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Abstract: Sensors and electronics technologies are pivotal in several fields of science and engineering,
especially in automation, industry and environment monitoring. Over the years, there have been
continuous changes and advancements in design and miniaturization of sensors with the growth
of their application areas. Challenges have arisen in the deployment, fabrication and calibration of
modern sensors. Therefore, although the usage of sensors has greatly helped improving the quality of
life, especially through their employment in many IoT (Internet of Things) applications, some threats
and safety issues still remain unaddressed. In this paper, a brief review focusing on pervasive sensors
used for health and indoor environment monitoring is given. Examples of technology advancements
in air, water and radioactivity are discussed. This bird’s eye view suggests that solid-state pervasive
sensors have become essential parts of all emerging applications related to monitoring of health
and safety. Miniaturization, in combination with gamification approaches and machine learning
techniques for processing large amounts of captured data, can successfully address and solve many
issues of massive deployment. The development paradigm of Smart Cities should include both
indoor and outdoor scenarios.
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1. Introduction

In urban contexts, and especially during the cold season, the vast majority of people
spend most of the time indoors (during school, working hours, free time and, of course,
sleep time). Thus, monitoring of chemo-physical parameters which relate to the quality of
indoor environments can have a significant impact on improving global health. Smart En-
vironment Monitoring systems (SEM) [1,2] are implemented to keep track of the variation
in various environment parameters such as air quality [1,3–9], water quality [1,2,10,11],
radioactivity levels [1,12–14], sound pollution [15], etc. The main components of the SEM
are sensors, signal processing and artificial intelligence (AI) techniques, with the sensors
mainly implemented in solid-state smart [1–4] and wearable [16] forms, in wireless ambi-
ence, for monitoring, for instance, different types of water, air and radioactive pollutants.

Sensors are the most essential components of automated environment monitoring
systems and play a significant role in guaranteeing public health and soil health. Pervasive
sensors [3,4,16,17] are modern sensors, used in health monitoring and related applications,
which have got in recent years a wide use due to miniaturization [18] and machine learning
tools, for processing the sensor data through signal processing tasks and classification.
Figure 1 shows the potential use of pervasive sensors and the environment factors which
can be monitored and controlled with the help of these sensors. The monitored environ-
ment factors, as shown in Figure 1, such as air quality, temperature quality, humidity
control, acoustic control, radioactivity control, etc. are those mainly prevailing in indoor
environments and directly related to public health. Networks and systems constituting the
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Internet of Things (IoT) have appeared to be of great help to keep monitoring the related
health parameters, due to the necessity of bringing environmental factors under control.

Smart Cities 2021, 4, FOR PEER REVIEW  2  

environment factors, as shown in Figure 1, such as air quality, temperature quality, hu-
midity control, acoustic control, radioactivity control, etc. are those mainly prevailing in 
indoor environments and directly related to public health. Networks and systems consti-
tuting the Internet of Things (IoT) have appeared to be of great help to keep monitoring 
the related health parameters, due to the necessity of bringing environmental factors un-
der control. 

 
Figure 1. Map of parameters monitored in indoor urban environment by pervasive sensors for 
global health improvement by means of preventive medicine. 

In addition, the advances in sensor design and technology are happening so fast and 
thus the compact and miniature IoT [1,10] products are developing in the useful direction 
for applications to indoor environment monitoring. Figure 2 shows the advances of the 
sensors in the last 25 years and we can see that the most recent and modern sensors are 
becoming robust and secure, which means that these IoT devices can merge the function-
alities of many sensors in a robust way and can assist monitoring multiple environmental 
and health-related factors as never before. 

 
Figure 2. Evolution of trends in the development of sensors. 

Bulky 
and 
Noisy 
Sensors

More 
Accurate 
but 
Increased 
Cost

Compact, 
Light-weight 
and 
Inexpensive 

Increased 
Pollutant 
Sensing 
Technology

Robust and 
Vandal 
Proof

Years (1995ꟷ2020)

Figure 1. Map of parameters monitored in indoor urban environment by pervasive sensors for global
health improvement by means of preventive medicine.

In addition, the advances in sensor design and technology are happening so fast and
thus the compact and miniature IoT [1,10] products are developing in the useful direction
for applications to indoor environment monitoring. Figure 2 shows the advances of the
sensors in the last 25 years and we can see that the most recent and modern sensors are
becoming robust and secure, which means that these IoT devices can merge the functionali-
ties of many sensors in a robust way and can assist monitoring multiple environmental
and health-related factors as never before.
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In this paper, studies and research on pervasive sensors have been briefly reviewed,
with their advances, miniaturization achieved, use of machine learning and signal pro-
cessing for augmented performance of sensor technologies, so that an effective health
monitoring system can be developed in practice to ensure an improved control of health
parameters in indoor environments.

2. Peculiar Aspects of Indoor Sensors Networks

The goal of this paper is to highlight the relevance, in particular for health and
preventive medicine, of the application of IoT and wireless sensors networks (WSN) tech-
nologies to domestic indoor monitoring, while most WSN efforts are currently devoted to
wide area networks (WAN) and street-level urban applications (traffic, mobility, pollution,
waste management etc.). Although in this review we focus on domestic environments,
similar considerations are valid also for industrial ones (developed within the industrial
IoT and Industry 4.0 paradigms).

The main differences between indoor and outdoor sensing concern the properties of
the network. Indoor sensing nodes are typically placed at shorter distance (thus adopting
short-range radio protocols such as Zigbee and Bluetooth) and a radio infrastructure,
such as Wi-Fi, is often already present in the apartment. While the latter aspects relax
the challenges of wireless communication, indoor sensors are typically battery powered
anyway, to avoid excessive cabling, and the daily data rate is on average higher than
in outdoor SEM. Thus, despite the proximity to the grid, indoor sensors share similar
low-power challenges with outdoor ones. Energy harvesting indoors can be more difficult
than outdoors, since, for instance, the kinetic energy of water flowing in domestic pipes is
smaller than in external pipelines or the power of lamps is clearly lower than the solar one.

The most common type of installation of indoor sensors is static. Domestic moving
sensors can be embedded in portable and wearable devices, as well as on-board of mov-
ing robot such as autonomous vacuum cleaners. Participatory sensing and, in particular,
gamification, i.e., the stimulation of the user to perform a mapping task by means of a
ludic reward in a videogame, already successfully adopted for outdoor sensing, can al-
sobe adopted at building and apartment level to improve, for instance, the mapping of
uncovered areas (such as common areas or basements) or to promote healthy habits.

Indoor sensors demand for integration with domestic ecosystems (such as Google Nest
and Amazon Alexa) as well as safety devices, such as gas and smoke detectors, emergency
monitors for elderly people and other wearable medical devices. Such an integration
with “consumer” devices can bring the production volumes of these sensors into very
large ranges (millions per month), thus making silicon foundry fabrication and application
specific integrated circuits (ASIC) very attractive, not only for the miniaturization, but also
from the cost point of view.

3. Water, Air and Radioactivity Monitoring

We begin the survey with three examples, showing a clear miniaturization trend. As is
well known, a direct effect on human health is produced by the quality of drinking water
and indoor air, especially in terms of the particulate matter (PM) and radioactive material
concentrations. The general goal here is reducing the risks and increasing the safety of
people in drinking and breathing through controlling these elements. As regards water,
monitoring its quality at the tap is crucial to check the impact of the last section of pipes
in the buildings, which might suffer aging and degradation over time. A miniaturized
impedance sensor has been developed to track the status of the inner surfaces of pipes for
the distribution of drinking water, based on the utilization of WSN [2]. Extensive data were
collected in real time, in an experimental campaign carried out for a few months in the field
(a pilot network of three nodes) in North Italy [2]. The same sensor, originally fabricated on
rigid substrates [19], has later also been fabricated on flexible Kapton substrates, enabling its
installation in pipes of small diameter (a few centimeters), typical of domestic networks
and appliances [20].
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As regards air monitoring, the different gases must be first identified, since its con-
centration impacts on the final air quality. Generally, this is affected by the combination of
some gases such as NOx and VOC, for instance, and the amount of PM, which is divided
into different granulometric classes (PM10, PM2.5, etc.). Most efforts are carried out on
the measurement of air quality in urban environments, and by means of networks based
on the employment of compact solid-state instruments [3,4], and the same trend in the
development of miniaturized sensors is benefitting also indoor monitoring (Figure 3).
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In indoor spaces, another factor affecting air quality is the presence of radioactive
material which can stem from multiples sources, both of natural and anthropogenic nature.
One of the most dangerous elements is Radon, a radioactive gas that, being heavy, tends to
accumulate, especially in ground levels and basements of buildings. One way to measure
Radon is to quantify the concentration of the solid elements in which it decays such as
214Pb and 214Bi. They emit gamma rays with different energies, the most relevant one
around ~600 keV. It is possible to capture this particulate by means of a filter. Circulation
of air through the filter is forced by a pump (with a few L/min flow rate). Then the filter
is analyzed by means of a gamma spectrometer. Additionally, in this case, miniaturiza-
tion is steadily advancing. In particular, the miniaturization of scintillator-based gamma
spectrometers is enabled by the replacement of bulky and delicate photo-multiplier tubes
(PMT) with silicon photo-multipliers (SiPM). Nowadays, very compact, USB-powered,
self-contained spectrometers are available: when using a few SiPM pixels, the perfor-
mance, cost and volume of the unit are dominated by the scintillation crystal (typically
a 2” NaI) [21]. Such detectors (Figure 4) are so compact that can be either embarked on
drones (for outdoor mapping) or carried around by hand (for indoor mapping) to scan
rooms and basements (and thus install air ventilation systems where needed to reduce the
accumulation of Radon).
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4. Literature Review: Trends and Impact

As discussed in the previous sections, smart and wearable sensors are of significant
importance for environment monitoring and assessment of health-hazard parameters.
These sensors belong to numerous application categories, which are developed as per the
requirement and the factors to be controlled. Smoke detectors, fall detectors, noise control
by means of microphones, motion/ambience control in a room are also important sensors
that help in monitoring the health of persons, especially disabled and elderly persons, as the
control can be achieved without any movement, by using portable, smart and IoT devices.
In this paper, we have focused on pervasive sensors and their usage for health monitoring
and studied the relevant literature consequently. The research on general purpose sensors
is vast, but when referring in particular to indoor sensors, it is less extended, especially
for health applications. Table 1 presents a summary of major and relevant contributions
in the area of pervasive sensors used for monitoring different parameters and methods at
this end.

Table 1. Advances in pervasive sensors for indoor health monitoring.

Title Usage Method Salient Features and Limitations

Chemical
exposure

monitor (6,7)

Standard gas concentration
measurement in workplace

Portable DRM apparatus
using a photoionization

detector (PID) and real-time
location system (RTLS)

Calibration against certified
isobutylene; direct reading of location

using laser; risk due to chemical sensor

Low cost
monitoring of
emissions (8)

Monitoring of temperature,
humidity, PM2.5, PM10, total VOCs

(×3), CO2, CO, illuminance and
sound levels in

indoor environment

Low Cost Environment
Monitoring using Sensors

Customization and flexibility;
monitoring of parameter variations;

specific event based

Environmental
sound

classification (9)

Environmental sound monitoring;
structured noise and sound events

with strong harmonic contents
Hybrid deep learning model

Accurate monitoring, applicable in real
time; non-stationary signals; different

levels of sound pose difficulty

Wireless water
quality sensing

network (7)

Thin deposits in indoor water
sources

Multi-parameter sensing
node embedded system
with miniaturized slime

monitor

Biological and chemical stability; early
warning functions; predictive
maintenance; efficient process
management; surface fouling

Trace-gases
monitoring (10)

Traces of gases in surrounding
atmosphere

Blind source separation
method

Easy detection; accurate with minimum
dependence criterion of independent

component analysis
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The implementation of sensors is affected by a number of challenges related to design
issues, simulation factors, variation in supplementary parameters, and most importantly
to the threats on the sensor networks. The wireless sensors are deployed over a network
to constitute a WSN and many of the sensors are connected with the Cloud and therefore
the network threats represent a big risk and a challenge also in modern pervasive sensors.
However, the technologies have also been evolving with the advent of wireless and dis-
tributed sensors in the direction of combating these threats. Table 2 shows major types
of threats and the technologies used in combating them. In this table, the reasons for the
different types of threats are also discussed.

Table 2. Indoor health monitoring and security threats.

Threat Agent Sensing Technologies References

Biological Aerosol

Physical detection
principles

Light scattering Challenges in detection,
identification and

monitoring of indoor
airborne

chemical-biological
agents [2]

Laser induced fluorescence

Flame photometric detection

Biochemical detection
principles

Affinity based detection

Nucleic acid-based techniques

Chemical

Chemical warfare
agents (CWAs) and

toxic industrial
chemicals (TICs).

Resistive and Capacitive Electronic Gas Sensors

[2,15]

Flame ionization detection

Infrared spectrometry

Photo acoustic spectroscopy

Photo ionization detection

Mass spectrometry

Security

Inefficient existing
security technology for

big data; attacks,
software vulnerabilities

Block chain

IoT and security
challenges [1,10]

Fog computing

Machine learning

Edge computing

We can clearly see in Tables 1 and 2 that sensors are of great importance in health
monitoring since they help in improving quality of life. Yet, at the same time, a few
challenges are still there, which need more and more research to address and solve. In our
study, one important observation has been made regarding miniaturization, the research on
it, and the role of miniaturized sensors and devices especially for indoor health monitoring.
For instance, monitoring of chemical exposure [2,8] has made possible by employing
miniaturized components inside direct reading method (DRM) equipment such as photo-
ionization detectors that could assist in measuring the concentration of gases and their
behavior in the workplace. They represent real-time location systems (RTLS), able to detect
the presence of gases down to a concentration of 0.2 ppm for open areas with a spatial
resolution down to 13 cm, ideal for indoor workplaces [6,7]. Proper calibration and AI
solutions can help in detecting any possible risks even in complex conditions, where the
risk to workers is due to a combination of multiple factors.

A similar work on low-cost monitoring of emissions was explored in [15], in which
the response is event-based. The value of the IEQ (indoor environment quality index) was
maintained to a very satisfactory level, up to 85.5% in all conditions. In another interesting
work [22], a k-Nearest Neighbor (k-NN) and a deep neural network were employed for the
classification of sounds, useful for monitoring noise pollution. The classification of sounds
into desirable spectral components and noise components was made very smartly with
the help of a deep architecture of neural networks. Accurate monitoring, suppression of
unwanted harmonics and 95.8% of classification accuracy are among salient contributions
of this work.
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In another peculiar work for detecting gases-traces, a blind source method was used.
Easy detection with good accuracy was achieved with minimum dependence criterion of
independent component analysis. The correlation coefficient was observed as close to 0.96
for NO2 gas and 0.91 for SO2 gas, which indicates satisfactory performance of the method
for detecting traces of gases in [23] in open environments. The method reaches a good
performance and can be easily transferred to indoor environments.

Table 2 mainly highlights various types of threats and the technologies used to combat
these threats. The main reason for biological threat was reported due to aerosol, where
a number of physical and biological detection principles are studied. Light scattering
method, laser induced fluorescence technique, flame photometric detection method and
nucleic acid-based techniques were mainly reported to address these threats [2], with a
maximum possible value of correlation and correction as 80%. Then, chemical risks due to
emission and flow of toxic gases and chemical substances, representing a major threat in
indoor environment, can result from a number of electronic appliances such as refrigerator,
air conditioner etc.; resistive and capacitive electronic gas sensors; infrared spectrometry;
photo-acoustic spectroscopy; photo-ionization detection; and mass spectrometry are main
technologies for addressing the threat issues due to chemicals [2,15]. Another threat for
network deployment is security: it can pose a great challenge in breaching the security of
individuals when the sensor network is implemented in indoor applications. In addition to
hardware cryptography, block chain, edge computing, machine learning and fog computing
are major technologies that enable enhanced security in WSNs.

From Figure 5, reporting the number of publications with the indicated keywords
(red and blue lines), it is evident that the research on miniaturization for indoor pervasive
sensors has reached limited results with respect to that for pervasive sensors in general.
It is likely that the number of research contributions is increasing very year, as plotted in
Figure 5. Therefore, we can see how miniaturization is taking place steadily on sensor
technologies, but there are still wide margins for further exploration in this research area.
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5. Machine Learning

In recent years, the adoption of statistical techniques and in particular of machine
learning (ML) has flourished in multiple fields. It has started playing a significant role in
automated processing of large amounts of data collected by sensors and WSNs. Data are
captured through various sensor nodes present in the WSN and proper signal processing is
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employed to extract meaningful information from data and perform the appropriate tasks
accordingly. Here, the role of ML techniques is of utmost importance while calibrating
and interpreting acquired data. ML helps to understand the data and to extract a number
of features which are subsequently used in classification and decision-making tasks that
ultimately help control various parameters of health and environment.

If a mathematical model of the monitored process is available, along with an estimation
of uncertainties of the model and of the measurements, the optimal tool to merge data is
the Kalman filter [24]. Unfortunately, very often a model is unknown and ML techniques
can be adopted. As shown in Figure 6, the main goal of the ML classifier is to process
the signals from the heterogeneous sensors in order to assess in real time the level of risk.
Additional inputs (such as the number of persons in the house, meteorological conditions
etc.) can be combined as well. In some cases, in addition to displaying quality indicators
(and warnings/alarms) to the user, if actuators are also available, the algorithm can activate
some counter actions (such as ventilation of the basement, cleaning of the pipes, purification
of the air in the room etc.) in a closed-loop manner.
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Very interestingly, beyond the local use of the SEM outputs (for individual room,
apartment), a hierarchical structure of classifiers can be adopted for utilities, such as
drinking water, involving different apartments, at building level, thus enabling interesting
functions such as predictive maintenance. Building Area Networks (BAN) are being
developed to support this type of distributed sensing infrastructure [25].

ML techniques can be grouped into supervised and unsupervised algorithms accord-
ing to the learning approach. Among supervised ones, Support Vector Machines (SVM),
k-NN and Decision Trees (DT) are the most common ones. Although SVM can better cope
with outliers, when the amount of training data is larger than the number of features,
as usual in this context, k-NN is preferable. DT and k-NN offer similar performance, but the
computation cost of k-NN (computing the distance between fresh data and all previous
measurements) is much higher. In conclusion, DTs (also organized in Random Forests)
represent the best choice for processing the signals of pervasive indoor sensors. Further-
more, DT can be efficiently implemented in low-cost digital embedded devices such as
microcontrollers [26].

The most successful family of unsupervised methods are those based on neural
networks [27–30], whose detailed description is beyond the scope of this review. In the
context of the proposed study, miniaturization of sensors and their management over a
WSN can be effectively carried on and an optimal use of resources can be achieved through
ML techniques. The huge amount of data is in fact a major concern in real-time application
of various pervasive sensors, despite big data tools attempting to address these issues.
The contribution of deep learning using either convolutional neural networks (CNN) or
any other deep neural technique, can create significant impact in handling large amount
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of data and their processing. The problem of huge data may seem not to be there in an
indoor environment for the limited applications, but it may arise when several units are
hierarchically networked. Finally, Principal Component Analysis (PCA) is a consolidated
technique for reduction in data dimensionality by simply applying a linear transformation
to samples (that maximize the information conveyed by them), can be applied in this
context as well.

6. Conclusions

In this short review we have discussed some technological trends, based on sev-
eral case studies selected from the literature, in the development of pervasive sensors.
Miniaturization of solid-state sensors for monitoring human activity and safety through
the local and real-time measurement of chemo-physical parameters (such as water and
air [31]) of the surrounding environment and the increasing relevance of machine learn-
ing in automatic interpretation of large amounts of acquired data from wireless sensors
networks are turning out to be two key elements for the success of this paradigm.

The motivation of this work is to put in focus the relevance of the application of these
technologies to indoor monitoring (as opposed to outdoor urban and rural monitoring [32]),
especially in smart cities scenarios. For instance, a very recent and interesting result reports
that in different cities across the world there has been a small but consistent increase in NO2
and VOC levels indoors during lockdowns [33]. Novel concepts of smart building networks
integrating eco-systems of wearable and positioning devices are emerging [34] and should
be further merged with hardware advancements. Domestic safety and comfort a key factor
to public health and preventive medicine. In fact, early and automated diagnostics of
unsafe or unhealthy personal home conditions can enable fast and effective response and,
thus, reduce the pressure on the public healthcare system. Such a relevance has also been
dramatically highlighted by the health and socio-economical effect of the current COVID-19
pandemic.
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