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Abstract 

Seismic Probabilistic Tsunami Hazard Assessment (SPTHA) aims at calculating the probability that seismically 

induced tsunami waves exceed a specific height, in a given time span and over a specific region (i.e. regional 

SPTHA) or site (i.e. local SPTHA). To account for the uncertainty of the possible sources, SPTHA must integrate the 

results of a large number of computationally demanding tsunami simulations 

In this work, we innovatively use Parallel density scanned Adaptive Kriging (P-ds AK) to overcome the 

computational efficiency challenge of local SPTHA within a framework that consists in modelling/retrieving the full 

spectrum of possible earthquake triggering events at the regional level, filtering sources not relevant for the target, 

adopting a clustering procedure to select “representative scenarios” for inundation modelling, and, finally, adopt P-

ds AK to identify the clusters centroids that most influence the hazard intensity (i.e., wave height) in the areas of 

interest. 

This approach is applied in the area of the oil refinery located in Milazzo (Italy). The application shows a consistent 

reduction of the number of high-resolution tsunami simulations required for the evaluation of the hazard curves 

over a set of inland Point of Interest (PoIs), either concentrated in one specific area or distributed along the coast. 

 

Keywords: Seismic Probabilistic Tsunami Hazard Assessment (SPTHA); Hazard Curve; Parallel density 
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Acronyms 

AK   Adaptive Kriging NaTech   Natural Hazard Triggering Technological Disasters 

AKMCS Adaptive Kriging Monte Carlo Sampling PoI Point of Interest 

P-ds AK Parallel density-based Adaptive Kriging SPTHA Seismic Probabilistic Tsunami Hazard Assessment   

DoE Design of Experiment MinPts Minimum number of points in a cluster 

ET   Event Tree I/O Input/Output 

Symbols 

𝝍 
 

Tsunami intensity threshold 𝝈𝑮̂ Standard deviation of a metamodel prediction 

𝝍
𝒛
 

 

Tsunami intensity in 𝒛 𝒙𝒄 Centroid earthquake parameters 

𝜟𝑻 
 

Exposure time 𝜇𝑮̂(𝒙)𝒛
 Mean value of a metamodel prediction 

𝒛 
 

Point of Interest (PoI) 𝜱 Normal (Gaussian) distribution 

𝝀 Mean annual frequency 𝜼(𝝍)𝒛 Convergence index of the metamodel built for PoI 

𝒛 and intensity 𝜓 

𝜣 Set of alternative models 𝑷̂𝒆 Probability of exceedance 

𝝑 Alternative model 𝑷̂𝒎 
 

Probability of misclassifying 

𝒙 Seismic scenario parameters 𝑰 Total number of iterations 

𝑱 Number of seismic features 𝒊 Generic iteration 

𝒋 Seismic feature index 𝑼 U learning function 

𝝈𝒙 Seismic scenario 𝑲𝒊 Number of density-based clusters 

𝜮 Space of possible seismic scenarios 𝒌𝒊 Density-based cluster 

𝒔 Generic index of seismic scenario 𝑫 Distance between two inputs 

𝑺 Total number of seismic scenarios 𝜉 Radius of density based clustering 

𝑮 Performance function 𝒗 Generic index of a candidate 

𝑮̂ Surrogate of the performance function 𝑷𝒓 Probability   

𝒈 Tsunami inundation model 𝑷̂𝒆 Probability of exceedance 

𝒁 Total number of Points of Interest 𝑷̂𝒎 
 

Probability of misclassification 

𝑨 Number of intensities that are considered for a hazard 

curve construction 
𝜌 Sphere radius 

𝒂 Index of an intensity of a natural hazard 𝜑
𝑨𝑩

 Sphere angle between A and B 

𝑵 Number of total filtered seismic scenarios 𝜙 Latitude 

𝑴 Number of alternative models 𝜃 Longitude     

𝒑 Generic index offshore wave height 𝛽 Trend coefficients of Kriging approximation 



𝑷 Number of offshore wave height 𝛽̂ Trend coefficients least square estimates 

𝝍
𝒑

 Offshore wave height 𝛿 Hyperparameters of the Kriging model 

𝑵𝟏 Number of filtered seismic scenarios after Filter H 𝑶 Kriging metamodel Information matrix 

𝑵𝟐 Number of filtered seismic scenarios after Filter P 𝑳 Gaussian likelihood function 

𝝍
𝒕𝒉𝒓𝒆𝒔𝒉.

 Wave threshold for Filter P 

 

𝑻 Number of arbitrary functions of Kriging trend 

𝝀𝒕𝒉𝒓𝒆𝒔𝒉. Earthquake mean annual occurence threshold 𝑹 Correlation matrix   

𝑪 
 

Number of clusters and number of centroids 𝒓 
 

element of the cross correlations vector 

𝒄 
 

Cluster and centroid index 𝒒 Generic PoI 

𝒇 Gaussian distributed Kriging prediction 𝑽𝒂𝒓 Variance 

 

1 Introduction 

Accidents triggered by natural hazards (i.e., earthquakes, floods, tsunamis) pose significant threats to 

safety-critical systems, like oil and gas and nuclear facilities, because they may lead to losses of hazardous 

materials with potentially tremendous impact on the environment and the population. These 

technological accidents caused by natural hazards are known as Natural Hazard Triggering Technological 

Disasters (NaTech) (Moreno et al., 2019; Mesa-Gomez et al., 2020; Khakzad et al., 2020; Lan et al., 2022). 

Industrial facilities located in coastal areas are exposed to tsunami NaTech and the associated potential 

flooding, resulting in damage or collapse of buildings, tanks or other equipments, possibly causing the 

release of contaminants (Antonioni et al., 2015; Cruz et al., 2009; Landucci et al., 2012). The Niigata (1964) 

and Tohoku (2011) earthquakes and tsunamis, for example, resulted in oil spread from an oil refinery 

plant (Iwabuchi et al., 2006) and radioactive release of material from a nuclear power plant (Sato & 

Lyamzina, 2018), respectively. 

To manage tsunami threat, tsunami hazard and risk methodologies have been developed through time 

to quantify and manage the tsunami hazard and the potential consequent risks (Grezio et al., 2017; 

Kameshwar et al., 2019; Behrens et al., 2021; Selva et al., 2021 for a review on the state-of-the-art 

tsunami hazard and risk assessments). For Natech, these studies may help identifying the preventive and 

mitigative countermeasures for such calamitous events. 

Early on, “worst credible”/ “worst case” scenarios approaches have been adopted (Tinti et al., 2011; 

Tonini et al., 2011; El-Hussain et al., 2018). These consist in the postulation of conservative and 

deterministic scenarios, which are then simulated by high-resolution codes to verify the response of the 

system and its safety barriers. For example, in Cruz et al. (2009), a worst case analysis of tsunamis 

impacting an oil refinery is reported. In Prasad (2012) and Lo (2014), applications to a nuclear power plant 

are described. However, these approaches have proven to be limited in modelling seismic sources as well 

as tsunamis due to the large uncertainty given by the scarcity of tsunami observations (Geist & Parsons, 

2014). 



To rationally address the problem, Seismic Probabilistic Tsunami Hazard Assessment (SPTHA) has been 

proposed for the explicit treatment of the large spectrum of uncertainty relative to seismic triggering 

events and tsunami propagation (Selva et al., 2021). SPTHA aims to estimate the probability that a 

tsunami intensity measure 𝜓𝑧 (e.g. height of the wave) exceeds a threshold value 𝜓 at a given Point of 

Interest (PoI) 𝑧 and within a time span 𝛥𝑇 (exposure time): each tsunami is assumed to be generated by a 

seismic scenario 𝜎𝑥 belonging to a space of possible seismic scenarios (𝜎𝑥 ∈ 𝛴), characterized by 

parameters 𝑥 = [𝑥1, … , 𝑥𝑗, … , 𝑥𝐽]  and occurring with annual frequency 𝜆(𝜎𝑥); Assuming a homogeneous 

Poisson process for the probability of exceedance 𝜓, we can write: 

𝑃𝑒 = Pr (𝜓𝑧 ≥ 𝜓; 𝛥𝑇)  ≈ 1 − 𝑒𝑥𝑝 (−𝜆 (𝜓𝑧 ≥ 𝜓)  𝛥𝑇) (1) 

where 𝜆 (𝜓𝑧 ≥ 𝜓) is the mean annual frequency of occurence of a tsunami of intensity 𝜓𝑧 ≥ 𝜓 at 

location 𝑧, and 

𝜆 (𝜓𝑧 ≥ 𝜓) = ∫
𝛴

𝜆(𝜎𝑥)𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥)  𝑑𝜎𝑥 
 

(2) 

Eq. (2) integrates over the scenarios the annual frequency 𝜆(𝜎𝑥) of the seismic source 𝜎𝑥 and the 

probability 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) that the generated tsunami wave would exceed 𝜓. Considering, without loss 

of generality but for the sake of simplicity, a set of 𝑆 discretized seismic scenarios 𝜎𝑥𝑠
 (𝑠 = 1, … , 𝑆), Eq (2) 

can be evaluated as: 

𝜆 (𝜓𝑧 ≥ 𝜓) ≈ ∑

𝑆

𝑠

𝜆(𝜎𝑥𝑠
)𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥𝑠

) . 
 

(3) 

The hazard curve for the PoI 𝑧 is defined by quantifying the probability of at least one exceedance in 

the time span 𝛥𝑇 for a set of 𝜓: i.e, 𝑃𝑟 (𝜓𝑧 ≥ 𝜓; 𝛥𝑇): 

𝑃𝑟 (𝜓𝑧 ≥ 𝜓; 𝛥𝑇)  ≈ 1 − 𝑒𝑥𝑝 (− ∑𝑆
𝑠 𝜆(𝜎𝑥𝑠

)𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥𝑠
)   𝛥𝑇). (4) 

For sake of simplicity, hazard curves can be reported without this conversion to probability, simply 

plotting 𝜓 𝑣𝑠. 𝜆 (𝜓𝑧 ≥ 𝜓). Such values are numerically equivalent for sufficiently small mean annual rates 

(e.g. < 0.01). 

Alternative models may be set for quantifying both 𝜆(𝜎𝑥𝑠
) and 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥𝑠

) selected from a set 

of alternative models 𝛩 = {𝜗: 𝜗 ⟹ 𝜆(𝜎𝑥), 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥𝑠
) }, allowing for the quantification of the 

uncertainty on the hazard curves (epistemic uncertainty). 

The annual frequency 𝜆(𝜎𝑥) is associated to a specific seismic scenario 𝜎𝑥 obtained by discretizing the 

space of the source parameters 𝑥, for example adopting an Event Tree (ET) (Basili et al., 2021). The 

𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) , instead, must be calculated by means of tsunami simulations. 

Regional SPTHA computational challenge is typically addressed by simulating tsunami propagation only 

offshore and using simplified relationships between the water elevation offshore and the one at the 

shoreline and/or the maximum inundation height (Gailler et al., 2018; Glimsdal et al., 2019; Løvholt et al., 



2016). For example, the first long-term PTHA from earthquake-induced tsunamis for the NEAM (North-

eastern Atlantic, the Mediterranean, and connected seas) region, the NEAM Tsunami Hazard Model 2018 

(NEAMTHM18; Basili et al., 2021), considers millions of seismic sources and estimates the inundation 

probability at regional scale, based on offshore tsunami propagation and subsequent onshore 

extrapolation. Alternatively, the uncertainty propagation can be carried out by breaking down the typically 

high-dimensional problem into several low-dimensional ones, one for each level of the hierarchy in the 

computational workflow. For example, in (Tbandeh et al., 2022), on a regional risk and resilience analysis 

of a community, it is shown an adaptive refinement of uncertainty propagation to identify the influential 

uncertain input data and computational sub-models.  

On the other hand, local SPTHA requires high-resolution inundation simulations for the specific sites, 

forcing analysts (to date) to either explore large HPC resources (e.g., Tonini et al., 2021) or to reduce the 

number of simulations in order to make the assessment computationally manageable (Lorito et al. 2015; 

Volpe et al., 2019) In Lorito et al. (2015) and Volpe et al. (2019) the authors have proposed a filtering 

procedure that reduces the number of seismic scenarios to be simulated with the non-linear inundation 

model. This procedure considers a clustering technique to aggregate seismic scenarios based on the 

similarity of the offshore tsunami waves in front of the target site, building the inundation hazard curves 

by simulating only the centroids of the clusters 

In this work, we present a novel approach to reduce the number of scenarios required for SPTHA, 

based on the use of Adaptive Kriging (AK). The approach extends that of Volpe et al. (2019). AK is a fast-

running surrogate metamodel introduced first by Echard et al. (2011). It is here adopted to mimic the 

behavior of the computationally demanding tsunami inundation simulator, after training on a set of 

evaluations by the full scope model, which make up the Design of Experiment (DoE). In AK, the DoE is 

progressively enriched heuristically to drive the metamodel to simulate inundations only for critical values 

of the parameters. More precisely, given an Input/Output (I/O) representation 𝜓𝑧 = 𝑔(𝑥) of the tsunami 

inundation model 𝑔(𝑥) producing a hazard intensity 𝜓𝑧 at a location 𝑧, the specific combination of input 

seismic parameters values 𝑥 that make the seismic scenario critical (i.e, the resulting output value is larger 

than the predefined threshold, 𝜓𝑧 = 𝑔(𝑥) ≥  𝜓) is pursuit. To do this, a performance function 

𝐺 (𝑥|𝜓)
𝑧

 = 𝜓 − 𝑔(𝑥) is defined and the AK builds a surrogate function 𝐺 (𝑥|𝜓)
𝑧
 by collecting iteratively 

the I/O patterns {𝑥, 𝜓(𝑥)𝑧} most affecting the neighborhood of the limit state function 𝐺 (𝑥|𝜓)
𝑧

= 0 

(Turati et al., 2017; Wang & Wang, 2013). This allows obtaining an accurate estimate of the probability of 

exceedance 𝑃𝑟 (𝐺 (𝑥|𝜓)
𝑧

≤ 0|𝜎𝑥) (=  𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) ), for each seismic scenario 𝜎𝑥. 

In literature, various AK approaches have been proposed, all initiated by the Adaptive Kriging Monte 

Carlo Sampling (AKMCS) (Echard et al., 2011) that has been successively refined and revisited in many 

works, such as: (Turati et al., 2017; Xiaobo Zhang et al., 2021; L. Puppo et al., 2021). Parallel density 

scanned Adaptive Kriging (P-ds AK) has been recently introduced in (Teixeira et al., 2020) to allow the 



parallelization of the evaluations of the model output within an unsupervised procedure that i) enhances 

the exploration of the input parameter values, overcoming the typical overfitting limitations of traditional 

AKMCS that often rely on training sets of DoEs not enough sparse and diverse (Jian et al., 2017; Sun et al., 

2017), ii) allows for a limited number of DoEs, overcoming the unfeasible prediction of very low 

probability values, such as 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) , with a very small number of patterns available (Xufang 

Zhang et al., 2019), and iii) guarantees acceleration of the convergence of the Kriging predictions (Teixeira 

et al., 2020).  

The approach is applied to a real case study for constructing 𝑍 hazard curves for a set of 𝑍 (=

1, … , 𝑧, … , 𝑍) PoIs in the area of the oil refinery site located in Milazzo (Italy), each developed for a series 

of 𝐴 (= 1, … , 𝑎, …, 𝐴) tsunami intensities 𝜓𝑎. The results are compared with those presented in Volpe et 

al. (2019) for the same site, and show large computational savings with respect to two relevant use cases: 

inundation at coastal points (i.e, an extended area of tanks of the refinery exposed to the tsunami wave) 

and at a set of narrow points (i.e, around specific tanks of the refinery).  

The paper is organized as follows: in Section 2, the novel AK-based SPTHA for the construction of a 

hazard curve is described; in Section 3 the case study is presented; in Section 4, the results of the 

application of the AK-based SPTHA and its comparison with methods of literature are discussed to 

illustrate the advantages of the proposed AK-based SPTHA; finally, in Section 5, conclusions are drawn. 

2 Methodology 

2.1 P-ds-AK-based SPTHA 

The proposed P-ds-AK-based SPTHA stands on the procedure presented in Volpe et al. (2019) and 

sketched in Figure 1 (for convenience, the definition of steps is slightly modified with respect to Volpe et 

al, 2019). The procedure is described in the following. Steps 1-3 are in common to both the original and 

the new algorithms. 

Step 1) A set of 𝑆 seismic scenarios triggering a tsunami event is considered. The mean annual rate of 

occurrence of a tsunami triggering event, i.e., of a seismic scenario 𝜎𝑥, is modelled by an ET. Each 

parameter 𝑥𝑗 (𝑗 = 1, … , 𝐽) of a scenario is sampled from the corresponding logically ordered conditional 

probability 𝑃𝑟 (𝑥𝑗|𝑥1, … , 𝑥𝑗−1)  described by the ET (Selva et al. 2016) and multiplied by the mean annual 

rate 𝜆 of the generic event in the seismic zone in which the scenario is originated. The mean annual rate 

of the scenario is:  

𝜆 (𝜎𝑥) = 𝑃𝑟(𝑥𝑗|𝑥1, … , 𝑥𝑗−1) … ∙  𝑃𝑟(𝑥1)𝜆  (5) 
 For each sampled seismic scenario 𝜎𝑥, a set of values of the annual frequency of occurrence 𝜆(𝜎𝑥) is 

obtained by the set of 𝜗𝑚 (𝜗𝑚 ⟹ 𝜆(𝜎𝑥)) alternative models  𝛩 = {𝜗1,  𝜗2,  … , 𝜗𝑚,  … , 𝜗𝑀}, representing 

the epistemic uncertainty of the seismic source (Selva et al., 2016). 



Step 2) For each scenario 𝜎𝑥, the tsunami wave is propagated by means of regional-scale low-

resolution numerical tsunami simulations, from the earthquake epicenter to 𝑃 selected offshore points, in 

which the set {𝜓(𝑥)𝑝}
𝑝=1,…𝑃

 of maximum wave heights is computed. 

Step 3) Filtering and clustering are applied to the whole set of scenarios, in order to reduce the 

number of local-scale high-resolution numerical simulations required. 

3a) A subset of 𝑁1 (𝑁1 < 𝑆) scenarios are selected by FILTER H (H = height): in what follows, only 

earthquakes 𝜎𝑥 leading to an offshore maximum wave height 𝜓(𝑥)𝑝 larger than a certain threshold 

𝜓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are considered (i.e, 𝜎𝑥: 𝑚𝑎𝑥𝑝=1,…,𝑃(𝜓(𝑥)𝑝) > 𝜓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). 

3b) A subset of 𝑁 = 𝑁2 (𝑁2 < 𝑁1 < 𝑆) scenarios are selected by FILTER P (P = probability): in what 

follows, only earthquakes 𝜎𝑥 with mean annual frequency of occurrence 𝜆(𝜎𝑥,𝜗), considering the mean of 

the epistemic uncertainty defined as the mean of the 𝑀 alternative models (𝜆(𝜎𝑥,𝜗) =
∑𝑀

𝑚 𝜆(𝜎𝑥,𝜗𝑚)

𝑀
), 

larger than a certain threshold 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are considered (i.e, 𝜎𝑥: 𝜆(𝜎𝑥,𝜗) >  𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑).  

3c) a k-medoids-clustering analysis (Kaufman L. and Rousseeuw, 2009) is performed to identify 𝐶 

clusters of scenarios of characteristics 𝑥𝑖 and 𝑥𝑦 (i ≠ 𝑦 ,  𝑖 = 1, … , 𝑁 and 𝑦 = 1, … 𝑁) with large similarity 

in the offshore tsunami profile at 𝑃=11 offshore control points (Eq. 6): 

𝑑(𝑥𝑖 , 𝑥𝑦) = [1 −
2 ∑ 𝜓(𝑥𝑖)𝑝𝜓(𝑥𝑦)𝑝

11
𝑝

∑ (𝜓(𝑥𝑖)𝑝
2

+ 𝜓(𝑥𝑦)
𝑝

2
)11

𝑝

] (6) 

By doing so, each scenario 𝜎𝑥 is assigned to a c-th cluster and represented by the c-th centroid 

𝜎𝑥𝑐 , with parameters 𝑥𝑐. Note that a different metric can be used when near-field sources are treated 

(Volpe et al., 2019). 

Step 4) The original procedure, at this point, consists in running an inundation non-linear shallow water 

model 𝐶 times, with parameters 𝑥𝑐 (𝑐 = 1, … , 𝐶) to simulate the inundation induced by the 𝐶 centroid 

scenarios 𝜎𝑥𝑐 and the maximum wave heights {𝜓(𝑥𝑐)𝑧}𝑧=1,…,𝑍 at the PoIs 𝑧 = 1, … , 𝑍 are computed. For 

each scenario 𝜎𝑥 belonging to the c-th cluster, 𝜓(𝑥)𝑧 is taken equal to 𝜓(𝑥𝑐)𝑧 for every PoI 𝑧, and 

𝑃𝑟 (≥ 𝜓|𝜎𝑥)  to 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥𝑐 ) . Uncertainty on propagation is neglected, and an identify function is 

adopted (see Grezio et al. 2017): if 𝜓(𝑥)𝑧 > (<) 𝜓, then 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥)  = 1 (= 0). This is a common 

practice for local SPTHA, even if important uncertainty may exist about inundation model (Griffin et al., 

2015; Song and Goda, 2021; Tonini et al. 2021). All these terms are finally substituted in eq. 1 and 3, and 

the total hazard is aggregated for each target point. 

The new procedure modifies the final step of the original procedure (Figure 2), integrating numerical 

simulations and hazard aggregation into a loop in which P-ds AK selects the scenarios to model. More 

specifically, we use a P-ds AK method that allows to further reduce the computational cost by selecting a 

subset of meaningful centroids 𝑥𝑐, among the 𝐶 available, to estimate 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) for each seismic 

scenario 𝜎𝑥, as shown in Figure 2. This allows: i) wide exploration of the input parameter values ii) limited 



number of DoEs for the prediction of very low probability, such as 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥), with an overall iii) 

acceleration of the convergence for the hazard aggregation. The P-ds AK based procedure is used to build 

𝑍 hazard curves for a set of 𝑍 (= 1, … , 𝑧, … , 𝑍) PoIs, each developed for a series of 𝐴 (= 1, … , 𝑎, …, 𝐴) 

intensities 𝜓𝑎; for the 𝑧-th PoI and the 𝑎-th intensity 𝜓𝑎, a Kriging metamodel is built to predict 

𝑃𝑟 (𝜓𝑧 ≥ 𝜓; 𝛥𝑇) , resulting in the construction of 𝑍𝑥𝐴 metamodels. 

 

 

 

 

 

 

Figure 1: Flowchart for SPTHA as in Volpe et al. (2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Flowchart for AK based SPTHA 

 

To develop a Kriging metamodel for a specific PoI 𝑧 and a specific intensity measure 𝜓, a random set of 

I/O patterns is taken from the availables centroids, called DoEs,{𝑥𝐷𝑂𝐸 , 𝜓(𝑥𝐷𝑂𝐸)𝑧}, and the algorithm is 

able to build a surrogate 𝐺 (𝑥|𝜓)
𝑧
 of the performance function 𝐺 (𝑥|𝜓)

𝑧
 = 𝜓 − 𝑔(𝑥). Then, for a 

generic input, the metamodel predicts a Gaussian distributed output 𝑓(𝐺 (𝑥|𝜓)
𝑧
) (Turati et al., 2017): 

𝑓(𝐺̂ (𝑥|𝜓)
𝑧
) ~ 𝛷 (𝜇

𝐺̂(𝑥|𝜓)
𝑧

,  𝜎2
𝐺̂(𝑥|𝜓)

𝑧

). (7) 

The probability 𝑃̂𝑒(𝑥|𝜓) of exceedance of 𝜓 for the seismic scenario 𝜎𝑥 is: 

𝑃̂𝑒(𝑥|𝜓) =   
1

2𝜋 𝜎
𝐺̂(𝑥|𝜓)

𝑧

∫
0

−∞

𝑒𝑥𝑝 (−

(𝐺̂ (𝑥|𝜓)
𝑧

−  𝜇
𝐺̂(𝑥|𝜓)

𝑧

)2

2 𝜎2
𝐺̂(𝑥|𝜓)

𝑧

) 𝑑𝐺̂ (𝑥|𝜓)
𝑧
 (8) 

and the probability 𝑃̂𝑚(𝑥|𝜓) of prediction misclassification for the input 𝑥 to exceed the measure 𝜓 as: 

𝑃̂𝑚(𝑥|𝜓) =   
1

2𝜋 𝜎
𝐺̂(𝑥|𝜓)

𝑧

∫
0

−∞
𝑒𝑥𝑝 (−

(𝐺̂(𝑥|𝜓)
𝑧

−|𝜇
𝐺̂(𝑥|𝜓)

𝑧

|) 2

2 𝜎2
𝐺̂(𝑥|𝜓)

𝑧

) 𝑑𝐺̂(𝑥)𝑧. (9) 

The AK algorithm is able to enrich the DoE, for the selected PoI 𝑧 and intensity measure 𝜓, iteratively 

identifying the I/O patterns {𝑥, 𝜓(𝑥)𝑧} that most affect the neighborhood of the limit state function 

𝐺 (𝑥|𝜓)
𝑧

= 0, based on the prediction made by the surrogate function 𝐺 (𝑥|𝜓)
𝑧
. The iteration holds 

until a defined metric 𝜂(𝜓)𝑧 approaches a convergence criterion 𝜂(𝜓)𝑧 < 𝛼. In particular, to reduce the 

overall computational costs of the procedure, the DoE is simultaneously enriched for all the 𝑍x𝐴 

metamodels built to simulate the response of the tsunami {𝜓(𝑥)𝑧}𝑧=1,…,𝑍 for the 𝑍 PoIs. 

Note that the addition of simulations for new I/O pattern {𝑥, 𝜓(𝑥)𝑧} to the DoE set of Kriging 

metamodels may affect their performance; therefore, convergence is verified with respect to: 

I. 𝜂(𝜓𝑎)𝑧 : convergence of the current specific metamodel built for PoI 𝑧 and intensity 𝜓𝑎).  

II. {𝜂(𝜓
1
)

𝑧
, … , 𝜂(𝜓

𝑎−1
)

𝑧
} : convergence of the ensemble of specific metamodels built for the set 

of intensities 𝜓1,…,𝜓𝑎−1 in PoI 𝑧, i.e. the set of metamodels aimed at building the hazard curve 

of PoI 𝑧. The addition to the DoE of a seismic scenario 𝜎𝑥 critical for the current metamodel 

can be, in principle, critical also for the metamodels built over the same PoI 𝑧 and with similar 

intensities to the current 𝜓𝑎. 

III. {𝜂(𝜓
𝑎
)

1
}

𝑎=1,…,𝐴

, … , {𝜂 (𝜓
𝑎

)
𝑧−1

}
𝑎=1,…,𝐴

: convergence of the ensemble of specific metamodels 

built for the set of 𝐴 (= 1, … , 𝑎, …, 𝐴) intensities 𝜓𝑎 in PoIs 1, … , 𝑧 − 1, i.e. the set of 

metamodels for building the hazard curve of PoIs 1, … , 𝑧 − 1. 



In practice, the P-ds AK iterative (𝑖 = 1, … , 𝐼) procedure starts by setting a list of 𝑍 (= 1, … , 𝑧, … , 𝑍) 

PoIs and of 𝐴 (= 1, … , 𝑎, …, 𝐴) intensities 𝜓𝑎. Then, the procedure is configured as follows:  

1. Kriging construction: a Kriging metamodel is constructed using the available I/O training set 

{𝑥𝐷𝑂𝐸 , 𝜓(𝑥𝐷𝑂𝐸)𝑧}𝑖, of increasing dimensions as 𝑖 increases; the metamodel accuracy is expected 

to improve, specifically, in proximity of the limit state function 𝐺 (𝑥|𝜓𝑎)
𝑧

= 0. 

 

2. Learning phase: 

a. Metamodel Evaluation: Kriging metamodel is used to evaluate the surrogate function 

output corresponding to the 𝑁 seismic scenarios 𝜎𝑥 with parameters (𝑥1, … , 𝑥𝑁):  

𝑓(𝐺(𝑥1|𝜓𝑎)𝑧), … , 𝑓(𝐺(𝑥𝑁|𝜓𝑎)𝑧). 

b. U function calculation: among the 𝑁 available seismic scenarios patterns, a subset of 

𝑁𝑐𝑎𝑛𝑑 best candidates are selected on the basis of their 𝑈 learning function values:  

𝑈(𝑥) =

|𝜇
𝐺(𝑥|𝜓𝑎)

𝑧

|

𝜎
𝐺̂(𝑥|𝜓𝑎)

𝑧

 (10) 

where 𝜇
𝐺(𝑥|𝜓𝑎)

𝑧

 is the predicted mean value and 𝜎
𝐺(𝑥|𝜓𝑎)

𝑧

 the related estimation error 

of 𝑓(𝐺 (𝑥|𝜓𝑎)
𝑧
). The 𝑈(𝑥) value represents the distance, normalized to the standard 

deviation, of the metamodel prediction from 𝐺 (𝑥|𝜓𝑎)
𝑧

= 0: a candidate 𝑥 with low 

𝑈(𝑥) can be of interest either because it can be a set of seismic parameters whose event 

would result in a 𝜓 close to the threshold region (𝜇
𝐺(𝑥|𝜓𝑎)

𝑧

= 0), or because it can be a 

set of seismic parameters whose event would result in a very uncertain scenario, not yet 

explored (𝜎
𝐺(𝑥|𝜓𝑎)

𝑧

 large). 

c. Density-based clustering: a density-based clustering procedure is performed to cluster the 

subset 𝑁𝑐𝑎𝑛𝑑  of candidates 𝜎𝑥, based on the features 𝑥, into 𝐾𝑖 (𝑘𝑖 = 1, … , 𝐾𝑖) 

clusters.The algorithm is based on the definition of a radius 𝜉 and a minimum number of 

points in the 𝑘𝑖-th cluster (MinPts): if within 𝜉, more than MinPts are found for each 𝑥, 

the 𝑥 becomes a core point of the 𝑘𝑖-th cluster; if not enough MinPts are in its 

neighbourhood but among the adjacent points are present core points, then 𝑥 is assigned 

to that cluster and is called reachable. Finally, 𝑥 is an outlier if is further than 𝜉 with 

respect to all core points. 

3. DoE selection: the 𝑃̂𝑚 of Eq. (9) is evaluated for all the 𝑥 ∈ 𝑘𝑖-th cluster. Then, the 𝑥 scoring the 

maximum 𝑃̂𝑚, namely 𝑥𝐷𝑂𝐸
 𝑘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃̂𝑚(𝑥𝑘𝑖)), is added to the DoE; the procedure is repeated 

for all the 𝐾𝑖 clusters, resulting in the collection of a set {𝑥𝐷𝑂𝐸
 𝑘𝑖 }

𝑘𝑖=1,…,𝐾𝑖
. 



4. Mechanistic inundation model: the output {𝜓(𝑥𝐷𝑂𝐸
 𝑘𝑖 )𝑧}

𝑧=1,…,𝑍
 (𝑘𝑖 = 1, … , 𝐾𝑖) corresponding to 

the 𝐾𝑖 new training patterns {𝑥𝐷𝑂𝐸
 𝑘𝑖 }

𝑘𝑖=1,…,𝐾𝑖
 is taken equal to the mechanistic inundation model 

simulation {𝜓(𝑥𝑐)𝑧 }𝑧=1,…,𝑍 of the centroid 𝑥𝑐 of the c-th cluster which they belong to.  

 

5. Parallel update DoE: the DoEs of the 𝑍x𝐴 metamodels are enriched simultaneously. In the end, 

each 𝐾𝑖 I/O sequence {𝑥𝐷𝑂𝐸
 𝑘𝑖 , 𝜓(𝑥𝐷𝑂𝐸

 𝑘𝑖 )𝑧 }
𝑘𝑖=1,…,𝐾𝑖

 is added to the I/O training set of each 

metamodel constructed for PoI  (= 1, … , 𝑍). 

6. Convergence check (level I): the Kriging construction continues iteratively from Phases 1 to 5 until: 

𝜂(𝜓𝑎)𝑧 =  

1
𝑁

∑𝑁
𝑛 𝑃̂𝑚(𝑥𝑛|𝜓𝑎)

1
𝑁

∑𝑁
𝑛 𝑃̂𝑒(𝑥𝑛|𝜓𝑎)

< 𝛼 

 

(11) 

where 𝛼 is called accuracy level (i.e, the mean of the misclassification probability 𝑃̂𝑚 is 𝛼-times 

smaller than the mean exceedance probability 𝑃̂𝑒). 

7. Convergence (level II): for the metamodels based on the intensity measures 𝜓 = 𝜓1, … , 𝜓𝑎−1 in 

PoI 𝑧, the convergence criterions {𝜂(𝜓
1
)

𝑧
, … 𝜂(𝜓

𝑎−1
)

𝑧
} are calculated, and: 

a. If ∃ 𝜂(𝜓)𝑧: 𝜂(𝜓)𝑧 > 𝛼, Kriging construction is repeated from Phases 1 to 5 for the 

metamodels based on the intensities 𝜓 and PoI 𝑧 for which the convergence criterion 

𝜂(𝜓)𝑧 > 𝛼.  

b. Else if ∄ 𝜂(𝜓)𝑧: 𝜂(𝜓)𝑧 > 𝛼, the intensity is set to 𝜓𝑎 = 𝜓𝑎+1 and: 

i. If 𝜓𝑎 ≠ 𝜓𝐴+1, return to Phase 1. 

ii. If  𝜓𝑎 = 𝜓𝐴+1, go to Phase 8. 

8. Convergence check (level III): for the metamodels based on the intensity measures 𝜓 = 𝜓1, … , 𝜓𝐴 

in PoIs 𝑧 = 1, … , 𝑧 − 1, the convergence criterions {𝜂(𝜓
1
)

1
, … 𝜂(𝜓

𝐴
)

1
} , …, 

{𝜂(𝜓
1
)

𝑧−1
, … 𝜂(𝜓

𝐴
)

𝑧−1
} are calculated, and: 

a. If ∃ 𝜂(𝜓)𝑧: 𝜂(𝜓)𝑧 > 𝛼, Kriging construction is repeated from Phases 1 to 5 for the 

metamodels based on the PoIs 𝑧 and intensities 𝜓 whose convergence criterion 𝜂(𝜓)𝑧 >

𝛼. 

b. If ∄ 𝜂(𝜓)𝑧: 𝜂(𝜓)𝑧 > 𝛼, the PoI is set to 𝑧 = 𝑧 + 1 and: 

i. If 𝑧 ≠ 𝑍 + 1, return to Phase 1. 

ii. If 𝑧 = 𝑍 + 1, end of the procedure. 

To summarize, the P-ds AK based procedure aims at building a set of 𝑍𝑥𝐴 Kriging metamodels. Each 

one is trained from a set of 𝛥 + ∑𝐼
1 𝐾𝑖(= 𝛥 + 𝐾) I/O patterns {𝑥𝐷𝑂𝐸 , 𝜓(𝑥𝐷𝑂𝐸)𝑧} and provides a 



Gaussian distributed prediction for each seismic scenario 𝜎𝑥 of the probability of exceeding 𝜓 in a PoI 𝑧, 

namely 𝑃̂𝑒 (𝑥|𝜓) =𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) . To estimate the hazard curves at target points, i.e. 𝑃𝑟 (𝜓𝑧 ≥

𝜓; 𝛥𝑇), from Eq. (4), the hazard aggregation is performed by summing the individual probabilities 

combined by their annual frequency over all the 𝑁 seismic scenarios 𝜎𝑥, i.e., ∑ 𝜆(𝜎𝑥𝑛
) 𝑃̂𝑒(𝑥𝑛)𝑁

𝑛 . The 

associated uncertainty is often assumed as Beta-distributed (Marzocchi et al., 2015) which, locally, i.e., 
with respect to each seismic scenario 𝜎𝑥, can be approximated by Normal distributions (Sinharay, 2010). 

This justifies the use of AK to estimate 𝑃̂𝑒 (𝑥|𝜓) =𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥) and approximate it to a Gaussian 

distribution (see Eq. (7)). 

3 Case study 

The approach described in Section 2, is applied for the construction of tsunami hazard curves for the 

site of the oil refinery located in Milazzo, on the north-eastern coast of Sicily, Italy. The results are 

benchmarked with those discussed in Volpe et al. (2019). 

3.1 Seismic events characterization and tsunami modelling 

The regional seismicity model adopted in Volpe et al. (2019) has been developed in the framework of 

the EU project ASTARTE (http://www.astarte-project.eu). Without loss of generality, we limit our study to 

the sources in the far field, i.e. sources which do not generate significant coseismic displacement at the 

target site. Such dataset consists of the 𝑆 = 1684017 far-field crustal scenarios 𝜎𝑥. To account for the 

epistemic uncertainty, a set of 𝑀 =100 alternative models 𝜗𝑚 were considered. For our purposes, we will 

focus on the mean hazard curve, as well as the 15th and 85th percentiles.  

To produce local SPTHA, a set of 𝑃=11 offshore control points on the 50m isobath in front of Milazzo 

have been selected. The propagation of the seismic-induced tsunami waves to the control points was 

done applying the Tsunami-HySEA code, a nonlinear hydrostatic shallow-water multi-GPU code based on a 

mixed finite-difference–finite-volume method (Macias et al., 2017). Each scenario was obtained by means 

of a linear combination of precalculated tsunami waveforms produced by Gaussian-shaped unitary 

sources (Molinari et al., 2016). 

Among the 𝑆 available scenarios, 𝑁 = 32715 scenarios were identified as most significative for the 

target site, after having applied two filters: FILTER H ( 𝑚𝑎𝑥𝑝=1,…,𝑃(𝜓(𝑥)𝑝) > 1  m off-shore of Milazzo) 

and the FILTER P (𝜆(𝜎𝑥,𝜗) >  10−5𝑦𝑟−1). These 𝑁 scenarios were clustered in 𝐶 = 613 clusters, by the k-

medoids clustering explained in Section 2.1. This configuration has been adopted for including tsunami 

hazard in the stress test methodology developed for the EU project STREST (http://www.strest-eu.org/), 

(Argyroudis et al., 2020).  

http://www.astarte-project.eu/
http://www.strest-eu.org/


In Volpe et al. (2019), these N scenarios were fed to the Tsunami-HySEA code for local high-resolution 

inundation modelling.  Here, only the most relevant centroids 𝑥𝑐 selected by the P-ds-AK-based procedure 

among the 𝐶 clusters available, are used and compared to the full set of simulations. 

3.2 Kriging input pre-processing 

The models adopted to simulate the seismic-triggered tsunamis to calculate 𝜓𝑧 use 𝐽 =11 

(𝑥1, … , 𝑥𝑗, … , 𝑥𝐽) input parameters for characterizing the seismic triggering events 𝜎𝑥 (i.e, Longitude, 

Latitude, water depth of the Cell, Magnitude, Length, Width, Strike, Dip, Rake, Slip and depth of the 

baricenter of the fault) (Volpe et al., 2019).  

The development of Kriging for such high dimensional problems can be prohibitive (Bouhlel & Martins, 

2017), calling for an input set pre-processing of the input variables. An expert-based feature selection has 

suggested to consider 6 inputs from the 11 available (the spherical coordinates (𝐿, 𝜑𝐴𝐵), the magnitude of 

the earthquake (Magnitude), the focal parameters (Strike, Dip and Rake) and 2 further parameters: the 

expected value and the variance of the offshore heights 𝜓(𝑥)𝑝 measured at the 50 m isobath, given by: 

𝐸[𝜓(𝑥)𝑝] =  𝛹(𝑥)𝑝 =
∑𝑝 𝜓(𝑥)𝑝

𝑃
 (12) 

𝑉𝑎𝑟[𝜓(𝑥)𝑝] =  
1

11
∑𝑝 (𝜓(𝑥)𝑝 − 𝛹(𝑥)𝑝)2. (13) 

Note that 𝐿 and 𝜑𝐴𝐵 refer to the source-target distance and longitude angle difference, respectively, of 

a PoI 𝐴 of coordinates {𝜌,  𝜙𝐴,   𝜃𝐴} with the seismic epicenter 𝐵 , of coordinates {𝜌,  𝜙𝐵 ,   𝜃𝐵}, located on a 

sphere (earth) of center 𝑂 and radius 𝜌, with 𝜙 and 𝜃 being the Latitude and Longitude, respectively 

(Figure 3):  

𝐿 = 𝜌 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑠𝑒𝑛(𝜃𝐴)(𝜃𝐵)  + 𝑐𝑜𝑠(𝜃𝐴)𝑐𝑜𝑠(𝜃𝐵)𝑐𝑜𝑠 (𝜑𝐴𝐵) ) (14) 
𝜑𝐴𝐵 = 𝜑𝐴 − 𝜑𝐵 (15) 

 

 

 

 

 

 

 

 

Figure 3: the spherical coordinate system 

 



The angle 𝜑𝐴𝐵 is used also considering the E-W coastal configuration at target and the spatial 

characterization of sources. Other source-target configurations may lead to change the list of parameters 

to be used to efficiently characterize seismic sources in input to kriging. 

3.3 Metamodel construction  

Following the approach described in Section 2.1, for each PoI 𝑧 and intensity 𝜓𝑎: 

1. Kriging construction: to the best author’s knowledge, no general recommendations exist to 

sample the initial DoE from a pre-formatted Input setting. Considering that a space filling 

design is needed (H. Liu et al., 2018), we follow the DoE setting called “2𝐽 factorial design” 

(Raymond H. Myers, Douglas C. Montgomery, 2016): the idea is to set a DoE consisting in the 

combination of lowest and largest values for each feature 𝑥𝑗, which gives 2𝐽 samples. The 

initial DoE training has been generated by Monte Carlo sampling of 𝛥 = 28 = 256 DoE 

samples and the corresponding simulation results are collected (i.e, the simulation of the 

centroids of the clusters which the input belongs to).  

2. Learning phase: 

a. Metamodel Evaluation: the software GAUSSIAN PROCESS REGRESSION AND 

CLASSIFICATION toolbox version 4.2 (form Carl Edward Rasmussen and Hannes 

Nickisch and available at  http://www.gaussianprocess.org/gpml/code/matlab/doc/ ) 

has been used to fit the Kriging metamodel to the training set of 𝑁 seismic scenarios, 

with standard settings (Rui Teixeira, 2020): 

▪ Trend type: constant 

▪ Family of correlation functions: anisometric squared exponential covariance 

function 

▪ Estimation method: Maximum likelihood. 

b. U function calculation: among the 𝑁 available patterns, a subset of 𝑁𝑐𝑎𝑛𝑑 = 4000 

best candidates are selected on the basis of their 𝑈 learning function values. 

c. Density-based clustering: the density-based clustering groups the subset of 𝑁𝑐𝑎𝑛𝑑 =

4000 candidates into 𝐾𝑖 (𝑘𝑖 = 1, … , 𝐾𝑖)  clusters. In this work, MinPts is set equal to 

𝐽 + 1 = 9 and 𝜉 to 𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝐷)), where 𝐷 = [𝐷1, … , 𝐷𝑣, … , 𝐷𝑁𝑐𝑎𝑛𝑑=4000
] and 𝐷𝑣 =

𝑚𝑖𝑛 (√∑ 𝑥𝑗
𝑣𝐽

𝑗 − 𝑥𝑗
ℎ≠𝑣) with  ℎ = 𝑣 = [1, … , 𝑁𝑐𝑎𝑛𝑑 = 4000] (in line with (Teixeira et 

al., 2020)). 

 

3. DoE selection: from every 𝑘-th cluster retrieved, the seismic scenario 𝑥𝐷𝑂𝐸
 𝑘𝑖 =

𝑎𝑟𝑔𝑚𝑎𝑥(𝑃̂𝑚(𝑥𝑘𝑖)) is added to the DoE, resulting in the collection of a set {𝑥𝐷𝑂𝐸
 𝑘𝑖 }

𝐾𝑖 (𝑘𝑖=1,…,𝐾𝑖) 
. 

http://www.gaussianprocess.org/gpml/code/matlab/doc/


4. Mechanistic inundation model: the mechanistic inundation model simulation is run for the 

centroids of the 𝐾 new training patterns {𝑥𝐷𝑂𝐸
 𝑘 }

𝐾𝑖 (𝑘𝑖=1,…,𝐾𝑖) 
. 

5. Parallel update DoE: 𝐾𝑖 I/O sequence {𝑥𝐷𝑂𝐸
 𝑘𝑖 , 𝜓(𝑥𝐷𝑂𝐸

 𝑘𝑖 )𝑧 }
𝑘𝑖=1,…,𝐾𝑖

 are added to the I/O training 

set of each metamodel constructed for a PoI  (= 1, … , 𝑧, … , 𝑍). 

6. Convergence check – level I: to guarantee consistent results of the convergence criterion 

𝜂(𝜓𝑎)𝑧 introduced in Eq (11), the accuracy level 𝛼 is set to 0.1 (in line with (Teixeira et al., 

2020)). 

7. Convergence check – level II: evaluation of convergence criterions {𝜂(𝜓
1
)

𝑧
, … 𝜂(𝜓

𝑎−1
)

𝑧
} is 

performed. 

8. Convergence check – level III: evaluation of convergence criterions {𝜂(𝜓
1
)

1
, … 𝜂(𝜓

𝐴
)

1
} , …, 

{𝜂(𝜓
1
)

𝑧−1
, … 𝜂(𝜓

𝐴
)

𝑧−1
} is performed. 

4 Results 

The metamodel-based P-ds AK framework introduced in Sections 2 and 3 has been applied for the 
construction of the hazard curves for two case studies: a set of narrow PoIs, distributed around few 
specific tanks belonging to the Milazzo refinery, and a set of coastal PoIs covering the entire refinery. The 

results are shown in terms of annual frequency 𝜆 (𝜓𝑧 ≥ 𝜓), and benchmarked with those presented in 

Volpe et al. (2019).  

4.1 Narrow PoIs  

A set of narrow PoIs are selected (𝑧 = 1, 2, 3, 4, 5, 6, 7, 8, 9, Figure 4), around a group of 3 neighbour 
tanks. Without loss of generality, this case study is considered significant to show the benefit of the P-ds 
AK based SPTHA in planning effective preventive and recovery strategies of NaTech scenarios, strongly 
affecting the equipment and safety systems of spatially concentrated facilities (Mebarki et al., 2016). 

 

 

 

 

 

 

 

 



 

Figure 4: narrow PoIs 

Figures 5 to 8 show some examples of the obtained mean hazard curves (without loss of generality, for 
PoI 𝑧 = 1, 2, 3, 4 respectively): our results are reported with continuous blue lines, whereas those 
obtained in (Volpe et al., 2019) with dashed red lines. In particular, the exceedance annual rates  

𝜆 (𝜓𝑧 ≥ 𝜓) for each PoI are shown, and the error bars corresponding to the 15th and 85th percentiles of 

the epistemic uncertainty are plotted.  
Note that the results in (Volpe et al., 2019) have been obtained with the run of 𝐶 = 613 centroids 

simulations 𝜓(𝑥𝑐)𝑧, each one taking approximately 30 [min] with 3 GPUs (i.e., the computational time is 
equal to 30 [min]*613 runs of the code=19390 [min]), whereas the P-ds AK-based SPTHA results have 
been obtained running only 𝐶 = 280 centroids simulations 𝜓(𝑥𝑐)𝑧 (i.e., the computational time is equal 
to 80 [min] (for the Pds-AK training) + 30 [min]*280 runs of the code =8400 [min], with a saving of about 
half of the time). 

More precisely, as shown in Table 1, the initial DoE of 𝛥 = 256 seismic scenarios 𝜎𝑥, belonging to a 

total of 𝐶 = 36 clusters (with the corresponding centroids {𝑥𝑐}𝑐=1,…,36 and 𝜓(𝑥𝑐)𝑧), has been iteratively 

enriched with a total of 𝐾 = 358 seismic scenarios 𝜎𝑥, belonging to 𝐶 = 244 different clusters (with the 

corresponding centroids {𝑥𝑐}𝑐=1,…,244 and 𝜓(𝑥𝑐)𝑧). 

 Pds-AK based SPTHA Volpe et al. (2019) 

 Number of calls of seismic 

scenarios 𝜎𝑥  

Number of corresponding 
centroids (𝐶) 

Number of calls of 

seismic scenarios 𝜎𝑥  

Number of 
corresponding 
centroids (𝐶) 

Initial DoE (𝛥) 256 36 / / 

Added DoE (𝐾) 358 244 / / 

Total DoE 614 280 32715 613 

Table 1: summary of the DoE and calls for narrow PoIs 

 

  
Figure 5: hazard curve for z=1 Figure 6: hazard curve for z=2 

 



  
Figure 7: hazard curve for z=3 Figure 8: hazard curve for z=4 

 

The overall results of the proposed Pds-AK based approach show a good agreement with the results in 

(Volpe et al., 2019) (Root Mean Squared Error (RMSE) equal to [4.66E-7, 1.46E-6, 1.13E-6, 1.0E-6, 1.50E-6, 

1.15E-6, 1.38E-6, 1.66E-6, 1.70E-6] for 𝑧 = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively). Central values show a slight 

tendency toward overestimation, which results however well inside the epistemic uncertainty bounds. 

The estimation of uncertainty is overall quite accurate too, without clear trends toward 

over/underestimation. Notably, an important reduction in the computational cost is observed, with 𝐶 =

280 simulations involved with respect to 𝐶 = 613 involved in (Volpe et al., 2019). 

Note that the decrease in the number of centroids simulations 𝜓(𝑥𝑐)𝑧 has been enabled by the P-ds 

AK identification of the most critical seismic scenarios 𝜎𝑥; i.e, those scenarios whose parameters 𝑥𝑗 (𝑗 =

1, … , 𝐽) would lead the simulation in the neighborhood of the limit state function 𝐺 (𝑥| 𝜓)
𝑧

= 0. To 

highlight this, the distributions of the input parameters 𝐿, 𝜑𝐴𝐵 , Strike, Dip and Rake, 𝐸[𝜓(𝑥)𝑝], 𝑉𝑎𝑟[𝜓(𝑥)𝑝] 

for all the available seismic scenarios (upper left), the initial DoE (upper right) and the added DoE (bottom) 

are plotted In Figures 9 to 16, respectively.  

In Figure 9 it can be seen that the P-ds AK has enriched the DoE with only those seismic events whose 

epicenter is, on average, close to the PoI (i.e. source-target distance 𝐿 between 50 and 200 km, leaving 

out the evaluation sources with larger 𝐿); in Figure 10 it can be seen that the P ds-AK has enriched the DoE 

with only seismic scenarios whose 𝜑𝐴𝐵, the difference in longitude between the Milazzo refinery and the 

epicenter (see Figure 3), is small (i.,e, 𝜑𝐴𝐵 between 0° and 0.03°) neglecting larger values of 𝜑𝐴𝐵. In other 

words, the P-ds AK allowed concentrating on the events in front of the target coast, for which also 

relatively smaller change would imply differences for the hazard results.  

In Figure 11 the distribution of magnitudes is shown: the P-ds AK procedure enriched the DoE with 

scenarios with relatively high Magnitude, in the interval 7.5 and 8.  



Figure 12 shows that the DoE is enriched with scenarios 𝜎𝑥 whose Rake angle is of 90° and -90°. 

Contrarily, no changes in the DoE distribution are seen in Figure 13 for Strike angle and Figure 14 for Dip 

angle.  

Finally, in Figures 15-16, it can be seen that the P-ds AK enriched the DoE with 𝜎𝑥 with high 𝐸[𝜓(𝑥)𝑝], 

with a maximum around 8 meters, and high 𝑉𝑎𝑟[𝜓(𝑥)𝑝].  

In conclusion, we can state that it is more likely that seismic scenarios in the neighborhood of 

𝐺 (𝑥| 𝜓)
𝑧

= 0 are close to (low 𝐿) and in front of (low 𝜑𝐴𝐵) the site, with magnitude between 7.5 and 8 

and with Rake angles of 90° and -90°, involving a large tsunami with a quite variable profile offshore to the 

target point. On the other hand, we can claim that, among all the available inputs, Strike and Dip angles 

can be neglected for building the P-ds AK metamodels. 

  
Figure 9: distributions of source-target distance L Figure 10: distributions of longitude difference 𝜑

𝑨𝑩
  

 

  
Figure 11: distributions of Magnitude 

 
Figure 12: distributions of Rake 

 



  
Figure 13: distributions of Strike Figure 14: distributions of Dip 

  
Figure 15: distributions of 𝑬[𝝍(𝒙)𝒑] Figure 16: distributions of 𝑽𝒂𝒓[𝝍(𝒙)𝒑] 

 

To further characterize these encouraging results, we analyze the classification performance of the 

metamodel. Without loss of generality, we restrict to PoIs 𝑧 = 2, 5, 8, the ones in seafront position with 

respect to tanks. Considering 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥)  = 1 or 𝑃𝑟 (𝜓𝑧 ≥ 𝜓|𝜎𝑥)  = 0 if 𝜇𝐺(𝑥)𝑧
< 0(> 0), if we 

compare the P-ds AK estimate 𝐺 (𝑥|𝜓)
𝑧
 with the benchmark 𝐺 (𝑥|𝜓)

𝑧
 of the results in (Volpe et al., 

2019), we can identify  

● Correctly classified scenarios: 𝜎𝑥 for which 𝐺 (𝑥|𝜓)
𝑧

> (<) 0  and 𝐺 (𝑥|𝜓)
𝑧

> (<) 0. 

● Misclassified scenarios: 𝜎𝑥 for which 𝐺 (𝑥|𝜓)
𝑧

> (<)0  and 𝐺̂ (𝑥|𝜓)
𝑧

< (>)0.  

● Critical scenarios: misclassified scenarios 𝜎𝑥 for which 𝐺 (𝑥|𝜓)
𝑧

> 0 but 𝐺 (𝑥|𝜓)
𝑧

< 0. 



In Tables 2-3, the 𝑁 = 32715 seismic scenarios are accordingly divided in correctly classified, 

misclassified and critical scenarios for the metamodels built for the intensities  𝜓 =

1, 1.3, 1.5, 1.8, 2.1, 2.5 𝑚 in PoI 𝑧 = 2, 5, 8 respectively. 

 

z 2 2 2 2 2 2 

𝜓 1 1.3 1.5 1.8 2.1 2.5 

Correctly classified scenarios 31638 31852 32311 32398 32468 32603 

Misclassified scenarios 1077 863 404 317 247 112 

Critical scenarios 445 294 216 153 96 46 

Table 2: correctly and misclassified scenarios for z=2 

z 5 5 5 5 5 5 

𝜓 1 1.3 1.5 1.8 2.1 2.5 

Correctly classified scenarios 31571 31813 32207 32396 32461 32580 

Misclassified scenarios 1144 902 508 319 254 135 

Critical scenarios 432 327 227 163 109 52 

Table 3: correctly and misclassified scenarios for z=5 

z 8 8 8 8 8 8 

𝜓 1 1.3 1.5 1.8 2.1 2.5 

Correctly classified scenarios 30947 31551 31582 32108 32204 32496 

Misclassified scenarios 1768 1164 1133 607 511 246 

Critical scenarios 782 521 375 306 243 103 

Table 4: correctly and misclassified scenarios for z=8 

 

In Figures 17-19 the comparison between P-ds AK and the results of (Volpe et al., 2019) is reported 

plotting 𝐺 (𝑥|𝜓)
𝑧

 𝑣𝑠. 𝐺 (𝑥|𝜓)
𝑧
 for 𝜓 = 1.8 and 𝑧 = 2, 5, 8, respectively. In the first and third quadrants, 

correctly classified scenarios are plotted in green (𝐺 (𝑥|𝜓)
𝑧

> (<) 0  and 𝐺 (𝑥|𝜓)
𝑧

> (<) 0), whereas in 

second and fourth quadrants, misclassified scenarios are reported in red (𝐺̂ (𝑥|𝜓)
𝑧

> 0 but 𝐺 (𝑥|𝜓)
𝑧

<

0 and 𝐺̂ (𝑥|𝜓)
𝑧

< 0 but 𝐺 (𝑥|𝜓)
𝑧

> 0, respectively). Note that the misclassified scenarios are 

conservatively estimating 𝐺 (𝑥|𝜓)
𝑧
, being most of them laying in the second quadrant (𝐺 (𝑥|𝜓)

𝑧
> 0  

and 𝐺 (𝑥|𝜓)
𝑧

< 0). 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 17: classification results for z=2 and 𝝍̅=1.8  Figure 18: classification results for z=5 and 𝝍̅=1.8 

 

 

 

 

 

 

 

 

 

Figure 19: classification results for z=8 and 𝝍̅=1.8 

 

4.2 Coastal PoIs 

The coastal PoIs  𝑧 = 2, 5, 8, 23, 64, 73, 88, 91, 94 (Figure 20) are considered to highlight the 

dependencies of the P-ds AK based SPTHA on the local topography and hydrodynamics for points 

distributed along the coastline. This case study is relevant for the application of extended infrastructures, 

such as ports areas (Argyroudis et al. 2020), as well as for other typical risk mitigation actions which take 

place in extended areas (e.g., Tonini et al., 2021 and references therein). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figures 21 to 24 show, without loss of generality, the hazard curves for the PoI 𝑧 = 2, 5, 8, 23, 
respectively: as before, our results are reported with continuous blue lines, whereas those obtained in 

(Volpe et al., 2019) with dashed red lines, and, for each PoI, the exceedance annual rate  𝜆 (𝜓𝑧 ≥ 𝜓) and 

the error bars corresponding to the 15th and 85th percentiles are plotted. At the initial DoE of 𝛥 = 256, 
were added 𝐾 = 360  further seismic scenarios for a total of 616 belonging to 𝐶 = 318 different clusters 
and consequent tsunami inundation simulations, as shown in Table 5. As already mentioned, the results in 
(Volpe et al., 2019) have been obtained with the run of 𝐶 = 613 centroids simulations 𝜓(𝑥𝑐)𝑧, each one 
taking approximately 30 [min] with 3 GPUs (i.e., the computational time is equal to 30 [min]*613 runs of 
the code=19390 [min]), whereas in this case the P-ds AK-based SPTHA results have been obtained running 
only 𝐶 = 318 centroids simulations 𝜓(𝑥𝑐)𝑧 (i.e., the computational time is equal to 80 [min] (for the Pds-
AK training) + 30 [min]*318 runs of the code =9620 [min], again with a saving of about half of the time). 

The estimated central values for the annual rates of exceedance 𝜆 (𝜓𝑧 ≥ 𝜓) are here slightly 

underestimating the results of (Volpe et al., 2019) but, again, within the epistemic uncertainty bounds. 

Also, the uncertainty bounds, this time, show a slight underestimation, but overall, the P-ds AK-based 

approach provides a consistent picture of the hazard results, both in terms of central values (Root Mean 

Squared Error (RMSE) equal to [1.77E-6, 1.61E-6, 1.54E-6, 1.71E-6, 2.37E-6, 2.70E-7, 2.15E-6, 2.48E-

6,2.34E-6] for 𝑧 = 2, 5, 8, 23, 64, 73, 88, 91, 94, respectively) and epistemic uncertainty (error bars) and 

epistemic uncertainty (error bars).  

 Pds-AK based SPTHA Volpe et al. (2019) 

 Number of calls of seismic 

scenarios 𝜎𝑥  

Number of corresponding 
centroids (𝐶) 

Number of calls of 

seismic scenarios 𝜎𝑥  

Number of 
corresponding 
centroids (𝐶) 

Initial DoE (𝛥) 256 36 / / 

Added DoE (𝐾) 360 282 / / 

Total DoE 616 318 32715 613 

Table 5: summary of the DoE and calls for coastal PoIs 

 

 

Figure 20: coastal PoIs 



  
Figure 21: hazard curve for z=2 Figure 22: hazard curve for z=5 

  
Figure 23: hazard curve for z=8 Figure 24: hazard curve for z=23 

 

As above, the reduction of the number of centroids simulations 𝜓(𝑥𝑐)𝑧  from 𝐶 = 613 to 𝐶 = 318 

was made possible by the P-ds AK identification of the most critical seismic scenarios 𝜎𝑥, i.e. those 

scenarios whose parameters 𝑥𝑗 (𝑗 = 1, … , 𝐽) would lead the simulation in the neighborhood of the limit 

state function 𝐺 (𝑥| 𝜓)
𝑧

= 0. In the same fashion of Section 4.1, in Figures 25 to 32 are plotted, 

respectively, the distribution of the input parameters 𝐿, 𝜑𝐴𝐵, Strike, Dip and Rake, 𝐸[𝜓(𝑥)𝑝], 𝑉𝑎𝑟[𝜓(𝑥)𝑝] 

for all the available seismic scenarios (upper left), the initial DoE (upper right) and the added DoE 

(bottom).  

The enrichment of scenarios is in line with the results of the concentrated points discussed in the 

previous Section. In particular, in Figure 25 it can be seen that the P ds-AK has enriched the DoE with only 

relatively near seismic events with 𝐿 between 0 and 200 km; in Figure 26 it can be seen that the P ds-AK 



has enriched the DoE for angles 𝜑𝐴𝐵 between 0° and 0.04°, the distribution of magnitudes (Figure 27) 

show an enrichment of seismic scenarios with Magnitude greater than 7.5 and lower than 8.  

Figures 28 to 30 show that no changes in the DoE distribution are present for, respectively, the Rake, 

Stike and Dip angle with respect to the distribution of all seismic scenarios 𝜎𝑥. Finally, in Figures 31-32, it 

can be seen that the P-ds AK has enriched the DoE with 𝜎𝑥 with high 𝐸[𝜓(𝑥)𝑝], with a maximum around 6 

meters, and high 𝑉𝑎𝑟[𝜓(𝑥)𝑝].  

In conclusion, we can state that it is more likely that seismic scenarios in the neighborhood of 

𝐺 (𝑥| 𝜓)
𝑧

= 0 are close (low 𝐿) and in front (low 𝜑𝐴𝐵) to the site, with Magnitude between 7.5 and 8 and 

with a large and variable tsunami in the target coastal area. On the other hand, in this case study, Rake, 

Stike and Dip angles play a less relevant role for building the P-ds AK metamodels. Interestingly, Rake 

angle appears less relevant with respect to Section 4.1, probably connected to the greater geographic 

area spanned by the PoIs. 

  
Figure 25: distributions of L  

 
Figure 26: distributions of 𝜑

𝑨𝑩
 

 

  
Figure 27: distributions of Magnitude  

 
Figure 28: distributions of Rake 

 



  
Figure 29: distributions of Strike Figure 30: distributions of Dip  

  
Figure 31: distributions of 𝑬[𝝍(𝒙)𝒑]  Figure 32: distributions of 𝑽𝒂𝒓[𝝍(𝒙)𝒑]  

 

As in Section 4.1, In Tables 6-7 the division of the 𝑁 = 32715 seismic scenarios in correctly classified, 

misclassified and critical scenarios is reported, for the metamodels built for the intensities  𝜓 =

1, 1.3, 1.5, 1.8, 2.1, 2.5 𝑚𝑒𝑡𝑒𝑟𝑠 in PoI 𝑧 = 64, 91, respectively. 

 

z 64 64 64 64 64 64 

𝜓 1 1.3 1.5 1.8 2.1 2.5 

Correctly classified scenarios 30900 31761 31894 32411 32458 32627 

Misclassified scenarios 1815 954 821 304 257 88 

Underestimated scenarios 693 301 187 120 90 22 

Table 6: correctly and incorrectly classified points for z=64 

 



z 91 91 91 91 91 91 

𝜓 1 1.3 1.5 1.8 2.1 2.5 

Correctly classified scenarios 30807 31694 31905 32446 32494 32641 

Misclassified scenarios 1908 1021 810 269 221 74 

Underestimated scenarios 848 358 223 116 72 17 

Table 7: correctly and incorrectly classified points for z=91 

5 Conclusions  

A novel P-ds-AK-based approach is proposed to reduce the computational effort related to the 

evaluation of the local SPTHA for safety critical systems like oil and gas and nuclear facilities. The SPTHA 

quantifies the probability that a tsunami wave caused by earthquakes exceeds a specific height in a 

specific place and time window. The approach is applied to the site of an oil refinery located in Milazzo, 

Sicily.  

To account for the full variability of seismic triggering events, SPTHA must integrate the results of a 

large number of computationally demanding tsunami simulations, which can result an unfeasible task. To 

tackle this challenge, a four-steps approach has been proposed by Volpe et al (2019) to reduce the 

number of numerical simulations required. Here, we adopted a P-ds AK method as a further step to 

decrease the computational cost of the analysis, by identifying the seismic scenarios most affecting the 

hazard variability at specific target points, and then performing tsunami simulations only for a subset of 

the selected scenarios and using a metamodel for the others. 

The approach turned out to be capable of accurately estimating the hazard curves, with a consistent 

reduction of the computational effort. We considered two case studies, both related a local SPTHA for the 

area of the oil refinery located in Milazzo (Sicily, Italy): a set of target points clustered in space around a 

few specific tanks exposed to the tsunami, and a set of coastal target points extending along the coast and 

covering the entire refinery. In both cases, the hazard curves produced by the reduced number of 

simulations are very close to the one obtained with a larger set of simulations, with central values well 

inside the estimated epistemic uncertainty. This is surely underestimated, as only uncertainty on the 

source is considered, while uncertainty on the inundation model could be very relevant too (e.g., Griffin et 

al., 2015; Song and Goda, 2021; Tonini et al. 2021). The P-ds AK procedure is able to correctly reproduce 

also the epistemic uncertainty bounds, showing that the computational cost reduction can be reached as 

well  when epistemic uncertainty should be quantified. Note that the novel P-ds-AK-based approach 

proposed can be used on many areas of international relevance, like the coastal areas in the 

Mediterranean, including Eastern Sicily and Southern Creete in the Ionian Sea, Northern Sicily in the 



Tyrrhenian Sea. Indeed, the approach extends that of Volpe et al. (2019), whose procedure has been 

successfully tested on such areas (Volpe et al. 2019; Argyroudis et al. 2020). 

The developed P-ds AK procedure is limited to a few and relatively concentrated PoIs. This is the case 

of punctual or spatially concentrated infrastructures like coastal plants (e.g. nuclear power plants), where 

tsunami-sensitive areas are few and very concentrated. On the contrary, it is not applicable to other cases 

with a significant spatial extension, such as a near-coast railway network: future research should be 

directed towards increasing the number of points under study. We note that the entire chain of 

computation should be revised in this case, as also the classical approach to tsunami modelling adopting 

nested telescopic grids should be challenged.  

On the other hand, whenever the target area is relatively limited (few kilometers), the limited number 

of tsunami inundation simulations necessary for this approach can be exploited to further improve the 

tsunami modelling approach and overcome some of present-day limitations. For example, it can lead to 

the adoption of more accurate tsunami modelling strategies, or to an enrichment of the source model to 

better explore source variability (e.g., including slip distribution), which in principle could lead to an 

increase in the number of clusters. All such improvements could lead to more accurate hazard results, 

compensating the increase of the computational demand, due to more advanced modelling, with the 

reduction of required simulations, due to the adoption of P-ds AK strategy. This is fundamental to plan 

mitigation and recovery strategies in case, for example, of NaTech events. 
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