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Abstract

The Youla-Kucera parametrization is a fundamental result in system theory,
very useful when designing model-based controllers. In this paper, this formu-
lation is employed to solve the controller design from data problem, without
requiring a process model. It is shown that, given a set of input-output data
generated by the plant and a desired closed-loop reference model, it is possible
to estimate an stable filter that parametrizes the controller that minimizes the
norm between the closed-loop dynamics and the requested behavior. The em-
ployed parametrization gives more degrees of freedom in the controller design
than previous works in literature, allowing to achieve more stringent closed-loop
performances. The proposed design methodology does not imply a plant iden-
tification step and it provides an estimate of the model-matching error between
the requested and the resulting model as indicator of stability and performance
of the derived control loop. The proposed solution is evaluated in regulation
problems for non-minimum phase systems through Monte Carlo simulations
and in experimental conditions for the regulation of temperature in an ohmic
assisted hydrodistillation process.

Keywords: Data-driven control, Identification for control, Uncertain systems,
Controller parametrization, Youla-Kucera parametrization.

1. Introduction

Currently, data acquisition technology permits to collect a large amount of
measurements from industrial plants. When enough plant data are available in
order to design a controller, there exist two main approaches in the scientific
literature. In a model-based controller design procedure, a plant model is es-
timated from data, possibly constructing also an uncertainty model, and then,
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such a model is employed to design a controller, resulting in a two-steps pro-
cedure. This method can lead to sub-optimal controllers, due to the modelling
errors. On the other hand, the available data can be employed to directly design
a controller, avoiding the plant model identification. This approach has been
named Direct Data-Driven Controller (DDC) tuning. The interested reader can
referred to [1], where an interesting comparison between Model-based controller
design and DDC tuning is presented.

There exist adaptive (iterative) and non-iterative DDC tuning techniques. In
the first ones the controller parameters are adjusted at periodic intervals, while
in the second, the controller is designed based on the information contained in
one batch of experimental data (one-shot). In this work, we are interested in one-
shot techniques for two reasons: First, one disadvantage of adaptive schemes
is that they require several experiments to update the controller parameters,
this can lead to excessive costs in industrial applications. On the other hand,
standard model-based controller design methods are not-iterative, they use a
single mode or data set, thus non-iterative DDC are a direct replacement of
model-based controller design techniques.

Within a linear framework, [2] presents a comparison of non-iterative DDC
tuning methods, considering correlation approach (CbT), periodic errors in vari-
ables (EiV), inverse controller (IC) and prediction error methods (PEM). All of
them are constructed within a stochastic framework. A more recent review work
of DDC methods can be found in [3], where the authors perform a qualitative
comparison and briefly explain each technique. A different approach to solve
the DDC problem follows a deterministic formulation using Set-membership
techniques. Recent results on this approach can be found in [4], [5] and [6].

In all the methods mentioned above, the main ingredients of the DDC prob-
lem are a set of input-output data generated by the plant to be controlled,
a closed-loop reference model where performance specifications are embedded,
and a given controller structure, usually parametrized by a set of fixed basis
functions. When the set of bases is not consistent with the reference model,
the resulting controller can yield to closed-loop instability. In this sense, in
[7] a set of conditions are established to define the behaviors that the closed-
loop can reach, in order to select an achievable reference model. An approach
to automatically select the basis functions that allow to achieve a requested
closed-loop behavior is proposed in [8], while [9] proposes a two degrees of free-
dom parametrization to better approximate the sensitivity function and the
input-output transfer function.

One of the main challenges in the context of DDC methods is guarantee-
ing stability. Considering that no plant model is available in this framework,
standard stability tests cannot be performed. A possibility is to test the con-
troller before actual implementation [10] (i.e. a-posteriori tests). In [11] some a-
posteriori stability estimators are proposed for an iterative DDC tuning scheme.
In [12] an invalidation test, based on the available data, is employed in order to
detect if the controller may led to unstable closed-loops. This test requires the
accurate identification of a possibly unstable system in an errors-in-variables
framework.
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Some attempts to incorporate a stability condition at the design step in
non-iterative DDC can be found in [13] and [14]. Both methods consider an
extended PID controller structure (i.e. FIR filter plus integrator) leading to
convex optimization problems. However, such methods do not offer acceptable
performances when the desired reference model is not achievable by the selected
controller structure. Moreover, the approach in [14] requires to estimate the
H∞ norm of a loop subsystem with the number of samples of the experiment
going to infinity to test stability. [15] uses the unfalsified control theory to
derive relations between the choice of the performance criterion to be optimized
and closed-loop stability conditions. In the case the controller is not linearly
parametrized (i.e. it is possible to modify zeros and poles of the controller) such
degree of freedom leads to a non-convex optimization problem. In this approach,
unlike the other methods, it is necessary to define a closed-loop reference model
and also a target input sensitivity transfer function to find the parameters of a
stabilizing controller.

The Youla-Kucera parametrization is a fundamental result in system theory
that allows to parametrize all the controllers that stabilize a given plant. It has
been extensively applied in optimal and robust control when designing model-
based controllers, see e.g. [16, 17]. However, in its original form it is not applica-
ble when the plant model is not available. In this paper, this parametrization is
employed to solve the controller design from data problem, without requiring a
process model. The proposed framework does not require the selection of a fixed
controller structure, avoiding the task of controller parametrization definition.
The main contributions of this paper can be summarized as:

• A novel approach to controller tuning from data, relying on the Youla
Kucera parametrization, is proposed, avoiding the plant identification.

• The controller structure is not fixed a priori but is a consequence of the
tuning procedure. This allows to achieve more stringent reference models
than those previously proposed in literature, while maintaining a convex
optimization problem to tune the controller parameters.

• The problem to tune a stabilizing controller is cast into an identification
problem with additive noise affecting both the input and the output. Data
sets can be generated in open- or closed-loop operation.

• Our approach is a non-iterative solution that relies on errors-in variables
identification. Thus, the controller tuning procedure does not require
iterations or multiple experiments.

• An a posteriori test is derived to estimate the deviation between the de-
sired closed-loop dynamics and the resulting control loop, without requir-
ing the plant transfer function. The test provides information about the
stability of the derived control system and the feasibility of the requested
performance.
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The outline of the paper is as follows. In Section 2, the problem formulation
is presented. In Section 3, the data-driven controller tuning approach, based on
the Youla-Kucera parametrization, is derived. Section 4 summarizes the con-
troller design methodology. In Section 5 the proposed solution is illustrated in
simulation, through the design of a controller for a non-minimum phase system.
Finally, in Section 6, a controller for the regulation of temperature in an ohmic-
assisted hydrodistillation process is designed and experimentally evaluated. The
conclusions end the paper in Section 7.

2. Statement of the problem

In this section the data-driven controller (DDC) tuning problem is formu-
lated. First, the setting and main assumptions are presented.

v(k)

r(k) y(k)u(k)
P(z) C(0,z)

Figure 1: Assumed feedback control structure

Consider a discrete-time linear-time invariant (LTI) single-input single-output
(SISO) feedback control scheme, as depicted in Fig. 1, P (z) is a stable (possibly
non-minimum phase) plant, C(z, θ) is the controller, θ is a vector of controller
parameters, r(k) is the reference signal, v(k) is output noise/disturbances, u(k)
and y(k) are the plant input and output signals, respectively.

For the system interconnection in Fig. 1, the aim of the controller tuning
procedure is to select an optimal controller Co(z, θo) minimizing some perfor-
mance criterion and guaranteeing internal stability. For example, an optimiza-
tion problem can be stated as:

Co(z, θ) = argminJRM (θ) (1)

s.t.

Loop internally stable

For the reference model based cost function

JRM (θ) =

∥∥∥∥M(z)− P (z)C(z, θ)

1 + P (z)C(z, θ)

∥∥∥∥2

2

(2)

Being M(z) a strictly proper reference model for the closed-loop system (i.e.
M(z) 6= 1), where performance specifications are embedded.
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If system P (z) is unknown, Problem (1) can not be solved directly. The
common controller design procedure for unknown plants is to follow a two-
step procedure where first a system model P̂ (z) is derived form data, possibly
including some information on uncertain dynamics ∆P (z), and then, a controller
is obtained solving Problem (1) for P̂ (z).

The following assumptions define the framework of the data-driven stabiliz-
ing controller tuning problem.

Assumption 1. P (z) is unknown. The available information on the plant is a
set of input-output data generated by the system interconnection given in Fig.
1, with the plant initially at rest, that is,

u(k) = Tu(z)r(k) +Hu(z)v(k),

y(k) = Ty(z)r(z) +Hy(z)v(k),

D = {r(k), u(k), y(k), k = 1, 2, ..., N} , (3)

Where r(k) is the reference input, v(k) is the process noise, u(k) is the
process input and y(k) is the noisy process output.

Two operation conditions are considered:

1. Open-loop operation: In this condition, there is not controller C(z)
and

Tu(z) = 1,

Hu(z) = 0,

Ty(z) = P (z),

Hy(z) = 1.

2. Closed-loop operation: In this condition, an stabilizing controller C ′(z)
is available and

Tu(z) = C ′(z)(1 + P (z)C ′(z))−1,

Hu(z) = −C ′(z)(1 + P (z)C ′(z))−1,

Ty(z) = P (z)C ′(z)(1 + P (z)C ′(z))−1P (z),

Hy(z) = (1 + P (z)C ′(z))−1.

Assumption 2. Reference signal r(k) is a Wide-Sense Stationary (WSS) sig-
nal, persistently exciting of any order. That is, its power spectral density (PSD)
satisfies Φr(jω) > 0, ∀ω, see e.g. [18].

Assumption 3. The output noise v(k) is a WSS signal independent of the
reference signal r(k), i.e., the cross-correlation between them is zero:

Rvr(τ) = E[v(k)r(k − τ)] = 0;∀τ.
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Considering the previous assumption, the controller design from data prob-
lem can be stated as follows:

Problem 1. Data-Driven Stabilizing Controller Tuning: Given a data-set D
generated as in Assumptions 1, 2 and 3, and a reference model M(z), find a
controller Ĉ(z, θ) that solves (1).

The assumption on system stability can be relaxed following the approach pro-
posed in [15], where it is assumed that an stabilizing controller is available a
priori.

3. A stabilizing controller structure

Let us recall that the set of all the stabilizing controllers C(z, θ) for the loop
in Fig. 1, given a stable plant P (z), can be expressed as

CS =

{
C(z, θ) =

Q(z, θ)

1− P (z)Q(z, θ)
: Q(z) ∈ H∞

}
(4)

where Q(z, θ) is any stable and proper transfer function. The previous result
is known as the Youla-Kucera parametrization for a stable plant, [19].

When the Youla-Kucera parametrization is adopted to find an optimal con-
troller solving (1), the cost function (2) becomes

JRM (θ) = ‖M(z)−Q(z, θ)P (z)‖22 (5)

That is, the complementary sensitivity function of the loop becomesQ(z, θ)P (z).

Definition 1. For any stable closed-loop reference model M(z) and stable filter
Q(z), the model matching error transfer function is:

∆M (z, θ) = M(z)−Q(z, θ)P (z) (6)

Given the previous analysis, from now on we focus in the problem to estimate
a filter Q∗(z, θ∗), such that the cost function (5) is minimized.

3.1. A data-driven cost function

Notice that to estimate a filter Q∗(z, θ∗) minimizing (5) it is required the
knowledge of the plant P (z). But, under the assumptions of the framework, the
plant is unknown. The following Lemma allows to relate the model-based cost
function with a signal-based one.

Lemma 1. Let x(k) be a set of instrumental variables generated as

x(k) = W (z)r(k),

where W (z) is a Bounded-Input Bounded-Output (BIBO) stable filter. Given an
asymptotically stable system P (z) and a data set D generated as in Assumptions
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1 and 3, for any stable filter Q(z, θ) ∈ Q it holds that the cross-correlation
function

Rex(τ, θ) = E[e(k, θ)x(k − τ)]

between the noisy output of the model matching error transfer function

e(k, θ) = M(z)u(k)−Q(z, θ) (7)

= [M(z)−Q(z, θ)P (z)]u(k) +Q(z, θ)Hy(z)v(k) (8)

and the instrumental variable x(k), satisfies:

||Rex(τ)||22 =
1

2π

∫ π

−π

∣∣∣[M(ejω)−Q(ejω, θ)P (ejω)
]
Tu(ejω)W (ejω)

∣∣∣2 Φ2
r(jω)dω(9)

Moreover, if the reference signal r(k) satisfies Assumption 2, Tu(z) has no zeros
on the unitary circle, and

|W (ejω)| = |Tu(ejω)Φr(jω)|−1, (10)

it holds that
JMR(θ) = ||Rex(τ, θ)||22

Proof: See Appendix A.

Remark 1. Note that the filter W (z) required to equalize the model-based cost
function (5) and the correlation function norm in (9) depends on the transfer
function between the reference r(k) and the plant input u(k). For open-loop op-
eration, this is not a problem, while for closed-loop conditions |Tu(z)| must be
estimated from data. For example, considering that r(k) and v(k) are indepen-
dent, from standard spectral analysis it is known that

Φur(e
jω) = Tu(ejω)Φr(e

jω),

where the input spectrum Φr(e
jω), and the cross-spectrum Φur(e

jω) can be de-
rived from the available data set.

From the previous Lemma, the controller design problem can be transformed
into a system identification one, where the unknown system is Q(z, θ) and the
plant model is not involved. Fig. 2 shows a block diagram of the interconnection
that describes the model matching error system. Note that e(k) is obtained as
the difference between the plant input signal u(k) filtered by the reference model
M(z) and the noisy plant output signal y(k) filtered by Q(z, θ), that is

e(k, θ) = M(z)u(k)−Q(z, θ)y(k)

Given the signals

yQ(k) = M(z)u(k), uQ(k) = y(k)
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M(z)

Q(z, )

e(k, )

uQ(k)

yQ(k)

v(k)

r(k)

u(k) y(k)
P(z) C'(z)

Figure 2: Block diagram representing the controller tuning problem. The subsystem inside
the dashed line constitutes the setup for the estimation of Q(z, θ).

the design of a controller/filter Q(z, θ) has been posed as an identification prob-
lem where the input uQ(k) is noisy and the output yQ(k) is noise-free but
correlated with the input noise if the data set is generated in closed-loop, that
is, an Errors In Variables (EIV) problem, solved through a specific selection of
instrumental variables.

The Instrumentals Variables (IV) method is a well know procedure to deal
with EIV identification problems in stochastic settings, see e.g., [20]. In DDC
frameworks, this approach has been employed in [21], requiring a second ex-
periment where the plant is subject to the same input u(k) or the estimation
of a plant transfer function. These solutions are not properly aligned with the
non-iterative DDC tuning techniques.

Remark 2. In most approaches to DDC tuning (i.e. CbT,VRFT,..) it is re-
quired to approximate the sensitivity function generated by any controller C(z, θ)
to the sensitivity function of the optimal loop, i.e., 1/(1 + P (z)C0(z, θ)) ≈
1/(1 + P (z)C(z, θ)), to obtain a time-domain expression that approximates the
cost function (2). Note that such approximation is not required in our approach.

3.2. A structure for Q.

Several structures can be assumed to design the filter Q(z, θ). For exam-
ple, recursive polynomial structures such as ARX or ARMAX can be employed.
However, the formulation requires that Q(z, θ) ∈ H∞. Imposing stability con-
straints in autoregressive structures leads to complex non-linear constraints,
turning the estimation problem into a highly non-convex optimization program,
see e.g. [22]. On the other hand, Finite Impulse Response (FIR) models guar-
antee stability without additional constraints. Therefore, a FIR structure is
adopted for Q(z, θ) as follows,

Q(z, θ) =

mq∑
i=1

θiz
−(i−1), (11)

where mq is the filter impulse response length.
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Then, the controller design problem becomes a parametric estimation prob-
lem, where the filter parameters are selected from the set:

Q = {Q(z, θ) : θ ∈ Rmq}

Note that for FIR filters, the only parameter that defines the system struc-
ture is the length of the impulse response mq. Now we analyze the set of
equations that define the filter impulse response in a model-based setting, in
order to get insights about the selection of mq.

From the cost function in Eq.(5), the impulse response of the model-matching
error system is:

h∆M (k, θ) = hM (k)− hP (k) ∗ hQ(k; θ). (12)

where hM (k), hP (k) and hQ(k; θ) are the reference model, plant and filter im-
pulse responses, respectively, and (∗) is the convolution operator. In matrix
form it becomes

h∆M (k, θ) =



hM (0)
hM (1)
hM (2)

...
hM (mq − 1)

...


−



hP (0) 0 0 0 . . . 0
hP (1) hP (0) 0 0 . . . 0
hP (2) hP (1) hP (0) 0 . . . 0

...
. . .

hP (mq − 1) hP (mq − 2) . . . hP (0)
...

...




hQ(0)
hQ(1)
hQ(2)

...
hQ(mq − 1)

 .

(13)

Eq. (13) shows that in order to minimize the `2 norm of the model matching
error system, the euclidean norm of the h∆M (k, θ) vector must be minimized.
Moreover, Eq. (13) shows also that the model matching error can be driven
to zero if and only if the relative order (input-output delay) of the reference
model M(z) is greater or equal to the relative order of the plant P (z), and
hM (k) belongs to the column space of the matrix formed by shifted versions
of hP (k). Finally, recall that M(z) is a stable system, therefore, its impulse
response hM (k) decays exponentially and can be bounded as

∣∣hM (k)
∣∣ ≤ Lρk,

k ≥ 0, for some finite bound L > 0 and decay rate ρ ∈ (0, 1). Therefore, hM (k)
becomes negligible for some k ≥ LM for a reasonable LM value. The same
statement can be made for P (z). Therefore, a necessary condition to achieve
the minimum of h∆M (k; θ) is that mq ≥ LM .

3.3. Data-driven approach to tune Q(z, θ)

The previous section described a transformation of the controller design
problem into a signal correlation minimization problem, where the plant model
is not implied. However, infinite length signals are considered. In practice, the
estimation of Q(z, θ) must be performed with a finite length data set.
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Let ζ(k) be the vector of instrumental variables well correlated with u(k)
and uncorrelated with v(k) at time k, given by,

ζ(k) = [x(k + l),x(k + l − 1), · · ·x(k),

x(k − 1), · · · , x(k − l)]T
(14)

where l is a proper integer. Details for the selection of l can be found in [23].
The model matching error signal e(k; θ) for a FIR filter can be expressed as

e(k, θ) = yQ(k)− φ(k)θ (15)

for the regressor

φ(k) = [uQ(k), uQ(k − 1), . . . , uQ(k −mq + 1)]

Given N samples of instrumental variables ζ(k), signal yQ(k) and regressor
φ(k), the sample correlation function becomes

fN (θ) =
1

N

N∑
k=1

ζ(k) [yQ(k)− φ(k)θ] (16)

and the finite sample cost function for the controller design results

JDD(θ) = fTN (θ)fN (θ) ≈
l∑

τ=−l

R2
ex(τ) (17)

The parameter θ̂ defining the data-driven optimal filter Q̂(z, θ̂) is selected as

θ̂ = arg min
θ
fTN (θ)fN (θ), (18)

resulting in a quadratic optimization problem, whose solution can be ob-
tained by least-squares. Notice that Assumption 2 guarantees that the opti-
mization problem in (18) is well posed.

3.4. Deriving a controller from data

Once an optimal filter Q̂(z, θ̂) has been estimated, the optimal controller

Ĉ(z, θ̂), which solves Problem 1 is

Ĉ(z, θ̂) = Q̂(z, θ̂)(1− Q̂(z, θ̂)P (z))−1 (19)

Then, in order to recover the controller it is required to know the process model
P (z). However, in the data-driven setting, P (z) is unknown. Note that if the
minimum of the model-based cost function (2) is 0, i.e, ∆M(z, θ∗) = 0, then
the optimal controller is given by

C(z, θ∗) = Q(z, θ∗)(1−M(z))−1 (20)
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that does not depend on P (z).
Therefore, under the assumption that ∆M(z, θ∗) is “ “small”, the proposed

data driven controller is obtained as

CDD(z, θ̂) = Q(z, θ̂)(1−M(z))−1 (21)

Remark 3. It must be highlighted that the structure of the controller derived in
(21) is a function of the reference model M(z) and the estimated filter Q(z, θ∗).

Remark 4. When a reference model M(z) with unitary DC gain is requested,
i.e. M(1) = 1, and the resulting filter Q(z) is such that

∑mq
i=1 θi 6= 0, the

resulting controller CDD(z, θ) exhibits integral action, it has a pole in z = 1.

Note that any stable filter Q(z, θ) guarantees a stable loop if the controller
is derived as in Eq. (20). However, when a controller is derived as in Eq. (21),
it is necessary to verify whether it guarantees an internally stable loop when
applied in closed-loop.

Result 1. For any FIR filter Q(z, θ), the controller derived as

CDD(z, θ) = Q(z, θ)(1−M(z))−1 (22)

leads to a loop with complementary sensitivity function

TDD = QP (1−∆M)−1 (23)

that is asymptotically stable if

||∆M(ejω)||∞ ≤ 1

The result follows from the evaluation of the loop transfer function, recalling
that ∆M = M − PQ is a stable system.

Using the available data, it is possible to estimate the frequency response
of ∆M . Note that when the input u(k) is applied to ∆M , the resulting input-
output relation can be expressed as:

e(k) = ∆M(z)Tu(z)r(k) + (Hu(z)−Q(z)Hy(z))v(k)

where the signal e(k) can be reconstructed from data as

e(k) = yQ(k)−Q(z)y(k).

Then, for fixed Q(z), the output signal e(k) is available and, recalling that r(k)
and v(k) are uncorrelated, from standard spectral analysis results, an unbiased
estimator of the frequency response of ∆M is:
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|∆̂M(ejω)| = |Φer(jω)Φ−1
rr (jω)||Tu(ejω)|−1 (24)

When open-loop data is available, the estimate reduces to

|∆̂M(ejω)| = |Φeu(jω)Φ−1
uu (jω)|. (25)

When using Result 1 to determine the stability of the loop it must be recalled
that it derives form the Small Gain theorem, then ||∆M(ejω)||∞ ≤ 1 is a suffi-

cient but not necessary condition for closed-loop stability. Moreover, ∆̂M(ejω)
is an estimate of the system response with an associated variance, therefore
when ||∆̂M(ejω)||∞ is close to 1 for a given data set D and reference model
M(z) it does not necessarily imply that the resulting control loop is unstable.

4. Summary Procedure to tune Q̂

The following algorithm summarizes the proposed data-driven controller de-
sign procedure.

Given a data set generated as in Assumptions 1, 2 and 3, a reference model
M(z) and a filter length mq, properly selected, the following procedure allows
to obtain a controller that approximately minimizes (2).

Algorithm 1. Youla-Kucera data-driven controller tuning algorithm

1. Using the N input-output samples in D obtain the signals:

yQ(k) = M(z)u(k)

uQ(k) = y(k)

x(k) = W (z)r(k)

2. Form the vectors

φ(k) = [uQ(k), uQ(k − 1), . . . , uQ(k −mq + 1)]

ζ(k) = [x(k + l), · · ·x(k), · · · , x(k − l)]T

and matrices

X =
1

N

N∑
t=1

ζ(k)φT (k), (26)

Z =
1

N

N∑
t=1

ζ(k)yQ(k) (27)

3. Obtain the impulse response coefficients of the optimal data-driven filter
Q̂(z, θ) as:

θ̂ = (XTX)−1XTZ (28)
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4. Derive the data-driven controller as

CDD(z, θ̂) = Q(z, θ̂)(1−M(z))−1 (29)

5. Form the signal
e(k) = yQ(k)−Q(z)y(k).

and estimate the model matching error transfer function as

|∆̂M(ejω)| = |Φer(jω)Φ−1
uu (jω)||Tu(ejω)|−1 (30)

6. If |∆̂M(ejω)| < 1 for all ω, CDD(z, θ̂) is accepted and can be applied to
the actual plant P (z).

5. Numerical example

In order to test the approach on a demanding condition, we take the next
example from [15]. Consider the problem of controlling a non-minimum phase
and stable, but unknown, linear system with continuous-time transfer function

P (s) =
s− 0.5

s3 + 2s2 + 0.65s+ 0.175

The control design requirements are given by the following second-order model:

MC(s) =
w2
n

s2 + 2ζswn + w2
n

where ζ = 0.5 and ωn ∈ [0.3, 1], resulting in a model whose step response shows
an overshoot close to 13% and settling time between 7s and 20s. The refer-
ence model M(z) is obtained as a zero order hold discrete time equivalent of
MC(s) with sampling time Ts = 2.5s, and a pure-delay of d samples, such that
M(z) = z−dMC(z) . Note that this desired closed-loop transfer function cannot
be obtained by the feedback control structure in Fig. 1 with a stable controller.

As first step, a data set D is collected applying to system P (s) an input u(t)
in open-loop, generated as a Pseudo-Random Binary (PRB) signal with sam-
pling time Ts = 2.5s, length N = 512, clock period 2 samples and range
u(t) ∈ {−1, 1}, filtered by a zero-order hold. The output signal y(t) = P (s)u(t)
is sampled with period Ts = 2.5s to obtain the discrete-time signal y(k), cor-
rupted by white noise v(k), resulting in a Signal to Noise Ratio, SNR ≈ 20dB.

In Algorithm 1, once a reference model M(z) has been selected, the only pa-
rameter required to solve the data-driven controller design problem is the FIR
filter length mq. On the other hand, Result 1 allows to estimate the H-infinity
norm of the model-matching error transfer function given a model M(z) and a
filter length mq. The estimate of ||∆M(ejω)||∞ for different delay times (d = 0
and d = 1), increasing values of filter length mq and reference model bandwidth
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wn is depicted in Fig. 3, allowing to test the feasibility of reproducing several
reference models. Note that in the case d = 0 the estimate of the unmodelled
dynamics norm is larger than 0.4 for all the considered filter lengths and model
bandwidths, while for d = 1 it is lower than 0.3, excepting when mq = 2, i.e.,
for a very short filter. Therefore, a reference model M(z) with d = 1 is selected
to continue with the controller design procedure.

It is observed that the estimated H-infinity norm of the model-match error is an
increasing function of the reference model bandwidth. It can be noted that the
norm of ∆M(ejω) is lower than 0.35 and almost insensitive to the filter length
for mq ≥ 5 indicating that adding more degrees of freedom to the Youla-Kucera
parametrization does not necessarily lead to better results. From the previous
analysis, a model with ωn = 0.6 results in a good trade-off between bandwidth
and uncertainty, and mq = 5 is a reasonable length for the filter Q(z), providing
a model with ||∆M(ejω)||∞ = 0.22.
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Figure 3: ||∆M(ejω)||∞ estimates for different values of filter length mq and reference model
natural frequency wn. Left: Reference model delay d = 0. Right: Reference model delay
d = 1.

As a second step, a Monte Carlo experiment is performed. 100 realizations
of u(k) are generated and applied to system P (s), each one elapsing 1280 s
and using Ts = 2.5 s, thus N = 512. The output signal y(k) is corrupted by
noise v(k) maintaining a SNR ≈ 20dB. The same reference model and filter
length employed in the first test are considered. The proposed controller design
strategy is applied to each data set resulting in 100 controllers. The performance
of the obtained control systems is compared with those of a set of controllers
obtained with the same data sets and reference model, using the Correlation-
based Tuning (CbT) method proposed in [24]. In this case, the controllers are
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parametrized as extended PID transfer functions, i.e.,

C(θ, z) =

m∑
i=1

θiz
1−i

1− z−1
. (31)

Based on the resulting performance, m = 8 basis functions are employed.
The performance of the estimated controllers for the 100 input and noise

realizations, in terms of frequency response, is illustrated in the Fig. 4 for both
methods. Fig. 5 shows the corresponding closed-loop step responses.
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Figure 4: Results of Monte Carlo experiment. Closed-loop frequency response of controllers
tuned via the Youla-kucera parametrization (dashed blue lines) and via CbT (dashed red
lines). The Reference model response is shown (black line) and the response of a controller
parametrized by optimal Q obtained assuming that P is known is depicted in the green line.

Figures 4 and 5 show that performance is comparable for both procedures
in high frequency, while in low frequencies the YK parametrized controllers
achieve better results and the CbT controllers show some bias. Regarding
closed-loop step response, the average Root mean squared error (RMSE) for
the controllers designed with the YK parametrization is 0.064, while for those
designed with the CbT approach it is 0.134. Also, the maximum error is lower
for the YK-parametrized controllers (Emax = 0.224) than for the CbT method
(Emax = 0.293).

In order to illustrate the controller parametrization obtained via the Algorithm
1, one of the controller is

C(θ̂, z) =
−0.5804 + 0.4291z−1 − 0.05096z−2 − 0.1186z−3 + 0.2284z−4 − 0.0044z−5 − 0.0008z−6 + 0.0047z−7

1 − 0.04604z−1 − 0.5629z−2 − 0.3911z−3

(32)
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Figure 5: Results of Monte Carlo experiment. Closed-loop step response of controllers tuned
via the Youla-kucera parametrization (dashed blue lines) and via CbT (dashed red lines).
The Reference model response is shown (thin black line), and the response of a controller
parametrized by optimal Q obtained assuming that P is known is depicted in the green line.

Next, for all the controllers tuned via the YK parametrization ||∆M(ejω)||∞ is
estimated via (24). The worst case for ||∆̂M(jω)||∞ is 0.24 and the average is
0.22. i.e., there exist a low risk of obtaining an unstable control loop for any of
the 100 controllers. Fig. 6 shows a histogram of the estimated error norm.

For the case of the CbT controllers, in [25] it is shown that
‖M(z)− P (z)(1−M(z))C(z)‖∞ < 1 is a sufficient condition of closed-loop
stability. Then, such a norm is calculated for the 100 controllers estimated in
the Monte Carlo experiment, taking into account that the plant is known for this
example. Results are depicted in Fig. 6. It is to highlight that, 86 controllers
do not satisfy the stability criterion, however, all the CbT controllers achieve
closed-loop stability when interconnected with the actual plant.

Finally, we illustrate the behavior of the methodology employing closed-loop
data. The system is operated in the feedback connection shown in Fig. 1, with
the PI controller

C(z) = −0.15
z − 0.7

z − 1

This controller guarantees an asymptotically stable loop, but the performance
is not adequate. The resulting closed-loop step response is shown in Fig. 8.
A Monte Carlo experiment is performed. 100 realizations of signals r(k) and
v(k) are generated and applied to the closed-loop system, with N = 512 and
maintaining a SNR ≈ 20dB in the system output. The same reference model
and filter length employed in the first test are considered.

Figures 8 and 7 show the step and frequency responses of the tuned loops
compared to the reference model, the optimal model-based design and the de-
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Figure 6: Stability criterion histogram for the Monte Carlo experiment. ||∆̂M(jω)||∞ for our
method in blue, and ‖M − P (1−M)C‖∞ for CbT method in red.

parting closed-loop system. The average RMS error of the step responses is
0.071, while the maximum error is 0.248. It can be concluded that performance
is comparable to the results obtained using open-loop data and better than
those of controllers tuned with the CbT methodology.

6. Application in an essential oil extraction process

In this Section the proposed controller design methodology is evaluated on
an experimental setting. A temperature controller for an essential oil extraction
system has been designed from data.

Essential oils from aromatic plants are very appreciated in different industries.
Ohmic-assisted hydrodistillation (OAHD) is a novel oil extraction technique,
where steam is generated by heat produced applying electric current to a mix-
ture of vegetable material, water and salt. According to [26] its main advantage
over conventional distillation is that shorter extraction times and lower energy
consumption are obtained. Thereby, it is environmentally friendly.

The short extraction times in OAHD are a consequence of the rapid increase
in temperature caused by the internal heating and the electroporation phe-
nomenon. A non-thermal effect facilitates the extraction of essential oil via the
breakdown of cell membranes produced by the electrical current passing through
the material, [27]. However, the effect of electroporation on the extraction time
has not been properly quantified and it is required to derive accurate dynamic
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Figure 7: Results of Monte Carlo experiment with closed-loop data. Closed-loop frequency
response with initial controller C(z) (dashed red line). Closed-loop frequency responses of
controllers tuned via the Youla-kucera parametrization (thin blue lines). The Reference model
response is shown (black line) and the response of a controller parametrized by optimal Q
obtained assuming that P is known is depicted in the green line.

models of the OAHD process.

To quantify the electroporation impact on oil extraction, independently of the
heating power, it is required to regulate the temperature of the mixture into
the camera during the heating time period properly manipulating the applied
power, for later evaluating the resulting kinetics of extraction.

6.1. Process description

Fig. 9 shows the main parts of the OAHD process employed in this work.
In this equipment, a mixture of water-salt-vegetable material is heated in an
ohmic-heated camera (OH camera) by an electric current. Salt is added to the
mixture in order to increase conductivity since, in general, the conductivity of
the vegetable material is not enough to allow electrons to flow. Essentially, the
camera is a vessel equipped with two electrodes. The mixture temperature is in-
creased up to the water boil point. At this point, steam starts to flow, dragging
the oil molecules that are released from the plants. The oil-steam mixture rises
through the camera and reaches the condenser, this device causes the mixture
to cool and change to liquid phase. Finally, the liquid mixture reaches the Cle-
venger apparatus, in which oil and water are separated. The Clevenger allows
the refilling of the OH camera with condensed water, maintaining an adequate
water level in the camera.
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Figure 8: Results of Monte Carlo experiment with closed-loop data. Closed-loop step response
with initial controller C(z) (dashed red line). Closed-loop step responses of controllers tuned
via the Youla-kucera parametrization (thin blue lines). The Reference model response is
shown (thin black line), and the response of a controller parametrized by optimal Q obtained
assuming that P is known is depicted in the green line.

The plant, instrumentation and actuator are depicted in Fig. 9. Its main char-
acteristics are (i) Volumetric capacity 1 [L] for the mixture water-salt-vegetable
material, and 1 [L] of empty space for steam flow. (ii) Maximum working power
1 [kW] to guarantee the efficiency of the condenser. To vary the extraction
power a digitally controlled dimmer is employed. Such a dimmer module also in-
cludes a Wattmeter. An electrically isolated thermocouple (kC2198JG120A120
by MINCO) is employed to register the temperature of the mixture.

Employing the previous experimental setup and considering that no first-principles
model of the process is available, two data-driven controller tuning strategies are
evaluated experimentally. The first strategy is the Youla-Kucera parametriza-
tion data-driven controller tuning (YK-DDC) proposed in this work, and the
second strategy is Correlation-based tuning (CbT) presented in [24]. The latter
is selected in order to do a fair comparison since both strategies employ the
same input information.

6.2. Controller design tuning problem

A tracking problem is posed, where the aim is to follow a given tempera-
ture trajectory. The duty cycle of the input voltage waveform (provided by the
dimmer) is the manipulated variable (u(k)), measured in percentage. The out-
put variable is the mixture temperature T (k), measured in (◦C). The reaction
curve for u(k) = 100% and initial temperature T (0) = 25◦C is shown in Fig. 10.
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Figure 9: Experimental setup

The loop performance requirements are defined as the first-order reference model

M(s) =
1

sτc + 1
, (33)

and the time constant of the reference model is selected during the tuning pro-
cedure.

Experimental data are obtained around an operating temperature of T = 90◦C.
The data set D for the controller tuning is registered with a sampling time
Ts = 2[s]. A Pseudo-random Binary Sequence (PRBS) with N = 512 samples
is used as input u(k). The applied duty cycle and the resulting mixture tem-
perature are depicted in Fig. 11.

The first step in the tuning procedure is to define the parametrization of the
controllers. To do that, and at the same time to select a proper time constant τc
for the reference model, the H-infinity norm of the model-matching error trans-
fer function is estimated from data employing Result 1. Results are depicted in
Fig. 12 for increasing values of the FIR filter length mq and reference model
time constant τc. It can be seen that filter lengths lower than 5 lead to system
with high model-matching errors, while for mq = 5 the resulting norm of the
error is lower than 0.5 for time constants of the reference model higher than
8. From the previous analysis mq = 5 and τc = 8[s] are selected to tune the

temperature controller. In this case ||∆̂M(jω)||∞ = 0.44, indicating that the
resulting closed-loop is stable.

For the CbT controller the extended PID parametrization in Eq. (31) is em-
ployed. Different numbers of basis functions were evaluated and the best results
were obtained with m = 7.
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Figure 10: Reaction curve in OAHD for u(k) = 100% and T (0) = 22◦C

Both methods are applied to the data set shown in Fig. 11. The resulting con-
trollers provided by the proposed YK-DDC approach and by the CbT method
are shown in Eqs. (34) and (35), respectively. Note that both controllers have
the same structure and are of the same order.
Each controller is evaluated experimentally in closed-loop, considering a piece-
wise constant temperature reference signal. The results for the YK-DDC con-
troller are shown in Fig 13, while the response with the CbT controller are
depicted in Fig. 14. In both figures, the duty cycle u(k) is also shown.

Fig. 15 shows simultaneously the step-response of both controllers for a temper-
ature change of 1◦C with different initial temperatures {89◦C, 90◦C, 91◦C}. It
can be highlighted that the rise time with the YK-DDC controller is tr = 35[s]
while the response with the CbT controller shows a rise time tr > 100[s]. The
results indicate that the performance obtained via the YK-DDC method is faster
than the one achieved with the CbT approach, even though both methods use
the same reference models, data sets and lead to the same controller structure.

7. Conclusions

In this work we have presented a solution to the controller design from data
problem, based on a Youla-Kucera parametrization of the controller. Departing
from a set of input-output data measured from a stable, linear, time-invariant,
SISO system, we have proposed a procedure to estimate a Finite Impulse Re-
sponse filter that parametrizes a controller without requiring the plant model.
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Figure 11: Duty cycle (blue) and mixture temperature (red) data employed in the temperature
controller design.

KYK =
64.2− 71.9z−1 + 4.2z−2 + 2.35z−3 + 10.3z−4 − 43.7z−5 + 31.4z−6

1− z−1
(34)

Kcbt =
104.9− 131z−1 + 34.2z−2 − 22.7z−3 + 36.9z−4 − 32.4z−5 + 12.67z−6

1− z−1
(35)

Open and closed loop data can be handled by the methodology using instru-
mental variables for the estimation of the filter. The proposed parametrization
allows to impose reference models more stringent that those achievable with
extended PID controller structures, usually employed in controller design from
data. The presented method translates the controller design process into an
errors-in-variables identification problem and the solution is obtained by least-
squares estimation.

An a-posteriori test has been proposed to estimate the size of the model-
matching error of the resulting control loop. It allows to properly select the
only tuning parameter of the method, the FIR filter length, and also to estab-
lish if the requested performance can be achieved by the closed-loop system
given the available data set. It also provides an estimation of the risk of obtain-
ing an unstable loop.

The performance of the solution has been illustrated by means of a Monte Carlo
simulation, showing that the proposed solution allows to obtain better perfor-
mance and stability margins than the CbT approach. The YK-DDC method
has been employed also to design a temperature controller in the camera of a
Ohmic distiller. The methodology allowed to obtain a stabilizing controller with
faster response than a controller derived with the CbT approach, considering
the same reference model, experimental data and controller structure. In par-
ticular, the rise time is three times lesser, maintaining null overshot and null
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Figure 12: ||∆M(ejω)||∞ for increasing values of filter length mq and reference model time
constant τc.

steady-state error.

Current research is focused to extend the method to nonlinear and multi-variable
systems, to derive less conservative stability conditions and to improve noise
handling.
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Figure 13: Experimental results with the YK-DDC controller in the OAHD process. Reference
temperature (Thick Black line). Mixture temperature (Dashed green line). Duty cycle (Thin
orange line).

Appendix A

Proof of Lemma 1:
The model matching error signal is

e(k, θ) = M(z)u(k)−Q(z, θ)y(k)

= M(z)(Tu(z)r(k) +Hu(z)v(k))−Q(z, θ)(Ty(z)r(k) +Hy(z)v(k))

Then, the cross-correlation function between e(k) and x(k) becomes:

Rex(τ) = E [((M(z)Tu(z)−Q(z, θ)Ty(z)) r(k) + . . .

. . .+ (M(z)Hu(z)−Q(z, θ)Hy(z)) v(k))W (z)r(k − τ)]

From Assumption 3, v(k) and r(k) are independent, then,

Rex(τ) = E [(M(z)Tu(z)−Q(z, θ)Ty(z))W (z)r(k)r(k − τ)]

From the definitions of Tu(z) and Ty(z), it follows that,

Rex(τ) = E [(M(z)−Q(z, θ)P (z))Tu(z)W (z)r(k)r(k − τ)]

From Parseval’s theorem, the 2-norm of the correlation function is

||Rex(τ)||22 =

∞∑
τ=−∞

R2
ex(τ) (36)

=
1

2π

∫ π

−π

∣∣[M(ejω)−Q(ejω, θ)P (ejω)
]
Tu(ejω)W (ejω)

∣∣2 Φ2
r(jω)dω
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Figure 14: Experimental results with the CbT controller in the OAHD process. Reference
temperature (Thick Black line). Mixture temperature (Dashed green line). Duty cycle (Thin
orange line).

proving the first part of the Lemma.

Finally, for |W (jω)| = |Tu(ejω)Φr(jω)|−1, it follows that

||Rex(τ)||22 =
1

2π

∫ π

−π

∣∣M(ejω)−Q(ejω, θ)P (ejω)
∣∣2 dω = JMR(θ)

�
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