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LFT-based identification of lateral vehicle dynamics
Luca Bascetta, Senior Member, IEEE, and Gianni Ferretti, Senior Member, IEEE

Abstract—This paper presents a novel estimation and iden-
tification approach for lateral vehicle dynamics. The algorithm
leverages on a Linear Fraction Transform (LFT) reformulation
of vehicle and tyre models, allowing for a simple and computa-
tionally efficient inclusion of complex and nonlinear dynamic
models, like, for example, two-wheels, four-wheels or single-
track as vehicle model, and Pacejka, brush or Fiala as tyre
model. As a result, this technique can be easily adopted in the
development of an online identification system, able to run on a
standard embedded device, implementing a flexible identification
procedure that can handle different driving conditions, up to the
limits of handling, different vehicle modelling approaches, and
different input measurements. Experimental results demonstrate
the effectiveness of the proposal, either in a persistent excitation
and in a non-persistent excitation scenario.

Index Terms—Lateral vehicle dynamics parameter identifi-
cation, lateral vehicle dynamics state estimation, tyre model
identification, LFT-based identification.

I. INTRODUCTION

OVER the past few decades, there has been an increasing
interest in the design of advanced driver assistance

systems for passenger cars [1]–[4], and navigation systems
for autonomous vehicles [5], aiming at improving vehicle
performance, and passenger safety and comfort [6]–[8], either
in standard driving conditions and at the limits of handling, as
it happens, e.g., during emergency manoeuvres or in particular
environmental conditions.
The majority of these navigation and assistance systems
leverages on a model-based design paradigm, thus requiring
the identification of lateral and longitudinal dynamics pa-
rameters, and relying on measurements or estimates of the
lateral and longitudinal dynamics state variables. Furthermore,
in many practical situations these parameters, especially the
ones related to tyre-ground interaction, are time-varying and
can suddenly change, thus asking for a continuous and fast
adaption ability. As a consequence, any identification or state
estimation algorithm should allow to inherently consider non-
linear dynamics, be computationally efficient supporting on-
line estimation and parameter adaption running on a standard
embedded device, i.e., without asking for an excessively high
computational power, require only standard production car
sensors, be robust and reliable.

On the problem of identification and estimation of lateral
vehicle dynamics a huge amount of scientific literature exists,
ranging from works focusing only on the identification of tyre-
road friction or tyre model parameters, to complete approaches
including parameter identification and state estimation.
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Focusing on works that consider only cornering stiffness
identification, different approaches have been proposed in the
literature, the majority of which adopts a linear tyre model.
For example, in [9], [10] a method based on least squares
and recursive least squares identification is proposed; in [11]
center of gravity location and tyre cornering stiffnesses are
simultaneously estimated; in [12] an adaptive identification of
vehicle lateral and vertical dynamics parameters is introduced;
and in [13] normalized tyre cornering stiffnesses are estimated
in real-time, exploiting the fact that production vehicles are
generally built to show some understeering characteristics.
Differently from the previous works, in [14] an individual
tyre force estimation algorithm is presented, using the in-
teracting multiple model filtering method and supporting a
static nonlinear and a dynamic tyre model. Though the method
is promising, and the experimental validation shows good
performance, it is characterized by a significant computational
complexity, hampering its practical applicability.

Even the works that consider simultaneously cornering
stiffness identification and lateral dynamics estimation are
mainly focused on linear tyre models. For example, in [15]
a vehicle sideslip angle observer is presented, based on a
nonlinear vehicle and a linear tyre model; [16] integrates an
Inertial Navigation System with GPS measurements to provide
an higher update rate estimate of vehicle states; [17] proposes
a two-step algorithm, based on a sliding-mode observer for
tyre-road forces computation and an extended Kalman filter
for sideslip angle and cornering stiffness estimation; in [18]
an iterative learning identification method is used to identify
lateral dynamics of an agricultural vehicle; and in [19] vehicle
sideslip angle and road friction are jointly estimated in real-
time using an online gradient descent algorithm.
On the other side, in [20] a two-stage approach is proposed,
based on an extended Kalman filter for sideslip and lateral tyre
forces estimation, and nonlinear least squares for cornering
stiffness identification. Thanks to the use of nonlinear least
squares, either linear and nonlinear tyre models can be consid-
ered, at the expense, however, of an increased computational
complexity, of potential convergence issues, and local minima.
Finally, in [21] a tyre-model-less approach is presented, based
on an extended Kalman filter and an adaptive neuro-fuzzy
inference system, to estimate the chassis planar motion states
and the tyre forces during drifting manoeuvrers. Though being
general and not limited to a specific tyre model, with this
approach it is not clear how to derive tyre parameters needed
to design a model-based controller.

To conclude the state-of-the-art, approaches focused on
tyre-road friction identification [22]–[24], possibly including
also cornering stiffness identification [25], [26], and lateral
dynamics estimation [27] exist, as well.

The present work proposes a solution to lateral vehicle
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dynamics state estimation and parameter identification based
on a Linear Fractional Transform (LFT) reformulation of the
vehicle and tyre models.
The problem of model identification formulated over LFT
model structures has been a subject of active research for
more than ten years, see, e.g., [28]–[30], exhibiting undeniable
advantages, with respect to other identification techniques, in
dealing with model nonlinearities [31]. The application of
this identification technique to the lateral vehicle dynamics
identification and estimation problems allows to achieve all
the requirements previously mentioned. In particular, LFT
approach inherently supports the adoption of a complex non-
linear model, the same methodology can be thus adopted
independently of the specific vehicle and tyre model, and
provides a high flexibility in the selection of the measurement
signals or in the introduction of further ones. Moreover, it is
a computationally efficient technique that can support online
estimation and parameter adaption running on a standard
embedded device, and it allows to simultaneously solve not
only the parameter identification, but also the state estimation
problem, without any additional computational burden.
Summarising, the novel contributions of the paper are:
• at the best of the authors’ knowledge, this is the first paper

that proposes to formulate the lateral vehicle dynamics
identification problem over an LFT formulation of the
single-track model;

• the proposed approach allows to simultaneously perform
lateral vehicle dynamics state estimation and parameter
identification using a computationally efficient technique;

• the LFT single-track model can be easily reformulated
for different tyre models, allowing the selection of the
model that is most suited for each vehicle or application.

The paper is organized as follows. Section II introduces
the theory supporting the LFT identification approach. In
Section III, a LFT formulation of the single-track model is
derived, and the application of the LFT identification approach
to the problem of lateral vehicle dynamics is illustrated.
Section IV describes the experimental setup used to validate
the proposed identification approach. Section V shows the
results of two significant experimental tests, demonstrating the
effectiveness of the proposal either with a persistently exciting
and with a non-persistently exciting trajectory, in standard
driving conditions and at the limits of handling. Conclusions
are drawn in Section VI.

II. THE LFT APPROACH TO PARAMETER IDENTIFICATION
OF NONLINEAR SYSTEMS

Consider a nonlinear, time invariant, multi-input multi-
output, continuous-time system

ẋ(t) = f(x(t),u(t), δ)

y(t) = g(x(t),u(t), δ)
(1)

where x ∈ Rn, y ∈ Rp, are the state and noise-free output
vectors, respectively, u ∈ Rm is the input vector, δ ∈ Rq
is a vector of unknown parameters, and assume as output
observation equation

y̌(tk) = y(tk) + ε(tk)

where tk, k = 1, . . . , N , is the sampling instant, and εi(tk),
i = 1, . . . , p, is a discrete-time, zero-mean, white noise of
variance σ2

i .
Denote with δo ∈ Rq the true value of parameters δ.

The identification problem can be formulated as follows:
given the sampled data {u(tk), y̌(tk)}Nk=1, find the values of
the unknown parameters δ minimizing the cost function

J(δ) =
1

2N

N∑
k=1

eT (tk, δ)We(tk, δ) (2)

i.e.,
δ̃ = arg min

δ∈Rq
J(δ) (3)

where
e(tk, δ) = y̌(tk)− ŷ(tk, δ)

is the prediction error between the measured output y̌(tk) and
the output ŷ(tk, δ), predicted by model (1) using parameters δ
instead of the true parameters δo, and W is a weight matrix.

As it is well known, δ̃ is a maximum-likelihood estimate
of the model parameters δ for output-error plants [32], and
can be determined through well-known iterative optimization
procedures such as, for example, the Gauss-Newton algorithm

δ̂(ν + 1) = δ̂(ν)− α(ν)Ĥ−1
(
δ̂ (ν)

)
g
(
δ̂ (ν)

)
(4)

where ν is the iteration number, α(ν) is the step size, g(δ) :
Rq → Rq and Ĥ(δ) : Rq → Rq×q are the gradient vector
and a positive semi-definite approximation of the Hessian of
the cost function with respect to the unknown parameters,
respectively, i.e.,

g(δ) =
1

N

N∑
k=1

ET (tk, δ)We(tk, δ)

Ĥ(δ) =
1

N

N∑
k=1

ET (tk, δ)WE(tk, δ)

where E(tk, δ) ∈ Rp×q is the Jacobian of e(tk, δ) and is given
by

E(tk, δ) =

[
∂e(tk, δ)

∂δ1
. . .

∂e(tk, δ)

∂δq

]
In turn, rewriting model (1) in a Linear Fractional Transform

(LFT) formulation allows for a direct computation by simu-
lation of the gradient and approximated Hessian of the cost
function [31]

ẋ(t) = Ax(t) + B1w(t) + B2ζ(t) + B3u(t) (5)
z(t) = C1x(t) + D11w(t) + D12ζ(t) + D13u(t) (6)
ω(t) = C2x(t) + D21w(t) + D22ζ(t) + D23u(t) (7)
y(t) = C3x(t) + D31w(t) + D32ζ(t) + D33u(t) (8)
w(t) = ∆z(t) = diag{δ1Ir1 , . . . , δqIrq}z(t) (9)
ζ(t) = Θ(ω(t)) (10)

where z ∈ Rnz , ω ∈ Rnω , w ∈ Rnw , ζ ∈ Rnζ are vectors
of auxiliary variables, A, Bi, Ci, Dij are 16 known constant
matrices, ri are the sizes of the corresponding identity matrices
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Fig. 1: Simulation scheme for the computation of the sensitivity functions.

Iri in the ∆ block, and Θ(ω) : Rnω → Rnζ is a known
nonlinear vector function.
The model in the LFT formulation, although being formally
equivalent to the original one, is now clearly divided in 3 parts:

1) a linear part: equations (5 – 8);
2) a nonlinear part: equation (10), defined by vector func-

tion Θ (ω (t));
3) an uncertain part: equation (9), where vector z(t) multi-

plies matrix ∆ = diag{δ1Ir1 , . . . , δqIrq}, collecting the
unknown parameters.

Simulating the LFT formulation fed by the sampled input
u(tk) yields the predicted output ŷ(tk, δ) (first stage of the
scheme in Figure 1).
Furthermore, the sensitivity

∂e(tk, δ)

∂δi
= −∂ŷ(tk, δ)

∂δi
= −y′i(tk)

can be computed by sampling the output y′i(t) of the following
LFT system (second stage of the scheme in Figure 1)

ẋ′i(t) = Ax′i(t) + B1w
∗
i (t) + B2ζ

′
i(t) + B1∆δiz(t)

z′i(t) = C1x
′
i(t) + D11w

∗
i (t) + D12ζ

′
i(t) + D11∆δiz(t)

ω′i(t) = C2x
′
i(t) + D21w

∗
i (t) + D22ζ

′
i(t) + D21∆δiz(t)

y′i(t) = C3x
′
i(t) + D31w

∗
i (t) + D32ζ

′
i(t) + D31∆δiz(t)

where

∆δi =
∂∆

∂δi
= diag{0r1×r1 , . . . , Iri , . . . ,0rq×rq}

w∗i (t) = ∆z′i(t)

ζ′i(t) =
∂Θ(ω)

∂ω

∣∣∣∣
ω=ω(t)

ω′i(t) = Θω (ω (t))ω′i(t)

which can be rewritten as a time-variant linear system.
Further information on the implementation of the LFT-based
identification algorithm can be found in [31]. A MATLABTM

Toolbox for parameter identification of nonlinear LFT models
is available, as well1.

It is also worth mentioning that, in order to deal with
parameter estimation, it is essential to rewrite model (5−10) by

1See https://github.com/looms-polimi/LFTSolver.

introducing normalized unknown parameters δ̄i ∈ [−1, 1], as
parameter δi varies between a maximum δmax

i and a minimum
δmin
i value, as follows

δi =
(δmax
i + δmin

i )

2
+
δ̄i(δ

max
i − δmin

i )

2
Remark 1 (Online implementability of the identification

algorithm): From an implementation point of view, the LFT-
based identification algorithm can be decomposed into three
steps:

1) integration of a LFT system;
2) integration of q linear sensitivity filters;
3) solution of the optimization algorithm in (3).

Concerning step (1), the integration of a LFT system can
be easily implemented online, or even in a real-time system,
using any fixed-step solver. The time required to perform
step (2), representing the integration of q linear filters, can be
considered negligible with respect to step (1) and (3). Finally,
step (3) can be solved, as already mentioned in (4), using
an iterative optimization procedures such as, for example, the
Gauss-Newton algorithm. To meet the required time constraint,
the optimization algorithm can be stopped either when the
minimum is reached, or when the available time expires.

III. LFT FORMULATION OF THE SINGLE-TRACK MODEL

Though, as already mentioned in Section I, almost any
nonlinear model allows for a LFT formulation, as it is common
in the control and robotics literature, the longitudinal and
lateral dynamics of a vehicle are here represented using
the single-track approximation (Figure 2), i.e., the motion
equations are developed lumping together the wheels on the
same front or rear axle at its centreline, and assuming the
vehicle mass is concentrated in the center of gravity, whose
position with respect to the wheel axles is fixed.
Assuming that:
• ground slope, longitudinal load transfer, and pitching and

rolling motions are neglected;
• sideslip and steering angle are small enough to introduce

the approximations sin(x) ≈ x and cos(x) ≈ 1;
• the vehicle is rear-wheel drive and braking forces are

neglected;
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• the vehicle velocity is slowly varying, i.e., the Newton
equation related to the longitudinal motion is considered
at steady state;

the single-track motion model considered for parameter iden-
tification can be expressed through the following dynamical
system

mv̇y = Ff + Fr −mvxr
Iz ṙ = aFf − bFr
ψ̇ = r

(11)

where

• vx and vy are the longitudinal and lateral components of
the velocity of the center of mass, respectively;

• r is the yaw rate;
• ψ is the yaw angle;
• Iz , is the yaw inertia referred to the center of gravity;
• m, is the mass;
• a and b are the distances of the vehicle center of gravity

from the front and rear axles, respectively;
• Ff and Fr are the front and rear lateral forces, respec-

tively.

The front and rear lateral forces can be represented by a
linear tyre model or by a more complex, but more general,
nonlinear one. To consider either standard conditions and
driving at the limits of handling, a nonlinear Fiala tyre model,
a variant of brush model [33], is here introduced

F? =


C?z

(
1−

|z|
zsl?

+
z2

3z2sl?

)
|z| < zsl?

µFz?sgn (α?) |z| ≥ zsl?

(12)

where “?” stands for “f” or “r”, and

z = tan (α?) zsl? =
3µFz?
C?

with C? being the front and rear cornering stiffnesses, µ the
tyre-ground friction coefficient, and Fz? the tyre normal load.
This load can be expressed in different ways, depending on
the considered load transfer model. For the sake of simplicity,
a static load is here considered, i.e.,

Fzf =
mgb

2 (a+ b)
Fzr =

mga

2 (a+ b)

Front and rear slip angles α? are related to vehicle lateral
dynamics by the following equations

αf = −β − a r
vx

+Gγ

αr = −β + b
r

vx

(13)

where γ and G are the steering angle and the steering gain,
respectively, and β is the sideslip angle, defined as

β = arctan

(
vy
vx

)
(14)

Fig. 2: Single-track vehicle model.

Model (11)-(13) can be written in the general form (1)
by defining the following state, x, output, y, input, u, and
parameter, δ, vectors:

x =
[
vy r

]T
y =

[
r ay β

]T
u =

[
vx γ

]T
δ =

[
Cf

m

Cr

m

Cf

Iz

]T (15)

where ay is the lateral acceleration, defined as follows

ay =
1

m
(Ff + Fr)

Recalling that

Cr
Iz

=

(
Cr
m

Cf
Iz

)(
Cf
m

)−1
=
δ2δ3
δ1

(16)

where δi is the i-th component of vector δ, a relevant LFT
formulation is given by

ẋ =

w1 + w2 − ζ4

w3 −
b

a
ζ5

 z =

 ζ2ζ3
aζ2

 w =

z1δ1z2δ2
z3δ3



ω =



x1
x2
w1

w2

w3

ζ1
u1
u2


ζ =



arctan

(
ω1

ω7

)
Φ (αf , zslf )
Φ (αr, zslr)
ω2ω7

ω4ω5

ω3


y =

 x2
w1 + w2

ζ1



where

Φ(α?, zsl?) = tan (α?)

[
1− |tan (α?)|

zsl?
+

tan2 (α?)

3z2sl?

]
and the slip angles can be expressed as

αf = −ω6 − a
ω2

ω7
+Gω8

αr = −ω6 + b
ω2

ω7

The sixteen constant matrices defining the LFT formulation of
the single-track model are reported in Appendix A.

Remark 2 (Fiala model identifiability): Note that, exper-
imental results show that in full sliding conditions, namely
when lateral forces are about to saturate, a scarce identifiability
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is obtained, and parameters zsl? , that determine the full sliding
condition, are weakly dependent on the cornering stiffness
values. For these reasons, though the LFT framework would
have allowed to explicitly consider the dependence of zsl?
on the unknown parameters δ, it was preferred to consider
zsl? as constant parameters (whose values can be computed
based on nominal parameter values or, in the case of an online
identification, based on the last identification results), while
freezing the identification algorithm during full sliding, and
when vx → 0. This choice, though possibly been suboptimal,
allows to have a definitely more simple LFT form, reducing
the computational burden and easing the developing of a fast
online implementation. Furthermore, it allows to express the
LFT form in terms of unknowns that are expressed as a ratio
between the parameters one would like to identify and vehicle
mass or inertia, significantly increasing the estimation quality
(see Remark 3).

Remark 3 (selecting unknown parameters): It must be
emphasized that cornering stiffnesses appear in the model only
in ratios with inertial parameters. On one hand, an accurate
estimation of Cf and Cr depends on an accurate a-priori
knowledge of m and Iz; on the other hand, the four parameters
Cf , Cr, m and Iz cannot be independently estimated.
As a consequence, one could directly consider the four ratios
Cf/m, Cr/m, Cf/Iz , and Cr/Iz as unknown parameters, but
they are still not independent, as one of them can be computed
from the other three, as shown in (16).
Three ratios, namely δ1 = Cf/m, δ2 = Cr/m, and δ3 =
Cf/Iz , have been therefore considered for identification, while
assuming vehicle mass m as known, so that the estimated
values for the cornering stiffnesses and the vehicle moment of
inertia can be computed as

C̃f = mδ̃1 C̃r = mδ̃2 Ĩz = m
δ̃1

δ̃3

where δ̃i is a maximum-likelihood estimate of parameter δi.

Remark 4 (selecting input measurements): The identifica-
tion problem in (15) has been formulated considering as
measurements the physical quantities that characterize the
lateral dynamics of a vehicle and, for this reason, that are
more sensitive to changes in the cornering stiffnesses, i.e., the
identified parameters.
It is straightforward that the measurement vector can be arbi-
trarily changed, adding, for example, all the measurements that
are available on the vehicle. There is no guarantee, however,
that adding further measurements increases the estimation
quality. A typical example is represented by vehicle position
measurements, provided by a GNSS system that is almost
always available on a vehicle. It has been verified that, adding
these measurements that, especially in urban environments, are
affected by high frequency flicker noise and multi-path errors,
does not increase identifiability or estimation quality.
Finally, among the selected measurements, yaw rate r and
lateral acceleration ay can be easily measured using a standard
IMU, while sideslip β can be directly measured, using suitable
optical sensors, or estimated using one of the many algorithms
available in the literature [34].

Remark 5 (selecting tyre model): The LFT formulation of
the single-track model presented in this section is based on the
Fiala tyre model, as this model represents the best compromise
between accuracy and complexity, at least as far as model-
based control and estimation is concerned.
The LFT approach here proposed, however, allows to easily
reformulate the model considering different tyre modelling
techniques, without changing the identification procedure,
allowing thus the selection of the tyre model that is most suited
for each vehicle or application.
As an example to show this advantage, Appendix B reports
the LFT formulation of the single-track model considering, as
tyre model, the Pacejka magic formula.

Remark 6 (selecting model complexity): The LFT formu-
lation of the single-track model presented in this section
is based on some common simplifying assumptions, e.g.,
the approximations sin(x) ≈ x and cos(x) ≈ 1. Though
the results presented in Section V demonstrate that those
approximations do not significantly affect the accuracy of
the estimated parameters, even when driving at the limits of
handling, the LFT approach allows to easily reformulate the
model including those nonlinearities, without changing the
identification procedure. Consequently, model complexity can
be easily adapted according to application requirements.

IV. EXPERIMENTAL SETUP

A 1:10 scale car-like vehicle (Figure 3), inspired by the
ones used by ETH and Georgia Institute of Technology
researchers [35], [36], has been adopted to test the proposed
identification algorithm.

Fig. 3: The experimental platform.

The platform is a RWD vehicle, actuated by a current con-
trolled brushless motor, and equipped with four independent
suspensions and an electric steering servo along with a rear
differential. The vehicle can be either manually controlled with
a standard RC radio system, or can autonomously drive thanks
to the installation of an embedded PC Odroid XU4 that runs
a ROS control architecture. In both situations, an Arduino
UNO provides a bidirectional communication with steering,
propulsion, and wheel encoders.

The vehicle is equipped with an IMU, providing linear
acceleration, angular velocity and attitude measurements, and
a marker that allows to track vehicle position and orientation
at a frequency of 100 Hz using a 12-camera OptiTrack motion
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TABLE I: Steering servo actuator data

Maximum steering angle ± 45 deg
Actuator bandwidth 14 Hz
Actuator delay 0.055 s
Pole natural frequency 87.62 rad/s
Pole damping 0.75

TABLE II: Vehicle data

Mass 2.04 Kg
Distance of COG from front axle 0.1713 m
Distance of COG from rear axle 0.0887 m
Rubber tyres static friction coefficient 0.65
Drifting tyres static friction coefficient 0.385

tracking system, which has been used to estimate vehicle
longitudinal and lateral velocities.

The steering servo dynamics has been identified by mount-
ing the IMU on one of the front wheels, and by recording the
yaw rate in response to a step of the angular position of the
servo. Servo dynamics is well reproduced by a second order
low-pass filter, whose parameters are reported in Table I.

Vehicle mass and center of gravity position have been mea-
sured with a digital scale. In particular, longitudinal position
of the center of gravity has been estimated by measuring the
longitudinal weight distribution, i.e., mass acting on the front
and rear axle. The results are reported in Table II.

Finally, the vehicle can be equipped with two different sets
of tyres, i.e., drifting tyres, characterized by an hard com-
pound, and rubber tyres, characterized by a soft compound,
and experiments are performed on a four square meter carpet
used to simulate road surface. Preliminary identification ex-
periments, measuring vehicle lateral acceleration at the center
of gravity during a steady-state turning manoeuvre bringing
the vehicle up to its limits of handling, have been performed
in order to determine static friction coefficients associated to
each set of tyres. The results are reported in Table II.

Remark 7 (validity of the scaled car experiments): Using a
car model instead of a real vehicle allows to execute aggressive
manoeuvres without running the risk of damaging the car
or the environment, or of harming people; as otherwise it
could be done only in simulation. The adoption of a scaled
vehicle model is also fostered by the existence of a dynamic
similitude, expressed by the Buckingham-Pi theorem [37],
[38]. According to it, the solutions to the nonlinear differential
equations modelling a real vehicle are proved to be identical,
after accounting for the dimensional scaling of each parameter
in the equations, to the solutions of the differential equations
describing the scaled model. In particular, the scaled car-like
vehicle here considered can be put in dynamic similitude with
a Sedan car with a dimensional scaling factor of 4, i.e., a
velocity of 1 m/s for the scaled car corresponds to 4 m/s for
the Sedan car.

V. EXPERIMENTAL RESULTS

An extensive experimental campaign has been performed
to validate the proposed identification approach, considering
various trajectories executed on a carpet surface with the

two different sets of tyres. Among the many performed ex-
periments, results of two of them characterized by a mixed
trajectory, and two by an eight shaped trajectory, where for
each trajectory one experiment is executed with drifting and
one with rubber tyres, are illustrated in the following.
The values of the identified parameters, that are the same for
all experiments, are reported in Table III.

The measurements considered in the identification process,
as explained in Section III, are yaw rate r, lateral acceleration
ay , and sideslip angle β. As introduced in Section IV, the
vehicle is equipped with an IMU, lateral acceleration and
yaw rate can be thus obtained, with a frequency of 100 Hz,
from this sensor. On the other hand, vehicle pose is measured
by an OptiTrack motion capture system with a frequency of
100 Hz, and this measure is used to compute, using a digital
filter, the longitudinal and lateral vehicle velocities, vx and
vy , and, using expression (14), sideslip angle β. Note that,
the presence of outliers and discontinuities in these signals is
due to measurement errors or packet loss in the OptiTrack
system. Though this issue occurs only on a few samples,
that can be easily removed or corrected, their presence allows
to emphasise the algorithm robustness against measurement
errors.
The available measurements allow to compute, thanks to
relations (13), slip angles, and, solving the following linear
system for each sample[

a cos (γ) −b
cos (γ) 1

] [
Ff
Fr

]
=

[
Iz ṙ
may

]
the front and read lateral forces Ff and Fr.
Finally, steering servo does not provide a measurement of
the actual steering position, only the steering command, i.e.,
the reference value of the steering servo loop, is available.
Considering, however, that steering servo dynamics are not
fast enough to be considered as ideal, an estimate of the actual
steer position, obtained by filtering the steer command with the
second order identified steering servo dynamics (see Table I),
is used in the identification process.
Summarising, in all experiments the estimation algorithm is
fed with:

• vehicle commands
– steering angle γ, obtained by filtering the steer

command with the second order identified steering
servo dynamics;

– longitudinal velocity vx, obtained differentiating the
vehicle position measured by the optoelectronic sys-
tem;

• vehicle measurements
– yaw rate r and lateral acceleration ay , measured by

an IMU;
– sideslip angle β, obtained differentiating the vehicle

position measured by the optoelectronic system and
applying equation (14);

and it provides an estimate of

• cornering stiffness C̃f and C̃r;
• yaw inertia Ĩz;
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TABLE III: Identified vehicle parameters

Yaw moment of inertia 0.03054 Kgm2

Front wheel cornering stiffness 25.5 N/rad
Rear wheel cornering stiffness 51.0 N/rad

Finally, using these parameters and the single-track model,
the proposed approach allows to reconstruct the time history
of slip angles αf , αr, lateral forces Ff , Fr, sideslip β,
yaw rate r, and lateral acceleration ay , without any further
computational burden, i.e., it simultaneously performs lateral
vehicle dynamics state estimation and parameter identification.

Note that, in order to properly balance the influence of the
available measurements in the identification process, a simple
normalization procedure has been applied

W =


W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wp


with

Wi =
1

(ȳi −
¯
yi)2

where ȳi is the highest value of the i-th output measurement,
and

¯
yi the lowest one.

A. Mixed trajectory

The first set of experiments is related to a mixed trajectory,
which includes turns characterized by different turning radii
and taken at low and high speed, i.e., the typical input used
for parameter identification, as it is able to persistently excite
all system dynamics.
An example of the input signals, i.e., vehicle speed and steer,
is reported in Figures 4a and 4b for rubber tyres, and in
Figures 4c and 4d for drifting tyres.

Using the available measurements and applying the proce-
dure described in Section III, cornering stiffnesses and yaw
inertia have been estimated (results are reported in Table III).
Then, slip angles and lateral forces have been reconstructed.
For the experiment with rubber tyres the time interval con-
sidered for identification is [5, 20] seconds, while for the one
with drifting tyres is [5, 15] seconds.

A first validation of the identified parameters is shown
in Figure 5, where the force-slip curves obtained from re-
lation (12), using the identified values of the cornering
stiffnesses, are shown together with force and slip samples
reconstructed from measurements. As it can be clearly seen,
either in the case of rubber (Figures 5a and 5b) and drifting
(Figures 5c and 5d) tyres force-slip curves obtained with iden-
tified parameters are in good accordance with experimental
data.

A second validation is based on the comparison between
experimental and simulation data, where the second one are
obtained simulating model (11)-(13) based on the values
of the identified parameters. In particular, Figures 6 and 7
show the comparison between simulated and experimental
measurements related to vehicle lateral dynamics, i.e., yaw

(a) Steer (b) Speed

(c) Steer (d) Speed

Fig. 4: Vehicle commands in mixed trajectory experiment with
rubber (Figures 4a and 4b) and drifting (Figures 4c and 4d)
tyres.

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 5: Force-slip curve (estimated curve as a black solid
line, experimental data as black dots) in mixed trajectory
experiment with rubber (Figures 5a and 5b) and drifting
(Figures 5c and 5d) tyres.

rate, lateral acceleration and sideslip, for the case of rubber and
drifting tyres, respectively. Instead, Figures 8 and 9 show the
comparison between simulated and experimental lateral forces
and slip angles, respectively, reconstructed from measurements
as explained in Section V. It is apparent that simulation and
experimental results are in very good accordance.

B. Eight shaped trajectory

The second set of experiments is related to an eight shaped
trajectory, characterized by two curves with opposite values of
yaw rate. Differently from the one presented in Section V-A,
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(a) Yaw rate (b) Lateral acceleration

(c) Sideslip

Fig. 6: Lateral dynamics (experimental data in grey, simulated
data in black) in mixed trajectory experiment with rubber tyres.

(a) Yaw rate (b) Lateral acceleration

(c) Sideslip

Fig. 7: Lateral dynamics (experimental data in grey, simulated
data in black) in mixed trajectory experiment with drifting
tyres.

the eight shaped trajectory is not able to persistently excite all
system dynamics – see, e.g., Figures 10b and 10d showing
an almost constant speed –, but it is a typical trajectory
considered for drifting manoeuvres. As a consequence, this set
of experiments aims on one side at showing a further validation
of the identified parameters, on the other side at demonstrating
that the identification algorithm is able to provide accurate
results even in the case of a non-exciting trajectory.
An example of the input signals, i.e., vehicle speed and steer,
is reported in Figures 10a and 10b for rubber tyres, and in
Figures 10c and 10d for drifting tyres.

In this case, cornering stiffnesses and yaw inertia have
been estimated considering the time interval [5, 10] seconds
for rubber and drifting tyres. The values of the identified

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 8: Tyre lateral forces (experimental data in grey, simulated
data in black) in mixed trajectory experiment with rubber
(Figures 8a and 8b) and drifting (Figures 8c and 8d) tyres.

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 9: Tyre slip angles (experimental data in grey, simulated
data in black) in mixed trajectory experiment with rubber
(Figures 9a and 9b) and drifting (Figures 9c and 9d) tyres.

parameters, reported in Table III, are the same as for the mixed
trajectory experiment.

As for the mixed trajectory, a first validation (Figure 11)
is based on a comparison between force-slip curves obtained
from relation (12), using the estimated values of the cornering
stiffnesses, and force and slip samples reconstructed from
measurements. A second validation, instead, is based on a
comparison between experimental and simulation data, where
the second one are obtained simulating model (11)-(13) based
on the values of the identified parameters. In particular, mea-
surements related to the lateral dynamics (Figures 12 and 13),
and reconstructed values of lateral forces (Figure 14) and slip
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(a) Steer (b) Speed

(c) Steer (d) Speed

Fig. 10: Vehicle commands in eight shaped trajectory ex-
periment with rubber (Figures 10a and 10b) and drifting
(Figures 10c and 10d) tyres.

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 11: Force-slip curve (estimated curve as a black solid line,
experimental data as black dots) in eight shaped trajectory
experiment with rubber (Figures 11a and 11b) and drifting
(Figures 11c and 11d) tyres.

angles (Figure 15) are considered.
Though, as already mentioned, this trajectory, being more
close to a realistic driving scenario, is not able to persistently
excite all vehicle dynamics, it is still apparent that simulation
and experimental results are in very good accordance.

(a) Yaw rate (b) Lateral acceleration

(c) Sideslip

Fig. 12: Lateral dynamics (experimental data in grey, simulated
data in black) in eight shaped trajectory experiment with
rubber tyres.

(a) Yaw rate (b) Lateral acceleration

(c) Sideslip

Fig. 13: Lateral dynamics (experimental data in grey, simulated
data in black) in eight shaped trajectory experiment with
drifting tyres.

Finally, as already mentioned, eight shaped trajectory can
be used as a validation dataset to assess the performance
of the identification algorithm. In fact, considering that the
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TABLE IV: NMPE

r ay β Ff Fr αf αr

Rubber tyres 0.36 2.27 0.16 2.45 4.67 0.07 0.10
Drifting tyres 0.03 0.12 0.01 0.19 0.17 0.01 0.01

identification process yields the same values for the mixed
and eight shaped trajectories, one can assume parameters in
Table III have been identified with the mixed trajectory, and
use the eight shaped trajectory as a validation dataset.
As a ground truth of cornering stiffness values is not available,
the performance of the identification algorithm can be only
indirectly assessed, considering the error in predicting the
available measurements by simulating model (11)-(13) based
on the identified parameters. In particular, for each variable yi
the Normalized Mean Prediction Error (NMPE) is considered,
i.e.,

NMPE (yi) =
1

N

N∑
k=1

(y̌i (tk)− ŷi (tk))
2

where N is the number of samples, y̌i (tk) and ŷi (tk) are the
measured and simulated value of variable yi at time instant
tk, respectively.
Table IV reports the values of the NMPE index for the eight
shaped trajectory with rubber and drifting tyres related to
the variables describing the lateral dynamics, that are directly
measured, and the variables describing tyre-ground interaction,
that are reconstructed from available measurements. The low
values of NMPE on the whole validation dataset, either in the
case of rubber and drifting tyres, confirm the validity of the
proposed identification approach.

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 14: Tyre lateral forces (experimental data in grey, sim-
ulated data in black) in eight shaped trajectory experiment
with rubber (Figures 14a and 14b) and drifting (Figures 14c
and 14d) tyres.

(a) Front tyre (b) Rear tyre

(c) Front tyre (d) Rear tyre

Fig. 15: Tyre slip angles (experimental data in grey, simulated
data in black) in eight shaped trajectory experiment with rub-
ber (Figures 15a and 15b) and drifting (Figures 15c and 15d)
tyres.

C. Comparison with a different identification algorithm

In order to better assess the performance of the proposed
algorithm, a comparison with a different approach to parameter
identification of the vehicle lateral dynamics is here presented.

At the best of the authors’ knowledge, no commonly
accepted benchmark algorithm is available in the literature
to assess the performance of state estimation and parameter
identification approaches applied to vehicle lateral dynamics.
Furthermore, according to the state-of-the-art presented in
Section I, selecting the proper algorithm, i.e., an algorithm
that should be able to
• support either a linear or nonlinear tyre model;
• solve simultaneously the state estimation and the param-

eter identification problem;
• support online estimation and parameter adaption running

on a standard embedded device;
it is quite hard. For this reason, a parameter identification al-
gorithm based on nonlinear optimisation [39], that has been al-
ready adopted for lateral vehicle dynamics identification [40],
is here considered for the sake of comparison. This algorithm
supports either a linear or nonlinear tyre model, and can solve
almost simultaneously the state estimation and the parameter
identification problem, but it cannot support online estimation
as it involves a quite high computational burden. The ultimate
goal of this comparison is thus to show that the quality of
the results yielded by the proposed algorithm, e.g., in terms
of NMPE value, are comparable to the ones obtained using a
more accurate, but also computationally complex, algorithm.

The approach presented in [39], and already applied to
the lateral vehicle dynamics identification problem in [40],
is here used to estimate the front and rear cornering stiffness,
and the yaw inertia, using the same measurements, i.e., yaw
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(a) LFT identification (b) Nonlinear identification

(c) LFT identification (d) Nonlinear identification

(e) LFT identification (f) Nonlinear identification

Fig. 16: Lateral dynamics (experimental data in grey, simulated
data in black) in eight shaped trajectory experiment with drift-
ing tyres, obtained with LFT (Figures 16a, 16c and 16e) and
nonlinear (Figures 16b, 16d and 16f) identification algorithms.

rate r, lateral acceleration ay , and sideslip angle β, the same
time intervals, and the same experimental data adopted in
Section V-B. The nonlinear optimisation problem has been
started from one thousand different initial guesses, selected
as the vertex of an equally spaced grid over the unknown
space, characterised by Cf ∈ [20, 30], Cr ∈ [45, 55], and
Iz ∈ [0.028, 0.032].

Table V compares the values of the NMPE index for the two
algorithms. According to these values, it is apparent that none
of the two algorithms can be considered superior than the other
one, as for some variables the LFT estimation outperforms,
while for others the nonlinear estimation yields better results.
In any case, the NMPE values are always so close that, from
a practical point of view, the two identification algorithms
can be considered equivalent, as it can be observed from
the comparison of the estimated lateral dynamics quantities
(Figure 16 and Figures 19a, 19b and 19g), tyre lateral forces
(Figure 17 and Figures 19e and 19f), and slip angles (Figure 18
and Figures 19c and 19d).

In conclusion, the proposed identification algorithm ex-
hibits the same performance of the nonlinear identification
approach presented in [39], [40]. Despite this, the approach

(a) LFT identification (b) Nonlinear identification

(c) LFT identification (d) Nonlinear identification

Fig. 17: Tyre lateral forces (experimental data in grey, simu-
lated data in black) in eight shaped trajectory experiment with
drifting tyres, obtained with LFT (Figures 18a and 18c) and
nonlinear (Figures 18b and 18d) identification algorithms.

(a) LFT identification (b) Nonlinear identification

(c) LFT identification (d) Nonlinear identification

Fig. 18: Tyre slip angles (experimental data in grey, simulated
data in black) in eight shaped trajectory experiment with
drifting tyres, obtained with LFT (Figures 18a and 18c) and
nonlinear (Figures 18b and 18d) identification algorithms.
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(a) yawrate (b) lateral acceleration

(c) front slip (d) rear slip

(e) front lateral force (f) rear lateral force

(g) sideslip

Fig. 19: Lateral dynamics, tyre lateral forces and slip angles
in eight shaped trajectory experiment with drifting tyres, ob-
tained with LFT (black solid line) and nonlinear identification
algorithms (grey solid line).

here presented is computationally efficient, and can support
online estimation and parameter adaption, it can be thus easily
included in a real-time control algorithm. On the contrary,
the nonlinear approach can be only used offline to analyse a
previously recorded dataset using a batch approach.

VI. CONCLUSIONS

This paper presents a novel approach for lateral vehicle
dynamics parameter identification and state estimation. The
algorithm leverages on a LFT representation of vehicle and
tyre models that allows to easily consider nonlinearities, and
a simulation based identification procedure that, exploiting the

TABLE V: NMPE comparison

LFT identification Nonlinear identification
Rubber tyres Drifting tyres Rubber tyres Drifting tyres

r 0.36 0.03 1.23 0.05
ay 2.27 0.12 0.92 0.19
β 0.16 0.01 0.18 0.01
Ff 2.45 0.19 2.31 0.15
Fr 4.67 0.17 2.10 0.33
αf 0.07 0.01 0.08 0.01
αr 0.10 0.01 0.08 0.01

properties of LFT representation, allows to develop a compu-
tationally efficient algorithm that can be easily translated in
any programming language, and run on a standard embedded
device for online identification. Furthermore, thanks to the
adoption of nonlinear tyre models, like Fiala or Pacejka, the
proposed algorithm can be used not only in standard driving
conditions, but also at the limits of handling.
An extensive experimental campaign has been performed to
validate the proposed identification approach, considering vari-
ous trajectories executed on surfaces characterized by different
static friction coefficients, and with different tyres. The results
of two experiments characterized by a mixed trajectory, and
two by an eight shaped trajectory, where for each trajectory
one experiment is executed with drifting and one with rubber
tyres, are presented, demonstrating the effectiveness of the
algorithm in estimating the vehicle lateral dynamics.
Considering that in some applications load transfer can play
an important role in tyre behaviour, but it can significantly
increase the complexity of the identification problem, an
extension of the methodology here proposed, that allows to
take load transfer into account, will be considered as a future
work.

APPENDIX A
LFT SINGLE-TRACK MODEL MATRICES

The sixteen constant matrices that allow to express the
single-track model in LFT formulation are here reported:

A =

[
0 0
0 0

]
B1 =

[
1 1 0
0 0 1

]

B2 =

[
0 0 0 −1 0
0 0 0 0 − b

a

]
B3 =

[
0 0
0 0

]

C1 =

0 0
0 0
0 0

 D11 =

0 0 0
0 0 0
0 0 0



D12 =

0 1 0 0 0
0 0 1 0 0
0 a 0 0 0

 D13 =

0 0
0 0
0 0
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C2 =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


D21 =



0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



D22 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


D23 =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1



C3 =

0 1
0 0
0 0

 D31 =

0 0 0
1 1 0
0 0 0



D32 =

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 D33 =

0 0
0 0
0 0


APPENDIX B

LFT SINGLE-TRACK MODEL WITH PACEJKA MODEL

The same single-track motion model introduced in Sec-
tion III is here considered

mv̇y = Ff + Fr −mvxr
Iz ṙ = aFf − bFr
ψ̇ = r

but now the lateral forces are related to the slip angles using
the Pacejka tyre model [41]

F? = D? sin {C? arctan [B?α?

−E? (B?α? − arctan (B?α?))]}
where “?” stands for “f” or “r”, B?, C?, D? and E? are the
coefficients of the magic formula, and α? are the slip angles
defined as in (13).
This model can be written in the general form (1) by defining
the same state, input and output vectors as in (15), while
considering the parameter vector

δ =

[
Df

m

Dr

m

Df

Iz
Bf Cf Ef Br Cr Er

]T
obtaining the LFT reformulation given by

ẋ =

w1 + w2 − ζ10

w3 −
b

a
ζ11

 z =



ζ2
ζ3
aζ2
ζ4
ζ5
ζ6
ζ7
ζ8
ζ9


w =



z1δ1
z2δ2
z3δ3
z4δ4
z5δ5
z6δ6
z7δ7
z8δ8
z9δ9



ω =



x1
x2
w1

w2

w3

ζ1
u1
u2
w5

w8

w4

w6

w7

w9



ζ =



arctan
ω1

ω7
sin(ω9)
sin(ω10)

−ω6 − a
ω2

ω7
+Gω8

arctan(ω11 − ω12)
ω11 − arctan(ω11)

−ω6 + b
ω2

ω7
arctan(ω13 − ω14)
ω13 − arctan(ω13)

ω2ω7

ω4ω5

ω3



y =

 x2
w1 + w2

ζ1
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