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Abstract
Using numerical simulations we show how to realize an optical black hole laser,
i.e. an amplifier formed by travelling refractive index perturbations arranged
so as to trap light between a white and a black hole horizons. The simulations
highlight the main features of these lasers: the growth inside the cavity of
positive and negative frequency modes accompanied by a weaker emission
of modes that occurs in periodic bursts corresponding to the cavity round
trips of the trapped modes. We then highlight a new regime in which the
trapped mode spectra broaden until the zero-frequency points on the dispersion
curve are reached. Amplification at the horizon is highest for zero-frequencies,
therefore leading to a strong modification of the structure of the trapped light.
For sufficiently long propagation times, lasing ensues only at the zero-frequency
modes.

PACS numbers: 04.70.−s, 04.70.Dy, 42.65.Re, 42.65.Hw, 41.20.−q

S Online supplementary data available from stacks.iop.org/CQG/29/224009/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Since Unruh’s first suggestion that flowing media can be used as analogues for gravity [1] and
in particular for studying certain physical phenomena usually associated with gravitational
event horizons, e.g. Hawking radiation, the field has seen a steady increase in the number
of proposed physical systems in which to observe such effects [2, 3]. Originally, analogue
gravity was proposed in systems that physically display a flowing medium that reproduces the
flow of space close to a black hole: a flowing fluid that exhibits a gradient from subsonic to
supersonic flow presents a point within the gradient such that the flow speed equals the speed
of acoustic waves. This is a point of non-return for acoustic waves trying to propagate against
the flow and is the analogue of an event horizon, causally disconnecting two separate regions
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within the medium. Such horizons are much more than mere toys or superficial analogies:
they can truly reproduce the kinematics of gravitational event horizons. This implies that
a direct analogue of the amplification of vacuum fluctuations and consequent emission of
particles away from the horizon, known as Hawking radiation, should be visible. This idea has
of course attracted significant attention along with the proposal of various systems that may
enhance the Hawking emission [3]. The main point is that the Hawking emission is predicted to
occur with a blackbody distribution with a temperature T connected to the horizon through the
so-called surface gravity, κ , i.e. the gradient of the gravitational field across the horizon [4, 5].
In analogue systems, the surface gravity is determined by the gradient of the medium flow
across the horizon and the combination of steep gradients along with very cold environments
(in order to reduce the background thermal noise) is expected to lead to the observation of
the spontaneous Hawking emission. Recently, Philbin et al proposed an optical analogue for
horizons in which the steep gradients are ensured by shock front formation in intense optical
pulses and the reduction of the background thermal noise is ensured by the fact that at optical
frequencies, room temperature thermal noise is completely negligible [6].

In analogue models, black holes and their time-reversed realization, i.e. white holes [7]
play equivalently important roles. Whilst gravitational white holes are expected to be extremely
rare, or even non-existent, analogue models abound with ways to generate such objects. Most
notably, recent experiments performed in the presence of a white hole horizon in flowing water
highlighted a stimulated frequency conversion process that can be considered as the classical
limit of Hawking emission [8, 9] whilst an optically induced white hole horizon was used to
observe both the classical shifting of light frequency [6, 10–12] and the spontaneous emission
of photons [13, 14] that has stimulated an ongoing discussion regarding the precise origin of
the emission [15–17].

A remarkable prediction that emerged from analogue gravity studies was the prediction
that a combination of a black hole and a white hole event horizons would lead to a feedback
amplification process very similar to a laser where radiation is continuously bounced back and
forth between the two horizons and hence exponentially amplified [18].

Black hole lasers were first proposed for systems that exhibit a ‘superluminal’ dispersion
relation (i.e. in which the group velocity increases with frequency) such as, for example,
Bose–Einstein condensates (BECs). Black hole lasing has subsequently been studied both
theoretically and numerically in BEC systems and similar settings [18–21]. In this work we
present a numerical study of black hole lasing in optical systems. Our numerics account for
realistic parameters of the medium and highlight a laser amplification mechanism that is similar
to that studied in BECs. However, we also show that as evolution ensues, the laser develops low-
frequency components that eventually seed amplification at what we call the ‘zero-frequency’
modes. This amplification regime is exponentially favoured over the traditional black hole
laser regime and leads to a significant increase in the output radiation. We then highlight and
study how the low-frequency (close to zero) region of the spectrum determines the properties
of the high-frequency emission, a feature that is expected to be generic to all analogue horizon
systems.

2. Optical horizon analogues

Optically induced horizon analogues are based on the use of nonlinear optics to create an
effective moving medium [6, 14, 22]. An intense laser pulse with a carrier frequency ωp,
typically in the near-infrared or visible region, is focused into a dielectric medium and through
the nonlinear Kerr effect it will excite a material polarisation response that contains two terms.
One term oscillates at frequency 2ωp and may excite photons from the vacuum state under the
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condition that energy and momentum conservation relations are satisfied. Unless a particular
care is taken in order to enforce such conditions, this so-called four-wave-mixing term (four
elementary excitations are involved, two from the input pulse and two from the vacuum state)
will be very strongly suppressed [23]. There is a second term that follows the envelope of the
input pulse, i.e. it responds to the dc component of the electromagnetic field and is described
in terms of the variation of the medium refractive index, n = n0 + n2I(ζ ), where n0 is the
background refractive index (n0 ∼ 1.45 in most glasses) and n2 is the nonlinear refractive,
also called the ‘Kerr’ index of the medium and ζ = z − vt is the local longitudinal coordinate.
I(ζ ) is the propagating intensity (envelope) profile of the laser pulse. In most common media
n2 ∼ 10−16 W cm−2 so that the maximum index variation, δnmax ∼ 0.005−0.0001, depending
on the laser pulse intensity. With other media it may be possible to obtain higher δn, e.g. some
so-called soft glasses or media such as graphene are expected to give values larger by an order
of magnitude or more.

Light travels slower in high refractive index regions and faster in low refractive regions,
so the moving laser pulse creates a moving δn that locally slows light down. The effective
spacetime metric associated with the moving δn is the so-called Gordon metric [24, 25] and
may be recast in a form that tightly resembles the Painlevé–Gullstrand metric for black holes
[26, 27, 13]. In other words, in the reference frame comoving with the δn, space is flowing
with velocity V = γ 2v(n2 −1)/n: on the leading edge of the perturbation space flows inwards
with increasing velocity until V = c (i.e. v = c/n) and a black hole horizon is formed.
On the trailing edge, the time-reversed situation is verified with space flowing outwards at a
decreasing velocity and when V = c a white hole horizon is formed (see also [22]).

In the presence of dispersion, i.e. of a frequency dependence of the medium background
refractive index, one must take care in defining the exact nature of the horizon due to the fact
that the phase and group velocities differ. In the following, we will always consider the case in
which the horizon is a blocking point for the group velocity of light, in line with the generally
accepted opinion that this kind of horizon is the analogue for photons (or waves in a flowing
medium) of a gravitational event horizon.

3. Horizons in dispersive media

We now study how an input wave behaves when interacting with such horizons. This behaviour
is analysed by performing numerical simulations based on Maxwell’s equations, discretized
and solved following the so-called pseudospectral-space-domain technique [28] that is a
variation of the more common FDTD technique [29] and allows us to include arbitrary material
dispersion in a very simple manner. In more detail, we consider one-dimensional propagation
modelled by the Maxwell equations for the transverse x and y components of the electric (Ex)
and magnetic fields (Hy), respectively:

∂zEx = −μ0∂tHy (1)

∂zHy = −∂tDx. (2)

The electric displacement field is numerically evaluated as Dx(t) = F−1{ε(ω)F[(1 + ε(z −
vt))Ex(t)]}, where F and F−1 indicate the Fourier and inverse Fourier transforms and ε(ω)

is the dispersive part of the medium refractive index, n0 = √
ε. The moving refractive

perturbation is described by a super-Gaussian function ε(z − vt) = ε0 exp[−(z − vt)2m/σ 2m],
where m is the super-Gaussian order and controls the perturbation steepness and σ gives the
perturbation width, typically fixed at 50 μm. The black hole cavity is constructed by using
two such perturbations, displaced along the ζ -axis by a distance L that fixes the cavity length
(see figure 3). The input seed laser pulse is made to start directly inside the cavity and has the
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Figure 1. Numerical simulations of the interaction of a laser pulse with a white hole horizon. (a)
Amplitude profile, in logarithmic scale, of the laser pulse reflecting on the horizon (dashed line).
(b) Evolution (along the propagation direction, z) of the spectrum, in logarithmic scale, during
reflection from the horizon. (c) Schematic overview of the geometry of a generic refractive index
perturbation used in this work and location of the black and white hole horizons. (d) Dispersion
curve used in this work with indicated positions of the IN (input), P (positive), N (negative),
Z (zero-frequency) and T (transmitted) modes. All modes are determined by the condition that
frequency is conserved in the comoving frame, i.e. by the intersections of horizontal lines passing
through the IN mode frequency, ±ωIN.

functional form E(z−vt) = exp
[−(z−vt)2/σ 2

E

]
cos(kz−ωt), where the initial pulse width σE

is always taken to be shorter than the cavity length L, e.g. σE ∼ 3−6 μm and L ∼ 20−80 μm.
The photon numbers generated at each frequency are evaluated as S(ω, z)/ω, where S(ω, z) is
the spectral intensity evaluated at each propagation distance, z. Total output photon numbers
are obtained by integrating this quantity over frequency. The code was implemented with
a dispersion relation shown by the solid line in figure 1(d) in (ω′, ω) coordinates, where
ω′ = ω − vk, with k = (ω/c)n(ω), is the frequency in the comoving reference frame. As can
be seen, we are using a simplified dispersion curve that does not present any of the typical
resonances present in most media such as glass. However, it was chosen to qualitatively
reproduce the dispersion of diamond, a material that is currently becoming rather popular for a
variety of reasons, including its remarkable transparency range due precisely to the absence of
material resonances from sub-THz wavelengths up to the near-UV. Most importantly, such a
choice allows us to study the generic physics underlying the black hole laser without additional
complications due to specific structures within the dispersion relation.

Figures 1(a) and (b) illustrate the behaviour at a white hole horizon: the input mode IN
is chosen with a low frequency (3 μm wavelength) such that it travels with positive group
velocity in the comoving frame (the IN mode identified on the dispersion curve in (d) has
positive gradient) and therefore catches up with the travelling δn. Upon reaching the horizon,
light is blocked and transformed into two new modes, one with a positive frequency, P, and
one with a negative frequency, N. These both have negative group velocity in the comoving
frame and are therefore reflected away from the horizon (see (a)). These two modes are the
Hawking modes generated at the horizon. Most importantly we have explicitly verified that, in
agreement with the interpretation in terms of Hawking emission, these two modes are such that
the difference of their squared norms (i.e. their photon numbers) is equal to 1, |P|2 − |N|2 = 1
and the ratio of the squared norms decays exponentially with increasing comoving frequency,
|N|2/|P|2 ∝ exp(−Cω′), where C = [(2πc)/(γ 2v2)]1/(dδn/dζ ) is the decay constant and

4



Class. Quantum Grav. 29 (2012) 224009 D Faccio et al

dδn/dζ is the perturbation gradient evaluated at the horizon [13, 14]. These two relations
imply that the horizon emission in the P mode exhibits a Planckian blackbody spectrum as a
function of frequency. Most importantly for the black hole laser, the first relation also implies
that the total photon number in reflection from the white hole horizon |P|2 + |N|2 > 1, i.e.
the white hole horizon acts as an amplifying mirror. For small frequencies the photon gain
|P|2 + |N|2 scales as 1/Cω′, i.e. the steeper the gradient, the larger the horizon gain will be.
This simple recipe is important in order to understand and optimize black hole lasers.

The behaviour of the black hole horizon can be inferred from that of the white hole, as one
is the time-inverted version of the other. This implies that a single mode impinging on the black
hole horizon will not lead to negative mode generation or, more generally, to positive/negative
mode mixing. The P mode will simply convert to the IN mode and reflect away from the black
hole horizon. The N mode, on the other hand, will convert to a second redshifted mode that
still has negative group velocity and is thus transmitted through the horizon. This transmitted
mode is indicated with ‘T’ in figure 1(d). (The dashed dispersion curve is relative to the region
inside the black hole.)

Mode mixing and amplification at the black hole horizon will occur if both positive
and negative modes, e.g. the same modes generated at the white hole horizon shown in
figure 1(a), are sent on to the horizon as initial input conditions. In this case we indeed have
the time-reversed situation of the white hole horizon. However, as pointed out in [19], this
amplification now relies critically on the phases between the P and N modes. For the case
of large bandwidth pulses such as those used here, some frequency components will have
the correct phase for amplification, whilst others will have the wrong phase. Moreover, it is
extremely difficult to purposely control these phases due to the varying and relatively strong
dispersion (i.e. accumulated phases in traversing the cavity) across the pulse spectrum. We
find that on average the P and N modes meeting at the black hole horizon lead to amplification,
although this amplification is typically smaller than that occurring at the white hole horizon.

In the black hole laser configuration discussed below, the white hole horizon will be
approached by a single IN mode, whilst the black hole horizon will always be approached
with a simultaneous combination of both P and N modes, i.e. the modes generated at the white
hole horizon. Therefore, both horizons will act as amplifying mirrors.

4. The optical black hole laser

On the basis of this reasoning we can construct an intuitive picture of the behaviour of a
black hole laser. The black hole laser is formed by placing a black hole horizon and a white
hole horizon in close vicinity such that waves are trapped between the two. In order for this
to happen care must be taken in choosing the correct arrangement and this depends on the
dispersion. In previous studies based on phonon oscillations in BECs, a so-called superluminal
dispersion was considered, i.e. the dispersion curve had a positive curvature [18–21]. In our
case, we have a dispersion curve with a negative curvature and so-called subluminal dispersion.
This implies that in the laboratory reference frame, the group velocity of light is always smaller
than the phase velocity and also that it decreases with increasing frequency. Therefore, based
on the results in figure 1, if we want to trap light between two horizons, then the white hole
horizon must be placed before (at smaller ζ ) the black hole horizon.

We illustrate this situation in figure 2 that shows a numerical simulation of the first
few cavity round trips of a laser pulse trapped between two horizons. The spectrum evolves
periodically at each reflection from the horizon mirrors. We clearly observe the same P and
N modes seen in figure 1 at the white hole horizon. At the black hole horizon, the spectrum
returns to the original input frequency with the addition of a second very weak, less redshifted
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Figure 3. Possible configurations of the optical black hole laser in the presence of subluminal
dispersion. The seed laser pulse is injected directly in the cavity and then propagates first towards
the white hole horizon (as indicated by the arrows).

mode around ω = 1.5 × 1015 rad s−1. This is the ‘T’ mode mentioned in the previous section
(see also figure 1(d)) that originates from the partial transmission of the N mode through the
black hole horizon and is ejected from the cavity. This mode is also visible in figure 2(a),
although due to its very low intensity it does not play an important role in the laser dynamics
reported in this work. A schematic representation of all the laser modes is shown in figure 2(c)
that summarizes the behaviour of the light pulse within the cavity and the interaction with the
two horizon mirrors.

We note that it is possible to achieve a black hole laser in two ways as shown in figure 3.
(a) We may use a negative δn, similar to a potential well which will trap light. This is somewhat
difficult to achieve if we assume that the δn is generated by a laser pulse through the Kerr
effect due to the fact that most media have positive n2. Alternatively, (b) we may obtain the
same effect by using two positive-valued perturbations generated by two independent laser
pulses that are placed a certain distance apart.

As an illustrative case, we show in figure 4 the numerical results for a black hole laser
that is obtained using a negative δn (δnmax = −0.1) in which the black and white hole
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Figure 4. Evolution of the laser spectrum (in log scale) and electric field amplitude at the simulation
output are shown for two different cases. (a) and (b) �ζ = 0.3 μm, and (c) and (d) �ζ = 3 μm.
All other parameters are identical for both simulations: input wavelength 2 μm, cavity length
L = 20 μm, δnmax = 0.1.

horizons are separated by 4.5 μm. The input mode is a Gaussian-shaped pulse, with 3 μm
carrier wavelength and pulse length of 2 cycles. Figure 4(a) shows the electric field in the
vicinity of the black hole laser after a propagation distance of 650 μm. The vertical dashed
lines indicated the position of the cavity that is travelling from left to right. The input mode,
originally localized only within the cavity has led to lasing in the form of bursts of pulses
tunnelling and exiting through the white hole horizon (not to be confused with the T-mode
that would exit the black hole horizon yet is too weak to be seen in this simulation). These
bursts are composed of a sum of both P and N modes (hence the beat signal that modulates
the individual bursts) and occur once every cavity round trip, indicated with n = 1, 2, 3, 4
in the figure. These bursts are strongly increasing in amplitude at each round trip, a clear
indication of the gain provided by the black hole laser. We note that here the modes leaking
out of the cavity are doing so as a result of a tunnelling effect: the refractive index increase
from the background to the maximum value (denoted by �ζ in figure 3(a)) at the white
hole horizon occurs over a distance that is shorter than the optical wavelength. The modes
therefore tunnel out of the hole—this tunnelling may be controlled by reducing the gradient
of the refractive index profile and indeed, for refractive index changes that occur over scales
larger than the mode wavelength, the outgoing leakage is suppressed and the modes are
completely trapped within the cavity (see below). Figure 4(b) shows the spectral evolution
corresponding to figure 4(a): the periodic back and forth conversion between the IN and P/N
modes at each cavity round trip can be clearly seen with a gain of more than five decades after
only n = 4 round trips. These findings are qualitatively similar to those reported for black
hole lasers in BECs [19]. However, such a setting will be experimentally challenging both in
virtue of the large δn (although similar results were obtained with smaller δn, at the cost of
correspondingly longer propagation distances) and of the extremely short distances at play,
i.e. the short separation between the horizons and sharp �ζ increase at the horizon from the
background index to the maximum δn.
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In figures 4(c) and (d) we show the same simulation with a transition �ζ that has been
reduced to experimentally reasonable values, i.e. �ζ ∼ 3 μm. As can be seen, the high-
frequency modes no longer leak out of the white hole horizon. This allows for a higher gain
within the cavity itself, although this is largely counterbalanced by the detrimental effect of
reducing the δn gradient as this reduces the amplification at each reflection. Nevertheless, in
this situation a stronger build-up of negative frequencies occurs inside the cavity, which partly
leak out from the black hole horizon at each round trip in the form of a more intense and now
visible ‘T’ mode, as discussed in figure 1(d). The T mode is emitted in bursts corresponding
to the cavity round-trips (indicated with n = 1, 2, 3, 4 in the figure).

Finally, we note that in the very last stages of this simulation we can clearly see that the
spectrum is starting to exhibit two distinct and new features: a strongly redshifted component
close to ω = 0 and a component, indicated with Z, that lies in between the P and N modes. In
the following, we focus attention on these new modes and highlight a new mechanism by which
the pulse spectrum is broadened at each bounce until far-infrared wavelengths are generated.
These then seed and sustain amplification at the zero-frequency points of the dispersion curve
(indicated with filled squares in figure 1(d)), which have a gain favoured by the aforementioned
1/ω′ dependence. This results in remarkably stronger gain and significant lasing even under
conditions that could be realized in experiments.

4.1. Zero-frequency mode amplification

Figures 5(a) and (c) show results from a simulation in which the first several cavity round
trips are shown. The horizon separation is 80 μm, with 2 μm input wavelength, �ζ = 3 μm,
δn = 0.01—the curves are normalized and displaced horizontally for viewing purposes. The
optical modes bounce back and forth but without any apparent overall increase in energy for
nearly the first mm of propagation. At z = 0.8 mm, a series of relatively weak bursts are
clearly visible corresponding to T mode emission from the black hole horizon at each round
trip. Figure 6(a) shows the total photon number inside the cavity. During the first ∼ 1 mm or
propagation, the energy inside the cavity oscillates. These initial oscillations do not appear to
be a numerical artefact and seem to correspond to real light pulse dynamics within the cavity.
They most likely arise from a beating between the different modes that are concomitantly
excited within the cavity and that therefore interfere with each other giving rise to amplitude
oscillations, in a similar fashion to the build-up dynamics that may be observed in traditional
laser cavities. After this short transitory period, a different regime appears in which the energy
oscillations are washed out by a smooth and strong exponential increase of the total energy in
the cavity. The origin of this change in behaviour can be understood from figure 5(a). During
the first mm of evolution, light bounces back and forth but is gradually spread out to very
low frequencies. This low-frequency light has two effects: (i) due to its long wavelength it
will start to completely fill the cavity and (ii) it will seed mode conversion to high-frequency
modes that lie close to or at the intersection of the dispersion curve with the horizontal
axis, i.e. it will excite modes that have ω′ → 0, indicated with filled squares in figure 5(b).
(We name the high-frequency intersection as the ‘Z’ mode.) In order to understand why these
zero-frequency modes appear we recall that, as a consequence of the Planckian distribution
of Hawking emission, amplification at the horizon diverges as 1/ω′ for small ω′. Therefore,
the laser gain experienced by these very low frequency modes is remarkably stronger with
respect to all other modes and they will therefore quickly take over: high-gain lasing at the
‘zero frequencies’ will, and is expected to dominate the black hole laser scenario.

In figure 6(b), we show the cavity photon number for identical operating conditions and
with varying maximum δn amplitude, as indicated in the figure. The gain (slope of the curve)
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is seen to decrease with decreasing δn amplitude as a result of the fact that we have fixed the
distance over which the perturbation switches on, �ζ = 3 μm. Therefore, the horizon gradient
(i.e. surface gravity) and hence also the horizon amplification decrease with decreasing δnmax.
Nevertheless, a significant laser gain is observed even at low perturbation amplitudes that hold
promise for future experiments.

The question now arises as to how close to zero in the laboratory frame does the ω → 0
zero-frequency mode have to be in order for this process to occur? The question is relevant
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Figure 7. Evolution of the photon number inside the cavity for (a) δn = −0.1 and (b) δn = −0.005.
The simulations were performed by including a spectral filter that cuts all frequencies below a
certain value. The shortest propagating wavelengths are (a) thick solid line—no filter, thin line—
20 μm, dashed line—8 μm, dotted line—4 μm. In (b) thick solid line—no filter, thin line—60
μm, dashed line—10 μm.

as real experiments cannot be expected to rely on modes for example in the radio frequency
domain. We therefore repeated the simulations by including a low-frequency filter so as to
completely suppress all radiation below a certain threshold value. Figure 7(a) shows the results
for a δn amplitude of 0.1 and filters as indicated in the caption. As may be seen, a filter placed at
a wavelength of 20 μm hardly modified the overall gain, and a reduction of ∼50% is obtained
only when the filter is placed at a wavelength of 8 μm. In figure 7(b), we repeat the simulations
for an experimentally realistic δn amplitude of 0.005. A filter placed at 60 μm does not modify
the laser gain and a 50% cut is observed with a filter placed at 10 μm. This is extremely
promising. Indeed, many media are transparent in to the terahertz region (30–100 μm).
For example diamond is transparent up to roughly 100 μm. This would therefore seem to
indicate that this kind of novel amplification process could be observed in real settings.

5. Conclusions

We have numerically analysed the possibility of observing black hole lasing using laser-pulse-
induced (or optical) horizons. The general behaviour of the black–white hole horizon cavity
is very similar to the behaviour of similar cavities studied theoretically and numerically in
BECs. Our numerical simulations have been carried out over longer propagation distances (i.e.
a larger number of cavity round-trips) with respect to previous studies and highlight the onset of
a regime in which the cavity leads to a broadening of the mode spectra until the two comoving
zero-frequency modes are excited. (In the laboratory frame, one mode lies at zero-frequency,
the other lies in the visible or ultraviolet region, depending on the specific dispersion relation
of the medium.) Due to the 1/ω′ dependence of the horizon amplification, the zero-frequency
modes oscillate in the cavity with a much higher gain. These findings are summarized in the
accompanying video animation (available from stacks.iop.org/CQG/29/000000/mmedia) that
shows the evolution of the typical situation studied here: the initial optical pulse seeded in to
the cavity is actually much shorter than the cavity itself (differently from typical cases studied
so far in which the cavity length was of the same order of the input wavelength) and bounces
back and forth until the zero-frequency modes take over and completely fills the cavity.

Our numerical simulations treat the case of a coherently seeded laser. Naturally, one would
expect that if the laser were to be seeded by vacuum fluctuations, then most certainly laser
oscillation would occur at the zero-frequency modes as these have the highest gain and lowest
lasing threshold.
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A remarkable and unique feature of black hole lasers is the coupling between the very low
frequency and very high frequency components of the electromagnetic spectrum. However,
more complicated dispersion relations that include also resonances at certain wavelengths are
expected to complicate this picture, although a full model that includes losses due to material
absorption would be required in order to correctly model such a situation.

These simulations underline the fact that an experimental demonstration of black hole
lasing, although not simple may not be as far-fetched as one may think. Refractive index
perturbations of the order of 0.005 (or smaller) will give rise to a significant gain over distances
of the order of 1 cm. The dispersion relation used in this work is very close to that of diamond, a
material that is now widely used and can be shaped into optical waveguides. Diamond exhibits
not only a very simple dispersion curve but also (as a consequence of this) a remarkably wide
transparency range that could easily sustain the zero-frequency amplification regime reported
here. The laser cavity, i.e. the black and white hole horizons could be generated by focusing for
example two independent and ultrashort laser pulses, e.g. at 800 nm wavelength: each pulse
would create a δn through the nonlinear Kerr effect, and the relative delay between the two
pulses would allow us to control the laser cavity length. The main challenge would be to find a
condition (laser wavelengths, durations, energies) such that the rising and falling edges of the
laser pulses that form the horizons are maintained shorter than ∼ 3 μm for significantly long
propagation distances, e.g. > 1 − 2 mm. Future studies will, we hope, unravel other settings
or combinations of materials and wavelengths that may indeed lead to the first experimental
black hole laser. In the meantime, this remains a fascinating scenario in which to combine
technologies and ideas developed in the area of photonics to the study of flowing media and
horizon physics.
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