learning theories
have been implemented. These deep learning-based techniques include autoencoder (AE)
-based techniques, deep belief network (DBN) -based techniques, and convolutional neural
network-based techniques. AE- and DBN-based techniques are unsupervised techniques
and are mostly used for features extraction and information fusion. Models based on these
techniques can be trained on unlabeled data and for labelled data fine tuning is required.
As they are unsupervised techniques, AE-based techniques cannot be used directly for
bearing health state identification, and a classification layer needs to be added at the top of
the model architecture [22]. Whereas CNN-based techniques are supervised techniques
and they are task specific. Due to their capability of joint features and classification learning,



Sensors 2022, 22, 2026 3 of 24

they can achieve better classification accuracy as compared to other deep learning models
in image classification problems [23]. Deep learning models can automatically extract
features from vibration data and manual features extraction is not required. Thus, deep
learning techniques can provide end-to-end diagnosis models to further reduce human
intervention in defect diagnosis activities. Deep learning models have gained the attention
of researchers for bearing defect diagnosis, such as, the deep neural network (DNN) -based
scheme for rolling element bearing fault diagnosis [24], the DNN for fault characteristic
mining and the intelligent diagnosis of rotating machinery with massive data [25], the
short-time Fourier transform-deep learning scheme for rolling bearing fault diagnosis [26],
the bearing condition recognition method based on multi-feature extraction and DNN
for the intelligent condition monitoring of bearings [27], the multi vibration signals and
DBN scheme for bearing fault diagnosis [28], the CNN-based method for bearing and rotor
fault detection [29], the hierarchical adaptive deep CNN approach for bearing fault diag-
nosis [30], the energy-fluctuated multiscale feature mining technique based on a wavelet
packet energy image and a deep convolutional network for spindle bearing fault diag-
nosis [31], and the deep residual learning-based method for bearing fault diagnosis [32].
Moreover, Saucedo-Dorantes et al. [33] presented a fault diagnosis methodology for dif-
ferent bearing technologies (metallic, hybrid and ceramic bearings) based on deep feature
learning. Vibration and current data were acquired under different operating conditions.
Time domain, Frequency domain and Time Frequency domain features were extracted
from vibration and current signals. A staked auto encoder-based feature learning method
was introduced. Information from different domains was integrated through feature fu-
sion and softmax layer was used for final classification. Ma et al. [34] presented a multi
source information fusion algorithm based on variational autoencoder and random forest
for bearing fault diagnosis in case of limited labeling. Hoang and Kang [35] proposed
a bearing fault diagnosis method based upon motor current signal, using CNN and the
information fusion technique. CNN is used for automatic features extraction from grey
images from the current signal. After the application of the information fusion technique,
classical machine learning algorithms are used for classification. Three working conditions
are considered in this study. However, training and testing is performed under the same
operating conditions.

Under the umbrella of deep learning, convolutional neural networks are a special
type of DNNs which are known for their image recognition and classification capability.
Researchers have used one dimensional (1D) and two dimensional (2D) CNN models for
bearing defect diagnosis. In the 1D-CNN model, raw vibration data can be directly used
as input to the model, as used by Eren et al. [36,37]. For 2D-CNN models, vibration data
cannot be used in their raw form. Rather, they are initially converted into time-frequency
image representations such as spectrograms [38–40], scalograms [40,41] or other types of
vibration images [42]. Then these images which represent the vibration signal in image
form are used as input in 2D-CNN model.

For conventional ML models and deep learning models, generally it is assumed that
training and testing data sets belong to the same operating conditions. The performance of
these models may degrade significantly if the operating conditions under which the models
are deployed for prediction differ from the operating conditions under which the models
were trained [43]. In real world applications, such as in trains, bearings may undergo
different speed and loading conditions. Due to varying speed, the frequency characteristics
of vibration signal also change. Therefore, accurate intelligent defect diagnosis of rolling
element bearings under variable/inconsistent operating conditions is still a challenge for
researchers. Moreover, enough training data may not be available for all potential operating
conditions. This situation arises frequently which makes it challenging to use AI methods
for fault diagnosis outside the laboratory environment. To solve this issue, transfer learning
was introduced by researchers [44]. Zhang et al. proposed a transfer learning approach with
neural networks for bearing fault diagnosis in changing working conditions when there is
only a small amount of target data available [45]. Shen et al. presented a singular value
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decomposition-based features extraction and transfer learning-based approach for bearing
fault diagnosis under various operating conditions [46]. Chao et al. presented an enhanced
least squares support vector machine-based transfer learning approach for bearing fault
diagnosis in the case of small target dataset availability [47]. Chunfeng et al. proposed
a heterogeneous transfer learning-based approach for the scenarios when the available
labelled data in the target domain is less [48]. Cheng et al. presented a deep adversarial
transfer learning method based on Wasserstein distance for bearing fault diagnosis with
insufficient labelled data [49]. However, most of the studies in transfer learning have
normally considered some fixed operating conditions. Whereas, practically, the operating
condition may lie between these fixed conditions. Furthermore, in most of the studies there
is still a need for a small amount of labelled target domain data.

For bearing fault identification under variable speed, Bruand et al. reconstructed
shaft orbits using angle measurements and derived a feature based on shaft orbit shape.
It was shown that the signature of the rolling element bearing fault can be observed in
shaft orbit. The information was retrieved using a set of angle measurement sensors.
In order to remove speed variation, angular reference was used to work in the angular
domain [50]. Order tracking-based methods have gained the attention of researchers for
rolling element bearing diagnosis under variable conditions. Mishra et al. proposed a
technique to use order tracking on the envelop of wavelet denoised estimate of the short
duration angle synchronous averaged signal for bearing fault diagnosis under variable
conditions. To extract deterministic content from the vibration signal, the Bayesian wavelet
denoising approach was adapted and envelop order spectra were utilized to identify the
faults [51]. Guo et al. proposed a rolling element bearing fault detection method under
variable speed based upon envelop order tracking utilizing envelop analysis, order tracking
and spectral kurtosis [52]. However, these methods cannot be used for automatic defect
diagnosis as they are not intelligent methods and require human expertise in the field. For
the automatic fault diagnosis of roller bearings under variable speed, Yang et al. extracted
the features from a vibration signal by combining local mean decomposition and order
tracking techniques. The features’ values were used as the input to a variable predictive
model-based class discriminate classifier for automatic fault pattern and working condition
identification [53]. Farhat et al. updated three frequency domain features, spectrum peak
ratio outer, spectrum peak ratio inner, and spectrum peak ratio rolling element, to perform
with a nonstationary signal, utilizing the order tracking technique. The updated features
were used as an input to a multi-kernel support vector machine classifier for automatic
defect classification [54]. However, these order tracking-based methods involve manual
features extraction and a modification process.

To avoid the manual features extraction process, researchers have proposed end to
end bearing diagnosis techniques based on CNN. Appana et al. proposed a low-speed
bearing fault diagnosis method using CNN and envelope spectrums extracted from acoustic
emission signal. The maximum speed considered was 500 revolutions per minute (rpm) [55].
Pham et al. presented a fault classification method utilizing the spectrogram images and
CNN under four different speeds 1730 rpm, 1750 rpm, 1772 rpm and 1797 rpm [39]. In
another study Pham et al. presented a fault classification method under different rotational
speeds between 250 rpm and 500 rpm. Spectrogram images and CNN were utilized [38].

Researchers have mainly undertaken the defect diagnosis of bearings under variable
operating conditions considering only one operating condition i.e., speed. However,
bearings may experience variable loading conditions in some applications. Furthermore,
speed variation is too low, for example between 1730 and 1797 rpm, or the proposed
model is tested only on low speeds. Moreover, the considered speeds are steady; ramp
or varying conditions are not considered. However, in real world applications, such as
trains, continuously varyingied speed may be experienced which includes acceleration
and deceleration. Furthermore, seeded defects are mostly researched and these may be an
easier task for the machine learning or deep learning model as compared to diagnosesing
the bearing defects which are encountered during real field operation. Therefore, there is
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a need to propose a robust method for bearing defect diagnosis under variable operating
conditions, which can perform the task of fluctuations of speed and load. Moreover, to
access the training data from all potential operating conditions may not be possible for most
real-world applications. Therefore, it is necessary to find some signal properties which are
invariant to changing operating conditions and only change due to changing health state so
that AI models trained under one set of operating conditions may correctly predict, under
different operating conditions, whose fault data for training is not available.

In this research a novel method for the fault diagnosis of rolling element bearings is
proposed utilizing a combination of the order analysis and image classification and recognition
capabilities of CNN. Order maps are computed from the vibration signal of rolling element
bearings. These order maps show consistent properties over varying operating conditions.
They vary with respect to the type of defect but show consistent configurations under changing
operating conditions, therefore, they can be considered as operating condition (speed and
load) invariant vibration images. The order maps computed under one set of operating
condition are used to train the CNN model. The trained CNN model is deployed for defect
diagnosis under different operating conditions (speed and load). Performance of the proposed
method is compared with five techniques: (1) a technique based on spectrograms and CNN as
utilized in [38–40], (2) KNN in combination with GA as utilized by [12], (3) ANN/multilayer
perceptron, (4) SVM, (and5) KNN + +order maps.

2. Proposed Defect Diagnosis Methodology

The intelligent fault diagnosis of rolling element bearings using a vibration signal
requires features extraction if we use conventional machine learning techniques. For
accurate diagnosis, correct features extraction and selection is of paramount importance [12].
However, deep learning models such as convolutional neural networks (2D-CNN) have
the capability to learn discriminative features directly from vibration characteristic images
such as spectrograms, scalograms etc. Therefore, tedious features extraction and selection
can be avoided by using CNN models for fault diagnosis. However, due to a change
in operating conditions, the vibration images of the signal may also change, resulting in
degradation of the performance of the CNN model for fault diagnosis under different
operating conditions. Therefore, in this study a fault diagnosis method for rolling element
bearings is proposed based upon the operating conditions of invariant vibration images
and a deep convolutional neural network. Variation in two operating conditions: speed
and load, are considered in this study.

Vibration signals of locomotive rolling element bearings are acquired under different
speeds (steady and variable) and loads. Large fluctuations of speed including transient
conditions are considered. Tachometer signal is also simultaneously acquired. Different
types of real field and seeded defects of locomotive rolling element bearings, including
combined defects, are considered in this study. Vibration signals are segmented into
2 segments with an overlap of 1.6 s. Order maps are computed from each segment. These
order maps are used as input for CNN model which automatically learns the features from
these images/order maps to classify the different defect types of rolling element bearings.

Initially, the CNN model is trained and tested under the same operating conditions.
Data are divided into the training, validation, and testing data sets in the ratio of 70%, 15%
and 15%, respectively. After completing the training and testing process under the same
operating conditions, the trained model is deployed for defect diagnosis under all of the
other operating conditions considered in this study. The same process is repeated for the
other combinations of speed and load as well. The proposed methodology is depicted in
Figure 1. Details of order maps computation, the CNN model and its implementation are
given in following subsections:



Sensors 2022, 22, 2026 6 of 24

Sensors 2022, 22, x FOR PEER REVIEW 6 of 24 
 

 

operating conditions, the trained model is deployed for defect diagnosis under all of the 
other operating conditions considered in this study. The same process is repeated for the 
other combinations of speed and load as well. The proposed methodology is depicted in 
Figure 1. Details of order maps computation, the CNN model and its implementation are 
given in following subsections: 

 
Figure 1. Flow chart of proposed methodology. 

2.1. Order Maps 
For rolling element bearings’ fault diagnosis, characteristic frequencies play an 

important role for identifying a specific type of defect. As frequency indicates the 
repetition times per second, in the case of varying shaft speed, spectral line smearing may 
cause difficulty in fault diagnosis using spectrograms [56]. Consequently, traditional 
Fourier Transform-based methods are no longer effective for bearing fault diagnosis 
under varying rotational speed. Thus, the time-frequency vibration images generated 
from the vibration signal, based on short-time Fourier Transform such as spectrograms 
will also undergo change if the shaft speed is changed. Consequently, a CNN model 
trained on such vibration images for fault diagnosis may not be able to predict accurately 
under varying speed. 

The problem can be solved by converting a non-stationary signal into a stationary 
signal in the angular domain by resampling at constant angular intervals. This technique 
is called order tracking. An order indicates a frequency which is a specific multiple of the 
rotational speed. Order tracking has been identified as a trustworthy and practical 
approach to mitigate the effects of spectral line smearing caused by varying rotational 
speed [57,58]. In this study, order maps are computed from the vibration signals utilizing 
the tachometer pulse according to the procedure shown in Figure 2. These order maps 
show consistent patterns under varying speed and are used as input to the CNN model. 
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2.1. Order Maps

For rolling element bearings’ fault diagnosis, characteristic frequencies play an impor-
tant role for identifying a specific type of defect. As frequency indicates the repetition times
per second, in the case of varying shaft speed, spectral line smearing may cause difficulty in
fault diagnosis using spectrograms [56]. Consequently, traditional Fourier Transform-based
methods are no longer effective for bearing fault diagnosis under varying rotational speed.
Thus, the time-frequency vibration images generated from the vibration signal, based on
short-time Fourier Transform such as spectrograms will also undergo change if the shaft
speed is changed. Consequently, a CNN model trained on such vibration images for fault
diagnosis may not be able to predict accurately under varying speed.

The problem can be solved by converting a non-stationary signal into a stationary
signal in the angular domain by resampling at constant angular intervals. This technique
is called order tracking. An order indicates a frequency which is a specific multiple of
the rotational speed. Order tracking has been identified as a trustworthy and practical
approach to mitigate the effects of spectral line smearing caused by varying rotational
speed [57,58]. In this study, order maps are computed from the vibration signals utilizing
the tachometer pulse according to the procedure shown in Figure 2. These order maps
show consistent patterns under varying speed and are used as input to the CNN model.
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Order maps computation mainly involves the following three sections:

2.1.1. Tachometer Signal Processing and rpm Extraction

Tachometer signal processing is very important in order tracking. If a good stable
tachometer signal is not available, then accurate order maps cannot be computed [59].
Tachometer pulse is converted into an rpm signal as given by Equation (1) [60].

rpm(t) =
60

Np(t2− t1)
(1)

where, Np is number of pulses per revolution and (t2− t1) is the time instance between two
pulses. For this purpose, initially low and high states of tachometer signal are determined.
Time for each pulse is determined by averaging the start and end time readings of pulse.
Time interval between pulse centres is determined to find the rpm at the interval midpoint
by rpm = 60/∆t. Afterwards, instantaneous rpm values are interpolated linearly onto the
time axis of original signal.

2.1.2. Synchronous Resampling in the Order Domain

Phase angle (A(t)) is determined as the time integral of rotational speed as shown in
Equation (2).

A(t) =
∫ t

0

rpm(t)
60

dt (2)

The vibration signal is resampled onto the new time axis instead of the original
constant time axis. Resampling of the vibration signal is done at non sampled time points
by utilizing an upsampled vibration signal and interpolating it linearly. Mostly, 10–20 times
oversampling gives adequately good accuracy [60]. In this study signal is upsampled by
a factor of 15 and then linearly interpolated onto a consistent grid in the phase domain.
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Thus, a constant number of samples per cycle is achieved to produce a stationary sinusoid
for each order. After synchronous resampling, the vibration signal comes in the order
domain. The signal frequencies which are constant multiples of the rotational speed are
now converted into constant tones. The smearing of spectral components which occurs
due to rapid frequency change with time, reduces because of this transformation. The
relationship between the highest accessible order (Omax), sampling frequency ( fs) and the
maximum rotational speed of the shaft is given by Equation (3).

Omax =
fs

2
(

max(rpm)
60

) (3)

To accurately capture the maximum order, the angular domain sampling rate ( fa)
must be at least two times that of Omax. i.e., fa ≥ 2 ∗Omax.

2.1.3. Short-Time Fourier Transform of Resampled Signal in the Order Domain

Short-time Fourier transform of the interpolated signal is computed to generate a
spectral map of order versus rpm. Since each order is a fixed multiple of the reference
rotational speed, the order map has a straight track as a function of rpm for each order, as
shown in Figure 3. Therefore, these maps show consistent patterns under varying speed.
The maximum order which can be accurately captured is dependent on sampling frequency
and maximum rotational speed, as shown by Equation (3). Therefore, to use the order
map images as input to a CNN, it is essential to keep the same maximum order limit
for the whole diagnosis process lower than the Omax related to maximum speed under
consideration and the sampling frequency.
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To ensure the normal operation of rolling element bearings, sufficient friction force is
required by the race ways. If the bearing is not properly loaded, slip page may appear in the
contact zone and relative skid may occur between the rolling elements and the inner/outer
race ways [61]. This phenomenon generally occurs in low loaded roller bearings [62].
Because of this phenomenon, frequencies may be slightly affected [63], which in return
may affect the order maps. Consequently, performance of the deep CNN model for fault
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diagnosis under different loading conditions may degrade. Han et al. studied the skidding
behavior of cylindrical roller bearings under variable loads. It was reported that an increase
in radial load and bending moment reduces the skidding. By increasing the load, the
friction force of the rollers increases, and the maximum slipping velocity of the rollers
reduces, leading to the pure rolling rotation of the cage. Therefore, after certain radial load,
no overall skidding phenomenon was present in the bearing [64]. Feng et al. reported that
an increase in radial load can reduce the skidding of ball bearings [65]. Deep groove ball
bearings are less sensitive to skidding because of an extra degree of freedom of the rolling
elements. Therefore, if the bearing is properly loaded and diagnosis is not performed
under a load or very low loading conditions, the order maps may not be significantly
affected, and the CNN model will perform defect diagnosis correctly under the changing
loading conditions as well. The effect of load change on the order maps for deep groove
ball bearings is observed experimentally. Order maps of a healthy bearing, a bearing with
combined defects and a bearing with outer race defect are shown in Figure 4 for three
different speeds (1000 rpm, 2000 rpm and 3000 rpm) and two different loads (5 KN and
15 KN) which are the minimum and maximum loads considered in this study. It can be
observed that the patterns of order maps do not change with changing speed and load.
However, they show different patterns for different fault conditions, making themselves
insensitive to operating conditions (speed and load) but fault discriminative. Therefore,
they will be used for fault diagnosis under variable speeds and loads.
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2.2. Convolutional Neural Network

Convolutional neural networks are known for their high capability in the field of image
identification and classification. They consist of an input layer, hidden layers, and an output
layer. Generally hidden layers in convolutional neural networks consist of convolutional
layers, Rectified Linear Linear Unit (ReLU) layers, pooling or subsampling layers and fully
connected layers [22]. The 2D-convolutional layer uses its kernels to convolve the input by
moving the kernels vertically and horizontally and getting the dot product of kernels and
input and then addings a bias term. Its input is the output of the previous layer. Kernels
extract the local features of the input region. An activation function, such as ReLU, is used
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to obtain output from the results of the convolutional operation which are called features.
Sometimes ReLU is shown as a separate layer from the convolutional layer. The ReLU layer
performs a threshold operation in which all the values less than zero are set to zero. The
mathematical model of the convolutional layer is given in Equation (4).

Xm
j = f (∑i∈Cj

Xm−1
i ∗ km

ij + bm
j ) (4)

Cj represents the input map selection, m is the mth layer in the network. Xm−1
i is the input

of the convolutional channel. k is the kernel matrix, and b is the bias matrix. f is a nonlinear
activation function such as ReLU. After the convolutional layer, a pooling or subsampling
layer is applied which reduces the size of the input features and network parameters. The
pooling layer can be represented by Equation (5).

Xm
j = f

(
βm

j down
(

Xm−1
j + bm

j

))
(5)

where, down (.) represents the pooling function. bm
j is additive bias and βm

j is multiplicative
bias. Based upon the pooling function, the pooling operation can be maximum pooling or
average pooling. After staking the convolutional and pooling layers multiple times, the
output is fed to a fully connected layer at the final stage. It is a feed forward neural network
(multi-layer perceptron) which uses softmax as an activation function in the output. The
softmax activation function can be described by Equation (6).

σ(
→
y )i =

eyi

∑N
j=1 eyj

(6)

where, σ is the softmax,
→
y is the input, eyi is the exponential function for the input, eyj is

the exponential function for the output and N is the number of classes. The purpose of
the fully connected layer is to collect all the features learned from the previous layers to
identify patterns. Therefore, all the neurons in the fully connected layer are connected to
all neurons in the previous layer. Moreover, in order to increase the training speed of the
convolutional neural network and to reduce the sensitivity to network initialization, a batch
normalization layer is used between the convolutional layer and nonlinearities. This layer
independently normalizes the minibatch data across all channels. Furthermore, to avoid
the possibility of the network memorizeing some specific features, a dropout layer can be
added prior to the fully connected layer which sets the input to zero as per set probability.

The convolutional neural network architecture proposed in this study is shown
in Figure 5. The order maps were saved in Bitmap Image file format in original size
(656 × 875 × 3) without compression to avoid loss of information. Batch normalization
layers are added between 2D-convolutional layers and ReLU layers. A combination of
the 2D convolutional layer, the batch normalization layer and the ReLU layer makes one
convolutional block. Overlapping max-pooling layers are added after 1st, 2nd, 3rd, the
first second third and sixth convolutional blocks. A dropout layer with 50% drop out prob-
ability is added before the fully connected layer in order to avoid over fitting. Adaptive
moment estimation optimizer is used for optimization of hyperparameters because of lesser
memory and tuning requirement and faster optimization capability as compared to other
optimization algorithms [40]. The initial learn rate was set as 0.0003 and it was dropped by
a factor of 0.1 after every 10 epochs. The minibatch size was set as 15.
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3. Experimental Setup

The proposed method for defect diagnosis of rolling element bearings under different
operating conditions was validated using the vibration data from locomotive rolling element
bearings. A total of two case studies were conducted utilizing two different test rigs developed
to test bearings for railway electrical traction. Details of the same are appended below.

3.1. Case Study-1

The first test rig (shown in Figure 6) was designed to test locomotive motor bearings
under different operating conditions (speed and load). Operating speed and load can
be varied in order to get data under different operating conditions. Vibration data were
acquired at 25,600 Hz sampling frequency by two accelerometers installed at different
angular positions in radial direction. A tachometer was installed at the bearing shaft to give
one pulse per revolution signal. For each operating condition, data were acquired for 50 s.
SKF 6318, deep groove ball bearings were tested under nine different operating conditions
which are described in Table 1. A total of three health states including one normal and
two faulty conditions with real field defects are considered in this study, as shown in
Figure 7 and Table 2. Raw vibration signals for all three types of bearings considered in
case study-1, at 1000 rpm and 5 KN load, are shown in Figure 8.
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Table 2. Bearing defect classes for case study-1.

Class 1 2 3

Health State/Type of Fault Normal/Healthy Combined Defects/Multiple Defects Outer Race Defect
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3.2. Case Study-2

An actual traction system of a high-speed train with an ability to reach 250 km/h
speed was installed on the test bench, as shown in Figure 9 [66]. The traction motor is
265 kW converter driven 4-poles asynchronous motor. The rotor of the traction motor
is mounted on two types of bearings: a single row, groove ball bearing (BB), SKF-6214,
and a cylindrical roller bearing (RB), SKF-N214, on the driven end, as shown in Figure 9.
Vibration data at 20,000 Hz sampling frequency are acquired for both support bearings of
the traction motor at different speeds (constant speed, acceleration, and deceleration), as
presented in Table 3. Accelerometers were installed in the proximity of the bearings, on
the inner surface of motor flanges holding the respective bearings, as shown in Figure 9.
Tachometer signal was also acquired simultaneously. For both types of the bearings, one
healthy and four defective bearings with seeded defects of different types were considered
in this study, as shown in Figures 10 and 11 and Table 4.

Table 3. Different operating conditions considered in case study-2.

Operating Condition Number Type of Operating Condition Speed Range (rpm) Time Duration

1 Constant speed 3170 100 s
2 Constant speed 4955 100 s
3 Variable speed (acceleration) 1000–2000 100 s
4 Variable speed (acceleration) 3525–4125 100 s
5 Variable speed (deceleration) 4050–2560 100 s
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Table 4. Bearings defect classes considered in case study-2.

Class
Defect Type/Condition

Ball Bearing (BB) Roller Bearing (RB)

1 Normal/Healthy Normal/Healthy
2 Ball defect Combined defects
3 Cage defect Inner race defect
4 Inner race defect Outer race defect
5 Outer race defect Roller defect
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4. Results and Discussion

During the first case study on test rig 1, vibration data were acquired using two ac-
celerometers under nine different operating conditions (different combinations of speed
and load). One healthy and two defective deep groove ball bearings with outer race defects
and combined defects were considered. Vibration signals were divided into segments of
2 s with an overlap of 1.6 s. Order maps were computed from the vibration signals of
both sensors separately and were combined to train the proposed CNN model for fault
diagnosis under one set of operating conditions. The trained model was tested for defect
diagnosis under all of the other combinations of speed and load considered during the
first case study. The same procedure was repeated for all sets of operating conditions con-
sidered in this study. The performance of the proposed methodology for defect diagnosis
under different operating conditions in terms of prediction accuracy is given in Table 5,
and the same is compared with five methods: (1) the methodology used in [38–40], in
which time frequency images and spectrograms were used as input to the CNN, (2) KNN
as a classifier in combination with GA for features selection using the time domain and
spectral kurtosis-based features as utilized in [12], (3) ANN/multilayer perceptron using
the same features as utilized in [12], (4) SVM using the same features as utilized in [12], and
(5) KNN + order maps using Histogram of Oriented Gradient (HOG) features. Initially, the
models were trained at 1000 rpm and 5 KN load. The trained models were deployed for
predictions under all other combinations of speed and load. The proposed CNN model
predicted with 100% accuracy under all loading conditions at 1000 rpm for both cases i.e.,
with order maps and spectrograms. Afterwards, for spectrograms, performance degraded
drastically when the model trained at 1000 rpm and 5 KN load was deployed for predictions
at 2000 rpm (5, 10 and 15 KN load) and 3000 (5, 10 and 15 KN load). However, performance
of the proposed methodology in terms of fault diagnosis/prediction accuracy remained
excellent under all the loading conditions at 2000 rpm and 3000 rpm with a minimum
fault diagnosis accuracy of 96% at 3000 rpm and 10 KN load. However, the minimum
fault diagnosis accuracy was 46% when spectrograms were used as input for the CNN
model. The fault diagnosis accuracy ofthe other four methods considered for comparison
i.e., KNN + GA, ANN, SVM and KNN + order maps was 98.3%, 99.2%, 99.6% and 98.3%,
respectively, under thesame operating conditions (when the models were trained and tested
at 1000 rpm and 5 KN load). However, when these trained models were deployed for
diagnosis under different operating conditions as compared to those under which they
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were trained, their performance degraded drastically except for KNN + order maps. By
changing the load under same speed, the performance of KNN + GA, ANN and SVM was
degraded to 87.9%, 89.1% and 88.2%, respectively. However, performance degradation was
more drastic by changing the speed which dropped to 46.9%, 35.4% and 58.3% for KNN,
ANN and SVM, respectively. For KNN + order maps the performance degradation was not
significant by changing the load, however, fault diagnosis accuracy dropped to a minimum
of 89.7% by changing the speed which is much better than KNN + GA, ANN, SVM and
CNN + spectrograms. However, the proposed method performed better as compared to
KNN + order maps. A performance comparison of all models when trained at 1000 rpm
and 5 KN load is given in Figure 12.

Table 5. Performance and comparison of the proposed methodology in terms of prediction accuracy
for defect diagnosis under different operating conditions (case study-1).

Training Testing Prediction Accuracy (%)

Speed
(rpm)

Load
(KN)

Speed
(rpm)

Load
(KN)

CNN + Order
Maps (Proposed)

CNN +
Spectrograms

[38–40]
KNN + GA

[12] ANN SVM KNN +
Order Maps

1000 5

1000 5 100 100 98.3 99.2 99.6 98.3

1000 10 100 100 87.9 89.1 88.2 98

1000 15 100 100 88.8 90.4 90.2 97.9

2000 5 99.8 67.2 71.5 56.3 64.8 95.4

2000 10 97.4 58.5 51.5 49 63.5 91.3

2000 15 98.1 62.4 46.9 43.1 58.1 93.1

3000 5 98.4 63.3 65.6 40.6 64.2 92.7

3000 10 96 46 65.2 37.3 65.2 89.7

3000 15 96.7 59.1 59.8 35.4 58.3 91.4

1000 10

1000 5 100 100 81 80.1 80.2 97.5

1000 10 100 100 98.8 94 99.8 98.8

1000 15 100 100 84 80.8 82.5 98.2

2000 5 97 58 62.1 67.7 56.3 92.5

2000 10 98.1 75.7 66.7 66.7 65.2 93

2000 15 97.4 48.6 58.1 62.5 43.1 90.4

3000 5 95.3 64.6 60.2 68.6 66.5 87.3

3000 10 96.2 72.1 61.1 67.1 56.5 90.7

3000 15 96.5 57.3 52.3 65.6 42.7 88.5

1000 15

1000 5 100 100 90.21 89.8 91.5 97.5

1000 10 100 99.3 91.7 89.4 91.3 97

1000 15 100 100 97.5 96.9 99.4 98.2

2000 5 97.1 46.1 63.1 43.1 60.6 91.3

2000 10 98.4 57.7 66.04 59.6 64.2 92

2000 15 98.8 78.1 48 36.5 39 90.7

3000 5 97.2 57.5 64.6 51.5 51.5 89.6

3000 10 96.9 51 57.1 52.7 52.7 84.6

3000 15 99 62.2 43.96 37.7 39.2 85
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Table 5. Cont.

Training Testing Prediction Accuracy (%)

Speed
(rpm)

Load
(KN)

Speed
(rpm)

Load
(KN)

CNN + Order
Maps (Proposed)

CNN +
Spectrograms

[38–40]
KNN + GA

[12] ANN SVM KNN +
Order Maps

2000 5

1000 5 98.1 62.8 45.8 49 53.8 88.3

1000 10 96.8 56.4 51.5 35.8 42.3 91.8

1000 15 97.1 48.6 50.6 39.4 49.8 88.1

2000 5 100 100 97.1 98.3 99.6 99.6

2000 10 100 100 84.5 86.4 85.1 99.2

2000 15 99.4 99.3 86.87 87.1 87.8 98.8

3000 5 99.4 74 72.3 73.6 72 97.6

3000 10 98.1 70 65.6 65.6 66.9 95.7

3000 15 97.6 70 68.3 66.7 68 96.3

2000 10

1000 5 97.4 67 43.1 31.4 32.7 86

1000 10 98.6 69.27 45 39 31.9 94.6

1000 15 98.1 51.7 42.3 36.2 30 83.9

2000 5 100 98.2 83.2 81.2 80.3 93.4

2000 10 100 100 99.6 100 100 100

2000 15 99.6 98.4 86 88.3 87.5 98.1

3000 5 99 66.74 70 71.3 74.3 94.6

3000 10 99.2 72.6 68.5 71.9 69 85.7

3000 15 98 70.8 69.4 70.1 68.9 88.8

2000 15

1000 5 97.3 73.4 51.3 51.2 45.6 81.2

1000 10 96.8 73.4 47.3 45.1 43.8 82.5

1000 15 99.1 77.5 53.3 49.5 43 83.2

2000 5 99.3 98.4 87.9 84 82 95.8

2000 10 99.3 99.3 90.62 85.8 81 96.4

2000 15 100 100 98.5 99.2 99.8 100

3000 5 94.7 46.7 71.3 64.2 77.1 86.3

3000 10 97 49.8 61.3 64.2 71.5 90.3

3000 15 98.1 53.9 73.2 79.2 79.8 85.7

3000 5

1000 5 98.4 63.57 41.3 24.2 27.1 89.3

1000 10 95.4 55.3 45.8 40.8 31 89.6

1000 15 97.2 55.4 36.3 37.3 25.4 85.4

2000 5 98.9 74 71.2 74.8 58.3 84.2

2000 10 98.1 68.85 66.7 67.9 77.3 97.6

2000 15 95.5 46.25 71.7 75.4 75.8 91.3

3000 5 100 100 99 99 99.8 100

3000 10 99.8 100 87.3 87.4 86.2 99.3

3000 15 100 100 88.2 87.8 87.3 99.6

3000 10

1000 5 96.1 57.83 26.2 19.4 14 85.7

1000 10 97.3 50 35.8 12.3 10.6 82.1

1000 15 95 28.5 23.5 16 11.25 86.1

2000 5 98.5 69.1 60.8 56.9 53.3 87.6

2000 10 99.1 72.3 62.7 67.8 66 96.9

2000 15 97.1 51.6 61.5 66.5 58.3 85.5

3000 5 99.6 98.2 85.6 82.9 83.8 99.3

3000 10 100 100 94.6 92.5 99.4 100

3000 15 100 99.6 84.4 89 85.6 100
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Table 5. Cont.

Training Testing Prediction Accuracy (%)

Speed
(rpm)

Load
(KN)

Speed
(rpm)

Load
(KN)

CNN + Order
Maps (Proposed)

CNN +
Spectrograms

[38–40]
KNN + GA

[12] ANN SVM KNN +
Order Maps

3000 15

1000 5 97.1 38.8 22.5 27.3 30.4 83

1000 10 96.9 38.9 35.8 33.5 33.1 81.1

1000 15 99.1 48.9 29.4 31.7 29.8 84.3

2000 5 97.6 73.2 66.9 65 63.5 89.2

2000 10 98.9 72.8 73.1 77.3 78.7 98.5

2000 15 98.9 75.8 74 75.6 75.4 85.3

3000 5 99.2 100 90.6 89.5 82.8 99.8

3000 10 100 100 83.6 84.7 86.3 100

3000 15 100 100 94.2 95.8 99.4 100

Overall Average Prediction Accuracy 98.4 73.7 67.4 64.7 65.3 92.3
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Figure 12. Performance comparison when models were trained at 1000 rpm + 5 KN load and tested
under all combinations of speed and load.

The same trend was observed when the procedure of training under one set of op-
erating conditions and testing under all other combinations of operating conditions was
repeated for all operating conditions considered in this study. It is observed that change in
the loading condition at steady speed did not affect the performance of the CNN model
in both cases i.e., with order maps and with spectrograms. Similarly, the performance of
the KNN model with order maps was also not affected greatly by changing the load. This
depicts that spectrograms and order maps are not affected much by changing the load.
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Although, the performance of KNN + GA, ANN and SVM models was degraded at an
average of about 13%. When the speed under which the models were trained differed from
the speed under which the models were deployed to make predictions, the performance of
the CNN model was adversely affected in the case of spectrograms, which shows that by
changing the operating speed spectrograms undergo change and thus the performance of
the CNN model for fault diagnosis is affected. Similarly, drastic performance degradation
was observed for KNN + GA, ANN and SVM models. The performance of KNN + order
maps also degraded but not drastically. However, the proposed methodology showed very
good performance under changing speed as well, because of the invariant behaviour of
order maps under varying speeds the good image classification and recognition ability of
the deep CNN model. The proposed method did diagnosis the faults of a locomotive rolling
element bearing under different operating conditions with an overall average accuracy of
98.4% which is much higher compared to the average accuracy of 73.7%, 67.4%, 64.7% and
65.3% for CNN + spectrograms, KNN + GA, ANN and SVM, respectively. For KNN + order
maps the overall average prediction accuracy was 92.3% which is much higher compared to
other methods used for comparison, but it is less than the average fault detection accuracy
of the proposed methodology. The explanation of the better performance of CNN and
KNN in the case of order maps is that the order maps exhibit consistent patterns under
variable speed, as described in Section 2.1, and for deep groove ball bearings under the
load range considered in this study they did not exhibit much change. Therefore, the
CNN and KNN models were able to correctly classify them. However, because of the
better image classification abilities of the proposed deep CNN model, the proposed method
performed better as compared to KNN + order maps. In order to use the KNN model for
this fault diagnosis task we had to extract HOG features from order maps, whereas the
deep CNN model can automatically learn discriminative features from the order maps for
defect diagnosis under variable speeds and loads with high accuracy.

In the second case study, vibration data were acquired for two types of rolling element
bearings installed in the locomotive traction motor, under five different variable speed
conditions (constant speed, acceleration, and deceleration). The load was constant which
corresponds to the motor shaft weight. Order maps were computed from vibration signal
segments of 2 s to use as input for the proposed CNN model. An overlap of 1.6 sec was
used for each segment. Initially, the CNN model was trained at a steady speed of 3170 rpm
and was tested under all other operating conditions considered during this study. Later,
the model was trained under the transient condition of variable speed between 1000 and
2000 rpm, and was deployed for defect diagnosis under all other operating conditions
considered in this study. The performance of the proposed methodology in terms of
prediction accuracy is given in Table 6. The proposed defect diagnosis method undertook
a fault diagnosis of ball bearings and cylindrical roller element bearings installed in the
locomotive traction motor under variable speeds with an average accuracy of 99.2% and
98%, respectively. In this case study, the overall accuracy of the proposed methodology for
defect diagnosis of rolling element bearings under variable speed remained 98.6%, which
proves that the proposed method is capable for the defect diagnosis of rolling element
bearings with good accuracy at a high speed with large variations. A confusion matrix for
ball bearings, when the model was trained at 3170 rpm and tested at 4955 rpm is shown in
Figure 13, and when the model was trained at a variable speed between 1000 and 2000 rpm
and tested at variable speed between 3525 and 4125 rpm is shown in Figure 14.
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Table 6. Performance of the proposed methodology in terms of prediction accuracy for defect
diagnosis under variable speed (case study-2).

Training Testing
Prediction Accuracy (%)

Ball Bearing Cylindrical Roller Bearing

3170 rpm
(Constant Speed)

3170 rpm
(Constant speed) 100 100

4955 rpm
(Constant speed) 100 99.9

1000–2000 rpm
(acceleration) 99.1 97.2

3525–4125 rpm
(acceleration) 99.4 96.8

4050–2560 rpm
(deceleration) 99.1 96.2

1000–2000 rpm
(acceleration)

3170 rpm
(Constant speed) 98.7 99.1

4955 rpm
(Constant speed) 98.5 98.1

1000–2000 rpm
(acceleration) 100 100

3525–4125 rpm
(acceleration) 99.4 97.3

4050–2560 rpm
(deceleration) 98 95.1

Average Prediction accuracy for each bearing 99.2 98

Overall average Prediction accuracy 98.6
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For the implementation of the proposed methodology, in addition to the vibration signal,
a tachometer signal is also required. However, most of the other methods, including thefour
methods used for comparison in first case study i.e., CNN + spectrograms, KNN + GA, ANN
and SVM, do not require a tachometer signal. Therefore, the necessity of a very accurate
tachometer signal is the limitation of the proposed methodology. If there is an error in the
tachometer, then resampling may fail and correct order maps cannot be computed, which will
adversely affect the diagnosis performance of the proposed methodology.

5. Conclusions

In this study a method for the defect diagnosis of rolling element bearings under
variable operating conditions (speed and load) using order maps and convolutional neural
networks is proposed. A non stationery signal was resampled synchronously at con-stant
angular intervals to convert it into a stationery signal in the order domain. Short-time
Fourier Transform of the resampled signal was computed to generate the order maps.
These maps show consistent patterns under variable speed but different patterns for
different types of defects. The sensitivity of order maps for changing load was studied
experimentally for deep groove ball bearings and it was found that they remain consistent
under varying loads if the bearings are properly loaded. Therefore, order maps can be
termed as operating condition (speed and load) invariant but fault discriminative vibration
images. In addition, due to this property, they can be used for fault diagnosis under varying
speeds and loads. A deep CNN model was proposed which can automatically extract fault
discriminating features from the order maps for defect classification. Order maps were
used as input to the CNN model for fault diagnosis under varying speeds and loads. The
proposed method conducted the fault diagnosis of different types of locomotive rolling
element bearings under a huge fluctuation of operating conditions (speed and load) with an
average prediction accuracy of 98.4% and 98.6% in two separate case studies. The proposed
method outperformed when it was compared with other CNN, KNN, ANN and SVM-based
methods. The limitation of the proposed method is the requirement of a very accurate
tachometer signal. The proposed method can be implemented for rolling element bearings’
fault diagnosis under variable speeds and loads, such as in the transportation industry.
In future studies, the efficacy of the proposed methodology needs to be investigated for
such applications where a tachometer signal is not available along with the vibration
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signal, by extracting the rpm information from the vibration signal using signal processing
techniques.
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