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Abstract—This paper proposes an energy management system
(EMS) for shared electric bicycles.The objective is to guarantee
electric assistance to the cyclist while avoiding discharging the
battery. The basic working principle exploits the cycling efficiency
gaps.

The proposed multi-layered EMS is specifically tailored to a
free-floating bike sharing setting. The innermost layer manages
the assistance and energy harvesting with the objective of yielding
an intuitive human-machine interface. The middle level modu-
lates the level of assistance so to track a desired average battery
power. This is an adaptive model-based controller designed on a
control-oriented model of the cyclist and bicycle energy dynamics.
A cyclist profiling mechanism enables the model adaptation. The
outermost loop guarantees the long term robustness by tracking
a desired battery state of charge profile.

Extensive simulations and experimental tests validate this
approach in terms of usability and charge sustenance, proving
that the cyclist profiling is of paramount importance.

I. INTRODUCTION

Privately owned fossil-based mobility has shown over and

over not to be sustainable. Shared mobility and light electric

vehicles (LEV) could represent a viable alternative. Shared

mobility, i.e. the availability of a fleet of vehicles that can

be rented on the go, could reduce congestion. LEV’s offer

more energy-efficient means of transportation. Many cities are

actively promoting electric vehicle sharing in the shape of

shared electric scooters, moped, and cars.

One of the most successful vehicle sharing system in

European and Asian cities is bike-sharing. Bicycles have many

advantages; they are efficient, green and promote a healthy life

style. Bicycles are however not viable for everyone as they

require a certain level of physical fitness. The introduction of

a bike sharing system based on Electrically Power Assisted

Cycles (EPAC) could enlarge the user basin. In EPAC’s, an

electric motor provide assistance while cycling [1]–[4], thus

reducing the cyclist’s physical effort.

There exist two types of bike sharing systems: station-based

and free-floating. In station-based systems, bicycles are parked

(picked and returned) at fixed stalls. In free-floating systems,

bicycles are freely parked and picked-up in a predefined

geographical area [5].

Station-based bike sharing systems are relatively easy to

electrify: the stalls can be equipped with a charging system

that keeps the bicycles charged. The task is more complex for

free-floating systems where normally bicycles are maintained
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by a team of employees. Recharging the bicycles considerably

increases operational costs.

This paper discusses the application of charge-sustaining

control to electric bikes designed to operate in a sharing

system. In particular, we extend the concept of the charge

sustaining full hybrid electric bicycle (HEB), whose potential

has been already assessed in [6]–[8], to bike sharing ap-

plications. Charge sustaining HEB’s exploit the gaps in the

cyclist’s pedaling efficiency to guarantee a zero net battery

energy consumption and a reduction of the cyclist’s pedaling

effort. The idea of charge sustaining HEB’s stems from the

work on hybrid-electric vehicles ( [9], [10]). Designing an

energy management system for hybrid bicycles follows the

same rationale as in traditional hybrid-electric vehicles, but

there are differences that set the problem aside and prevent

the application of well-proven techniques like the equivalent

consumption minimization strategy [11]. The two most im-

portant differences are the fact that the primary mover’s (i.e.

the cyclist) efficiency cannot be modeled with static maps and

the fact that the pedals are at the same time a user-machine

interface and a power flow path, see also [12], [13] for more a

more detailed comparison between hybrid bicycles and other

vehicles.

The existing literature on the topic examines private bike

usage. The integration of HEB’s in a bike sharing scenario

poses new challenges:

• bike sharing systems need to track and manage the renting

of the vehicles; each bicycle is equipped with additional

electronics that considerably change the electric power

absorption profiles with respect to private use. In partic-

ular, the absorption while the bicycle is not being used

cannot be neglected.

• the typical use of a vehicle in a bike sharing context

is very different from the use of a private bicycle: by

definition, a shared bicycle is used by a number of

different users; the average trip is considerably shorter

than in private use and the mission profiles have a larger

variability than in private use.

These factors call for a complete redesign of the bicycle

energy management system. This paper designs a novel energy

management system for a HEB designed to be integrated in a

bike sharing system. In particular:

• We define a method to quantitatively profile, from the

energy point of view, the users of the sharing system.

• We develop a causal and adaptive EMS for shared

bicycles. The EMS aims at providing assistance while

avoiding battery charge depletion. The EMS uses the

cyclists’ profiles to adapt to each cyclists’ characteristics.

• We validate the approach on data collected during a trial



in the City of Milan of an electric free-floating bicycle

sharing system.

We stress that the focus is on the bicycle-level EMS; as it will

become clear later, the bicycle is only one, although critical,

element of a bike sharing system. Having an effective EMS is

only a necessary condition for the economic sustainability of

a bicycle sharing system.
The paper is structured as follows: Section II and Section

III describe the bicycle, and its simulator respectively; Section

IV details the adaptive energy management system. Section V

validates the system, both in simulation and experimentally.

Finally, Section VI draws the relevant conclusions.

II. ELECTRIC SHARED BIKE DESCRIPTION

This section describes the characteristics of the reference

bicycle in the context of a free-floating bike sharing scenario.
The bicycle is build around a city bike frame (see Figure 1)

equipped with an All in One (AiO) powertrain and additional

items for managing the renting process. The AiO contains:

• A Brushless DC motor (with a nominal power of 250 W).

• A 160 Wh Li-ion battery pack with its Battery Manage-

ment System (BMS). The BMS implements safety checks

and estimates the battery state of charge as explained in

[14].

• An Inertial Measurement Unit (IMU), that, among other

tasks, estimates the road slope using the results of [15].

• A programmable Electric Control Unit (ECU).

• Pedaling cadence sensor.

• Motor Speed sensor.

The powertrain is the same as the one discussed in [6],

[8]. Note that the bicycle is not equipped with a pedaling

torque sensor. In addition, an electronic box enables the rental

process. This sharing box contains:

• a GPS system for tracking the bicycle position.

• A cellular network communication unit.

• An electro-mechanical lock.

These components draw power both during the ride and while

idling between rentals. The rental process consists of the

Fig. 1. The bicycles used in this study.

following steps:

1) the user logs on the service. The service tracks all the

bicycles and the user’s app shows their position on a

map.

2) The user reaches the closest bike.

3) The user unlocks the bike through a cloud request and

starts the ride.

4) Once the user has reached her destination, she releases

the bike by locking it manually. The bicycle connects to

the cloud and communicates the end of the rental.

Note that the communication between the bicycle and the user

always happens through the internet.

III. SYSTEM MODELING

This section proposes a model of the human-bicycle system.

The focus of the model is on the power fluxes. We organize

the discussion in several components: vehicle dynamics, pow-

ertrain dynamics, trip dynamics and cyclist dynamics.

A. Vehicle dynamics

The model focuses on the longitudinal dynamics of the

vehicle, as the ones that mainly affect energy efficiency and

consumption ( [16]). The force balance is:

Mv̇ = Fg(θ) + Fµ(v) + (Tc + Tm − Tb)r

Fg = −Mg sin(θ)

Fµ = −
1

2
ρCxAv

2
w −Dvv − CrMg cos(θ).

where M is the total equivalent mass of the bicycle and of

the cyclist, v is the longitudinal bicycle speed with respect to

the ground, vw is the longitudinal bicycle speed with respect

to the wind, ρ is the air density, A is the front area of the

bicycle and of the cyclist, Cx is the drag coefficient, Dv is

the mechanical friction coefficient, θ is the road slope (positive

uphill), r is the wheel rolling radius, Cr is the rolling friction

coefficient, Tc is the traction torque delivered by the cyclist at

the wheel (only positive), Tb is the braking torque delivered

by mechanical brake (only negative), and Tm the wheel torque

generated by the motor (that can be both positive - assistive -

and negative - regenerative). The model parameters are either

measured (mass, wheel radius and slope) or identified from

coasting down experiments (see [8], [17]).

B. Powertrain dynamics

Figure 2 depicts the system power flows. The battery power,

battery

black box and
accessories

driver and
motor transmission

cyclist

Pbatt

Pload

Pe Pm Pt

Pc

Pb

Fig. 2. Schematic representation of the power flows during the ride.

Pbatt, is the sum of the power consumed by the loads Pload

and the power absorbed (or generated) by the motor driver that

controls the motor. Pe represents the electrical power of the

motor, with Pm its mechanical counterpart at the wheel. Pc is

the mechanical power produced by the cyclist. The sum of Pm,

Pc and the friction brakes power gives the resulting traction



power, Pt, defined at the wheel. These power contributions

can be quantified as:

Pm = Tmω

Tm = keIm

Pbatt = IbattVbatt

where ke (1.2 [Nm/A]) is the motor constant, Im and Ibatt the

motor and battery currents, ω the wheel (and motor) angular

rate and Vbatt the battery voltage. Further, by accounting for

the efficiencies of the transmission (ηgear) and of the driver

(η) and defining positive a flow that discharges the battery:

Pm =

{

Peηgear if Pe ≥ 0
Pe

ηgear
if Pe < 0

Pbatt =

{

Peη + Pload if Pe < 0
Pe

η
+ Pload if Pe ≥ 0

.

Figure 3 plots the efficiency of the electrical machine and

electrical driver as obtained from experiments on a test bench.
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Fig. 3. Battery to Wheel efficiency for the electrical machine and drivers

.

Similarly, measurements on the accessories and the sharing-

box reveal that Pload is 2.5 [W] when the bicycle is used and

0.3 [W] when the bicycle is not being used. The difference

is due to the fact that, when the bicycle is not rented, the

communication frequency with the back-end is reduced and

other loads (lights) are turned off.

We model the State of Charge (SoC) of the battery, i.e. the

ratio between residual energy and the battery capacity, with a

Coulomb counting approach:

SoC(t) = SoC(0)−
100

3600

∫ t

t0
Ibatt(τ)dτ

Q0

where Q0 is the total battery capacity in Ampere hour.

Figure 4 validates the electrical model by comparing the

measured and simulated battery current and SoC given the

requested motor torque during a 20 minutes trial. As the plots

show, the model accurately describes the dynamics of the
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Fig. 4. Powertrain model validation. From top to bottom: motor current (input
to the model), battery current and State of Charge dynamics.

battery current and SoC in the conditions of interest. Note

that the SoC shows larger errors during high power requests

as it is an integral quantity.

C. Trip dynamics

While the powertrain efficiency plays an important role, the

bicycle power absorption mainly depends on the bicycle usage.

In order to model this aspect, we develop a stochastic trip

generator. The trip generator computes a velocity profile and

a velocity controller, that represents the cyclist, tracks it. The

stochastic trip generator takes as input a trip duration and a

cyclist type and outputs a velocity and slope profiles.

The trip generator combines 9 primitive maneuvers. The

primitive maneuvers are {hard start, soft start, constant speed,

coasting down, stop, hard braking, soft braking, hard sprint,

soft sprint}. Each maneuver, with the exception of the start

and coasting down maneuvers, is characterized by a constant

acceleration and a range of permissible final speeds. The

coasting down maneuver follows the acceleration profile given

by the friction acting on the bicycle; the start maneuvers are

instead characterized by a time-varying acceleration profile

that starts with a peak and returns to zero with a settling time

of 4 seconds.

Given these primitive maneuvers, the trip generation algo-

rithm executes the following steps:

1) the algorithm generates a sequence of primitives. The

primitive maneuvers are the nodes of a Markov Chain

that describes the probability of transitioning from one

maneuver to another and guarantees that only feasible

transitions are generated (e.g. the transition from stop to

braking is meaningless) (see [18]).

2) The algorithm computes the duration of each maneuver

in the sequence. For the maneuvers with a non null

acceleration, the algorithm samples the final speed as a

random variable uniformly distributed in the final speed

range of that maneuver and determines the duration



needed to reach the speed at the prescribed acceleration.

For the maneuvers with null acceleration, the algorithm

directly samples a duration from a uniform distribution.

3) The algorithm adds maneuvers until the desired trip time

is reached; at that point a final soft braking maneuver is

generated to bring the bicycle to a full stop.

4) The algorithm adds a further random (white noise)

component and filters the results with a low pass filter

at 0.8 Hz to avoid discontinuities.

5) The algorithm computes a road slope for each constant

speed maneuver. Note that we decided to assign a

possibly non-zero road slope only to constant velocity

tracts because, only rarely, in an urban setting, the

cyclists change their speed on a slope.

In the above approach, the acceleration levels and the final

speed for each maneuver type are user dependent. We consider

three types of users: (sedentary, fit and athletic). We tuned

the generator to reproduce the typical usage profile recorded

during the trial of the free floating service.
Figure 5 shows the comparison between the velocity and

the slope recorded during one of the trips of the trial and one

of the trips generated by the trip generation algorithm. The

Fig. 5. Comparison between a generated trip (on the left) and a recorded
trip (on the right). From top to bottom: bicycle speed, slope and velocity
distribution.

goal of the trip generation algorithm is not that of replicating a

recorded profile, but rather that of generating different velocity

profiles that are realistic so to avoid overfitting in the tuning

and validation phase. Further note that the algorithm focuses

on generating single trips, it does not take into account pick up

frequency and distribution throughout the day and the week.

D. Cyclist dynamics

The final component of the model is the cyclist. The cyclist’s

model serves two roles:

1) it acts as a velocity controller that tracks the speed

reference.

2) It provides a way to compute the cyclist’s pedaling

effort.

The velocity controller generates Tc and Tb based on the

velocity difference between the simulated velocity and the

reference one. This controller thus considers both pedaling

torque and braking actions. We assume that the two actions

are mutually exclusive, either the cyclist brakes or pedals. Only

the pedaling torque Tc plays a role in the subsequent effort

considerations.

The assessment of cycling effort and cyclist fatigue are

extensively addressed in literature and involve many different

aspect of human physiology (see for example [19]–[23] [19],

[24], [25]). The most accurate method requires the measure-

ment of the instantaneous flow of O2 and blood lactate. This

approach does not provide a simulation model and is not

practical in large trials. We therefore opted for two numerical

indexes whose evaluation does not need additional equipment:

the variance of the pedaling torque var(Tc) and the cyclist’s

State of Fatigue (SoF).

1) Load variations: Variations of the pedaling torque gen-

erate a loss of equivalent pedaling efficiency (as discussed in

[26]). The pedaling torque variance over a trip quantifies these

variations. Despite var(Tc) not being a direct measurement of

the cycling efficiency, it is strictly correlated to it and thus can

be used for relative comparisons.

2) State of Fatigue: The second index models the State of

Fatigue ( [24], [27]–[30]). Fatigue is defined as the reversible

inability to maintain a muscular force output. Mathematically,

we define

SoF (t) =
MV C − Fmax(t)

MVC − Fth(t)
. (1)

MVC is the Maximum Voluntary Contraction (MVC), that

is the maximum force that a subject can apply when fully

rested as a function of pedaling cadence ( [31], [32]). It can

be computed as in:

MVCω =MV C

(

1−
ωped(t)

ωmax

)

(2)

where ωped is the cyclist pedaling cadence and ωmax the

maximum pedaling frequency (this value is found to be 190

RPM in [24]). Fmax is the instantaneous force that a subject

can apply at a given instant of the exercise. As the subject’s

fatigue accumulates, her instantaneous maximum force, Fmax,

drops below MV Cω. A dynamic balance between effort and

resting determines Fmax according to

dFmax(t)

dt
= −kFmax(t)

Fcyclist(t)

MVCω

+R (MVCω − Fmax(t))

(3)

where k the fatigue dynamic constant and R determines the

resting dynamics. For a given contraction velocity, (3) admits

an equilibrium called Fth:

Fth =MV Cω

R

2k

(

−1 +

√

1 + d
k

R

)

.

Hence, Fth represents the lowest level of steady state force

that the cyclist can produce indefinitely.

According to the previous considerations, and analyzing (2),

one should note that



• The SoF is the normalized residual maximum force that

the cyclist can apply.

• The rate of increase of SoF depends on the pedaling

cadence; the higher the cadence is, the faster the increase

of SoF at a given force is.

• The rate of increase of SoF depends on the force; the

greater the force, the faster the increase of SoF .

• The model is dynamic, it is thus more descriptive than

pedaling efficiency static maps.

The SoF is a dynamic index; comparing SoF values at

certain time instants is not meaningful. The introduction of an

integral quantity overcomes this limitation:

ξ =
1

T

∫ T

0

9 · SoF (t)2 + SoF (t)dt. (4)

The cost function integrates a second order polynomial func-

tion of the SoF . The quadratic dependence accounts for the

fact that cyclists would rather pedal at a steady SoF rather

than having peaks and subsequent resting periods yielding the

same average SoF . We use the same polynomial coefficients

employed in [8] that give more relevance to the quadratic term;

this choice enables an easier comparison with the available

literature.

The SoF model has two main limitations. Primarily, it does

not model a measurable quantity but an abstraction. Secon-

darily, it depends on a set of parameters that are not easily

identified, as they require to perform specific experiments.

These parameters indicate the subject’s fitness level, and as

such, they are subject to variations. These two factors limit

the scope of the model and the conclusions one can draw. In

particular, the SoF model cannot be used to derive absolute

measurements, but can be used only for relative comparisons

between different scenarios.

IV. ENERGY MANAGEMENT SYSTEM

The energy management system causally computes the

motor torque based on available measurements. In determining

the motor torque, we have to balance two objectives:

• Charge Sustaining: The bicycle is designed to operate

within a bike sharing system; the reduction of the bicycle

maintenance costs calls for an EMS that guarantees (if

possible) that over the long run the battery pack is never

discharged.

• Effort Reduction: The EMS needs to reduce the cyclist’s

effort with respect to a muscular bicycle given the same

trip. Furthermore, in order for the cyclist to appreciate

the effort reduction, the control system needs to yield

a repeatable and predictable assistance. In fact, the first

requirement of a usable human operated system is its

predictability.

It is clear that these two objectives are conflicting. Given

the charge sustaining objective, one cannot reduce the overall

mechanical energy that the cyclist inputs at the pedal. It is

however possible to exploit the metabolic efficiency gaps to

reduce the cyclist’s energy expenditure; or in other words, to

improve her cycling efficiency.

To achieve this objective, we propose a hierarchical control

algorithm. From the innermost, its three levels are:

• The maneuver assistance level: it generates the assistance

torque based on the cyclist’s inputs and road slope. The

strategy exploits the cycling efficiency gaps in order to

help the cyclist when the cycling efficiency is low and

harvest energy when the cycling efficiency is higher.

• The battery power loop: the maneuver assistance level

operates in open-loop from an energy standpoint; the

battery power loop changes the maneuver assistance

parameters to achieve a desired net battery power over

the long run. This loop is adaptive and uses information

collected on the specific cyclist.

• The SoC loop: the battery power loop operates at the

power level, small tracking errors could lead to drift in

the battery SoC, the State of Charge loop robustifies

the energy balance by monitoring the actual SoC of the

battery.

This multi-level approach allows the designer to separate

the comfort related issues (dealt mainly by the maneuver

assistance strategy), from the energy aspects (managed by

the outermost layers); moreover, the nested approach of the

two outermost loops simplifies the tuning procedure. Figure 6

graphically depicts the control architecture.

A. Maneuver assistance

The maneuver assistance level defines a nominal control

logic for the torque generation and identifies a number of

parameters the outer loop can change without modifying the

main working principle of the assistance logic, thus yielding

repeatability.
The nominal torque logic operates based

on discrete types of maneuvers: M =
{cruise, braking, start, downhill, uphill}.

The classification is based on the values of slope, bicycle

velocity and the state of the freewheel. The freewheel is either

engaged, when torque is being transmitted from the pedal to

the wheel, or freewheeling when the cyclist is pedaling at a

lower rate than that of the reduced wheel.
Given the considerations on the SoF model in Section

III-D, the maneuver assistance strategy cannot be designed

following model-based techniques, but rather it implements

heuristics based on pedaling efficiency guidelines [8]:
1) Start maneuver: The start maneuver activates each time

the freewheel engages at a speed below 7 km/h, independently

of the slope state. The maneuver ends when either the speed of

10 km/h is reached or the freewheel disengages. This condition

is a transient maneuver where pedaling efficiency is low.

It is therefore beneficial that the motor provides assistance.

The nominal assistance current level is Inomstart
(v); Figure

7 depicts the current dependency on the bicycle speed. The

curve is overlaid on the battery-to-wheel efficiency map. The

figure shows that the current-velocity dependency tracks an

iso-efficiency curve. The actual current level for the start

maneuver is given by the nominal curve linearly scaled by

the assistance level u2:

Istart(v) = u2Inomstart
(v). (5)
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2) Braking maneuver: The braking maneuver is activated

by the cyclist each time she back-pedals on flat road. Figure 8

plots the braking torque as a function of bike speed overlaid

on the efficiency map. The design of the curve is a compro-
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mise between the efficiency objective and the requirement of

sufficiently high braking force. The braking maneuver does

not have any assistance level associated, as there is not reason

to reduce the recovered energy with respect to the nominal

case.

3) Downhill/Uphill maneuver: The downhill maneuver

triggers when the slope is negative ( α < −1.25◦) and

the start maneuver state is not active. Conversely, the uphill

maneuver corresponds to a positive slope ( α > 1.25◦) with an

engaged freewheel and the start maneuver not active. The slope

classification thresholds are compatible with the accuracy of

the slope estimation algorithm implemented on the bicycle

[15].

When cycling downhill, regenerative braking is always

active in the attempt to maximize the regenerated energy. The

level of regeneration depends on slope and velocity through a

static map heuristically determined.

Conversely, when cycling uphill, the nominal assistance is

Islope(v, θ) = −
(Mg sin(θ) + Fµ(v))

Ker
(6)

which represents a compensation of the gravitational force.

The nominal assistance characteristic is then scaled through

u3 yielding

Iuphill(v, θ) = u3Islope(v, θ). (7)

4) Cruise maneuver: The cruise maneuver corresponds to

having the freewheel engaged and cycling on a flat surface.

It represents the condition when the cyclist is pedaling at

constant medium-to-high speed. This condition is where most

cyclists have their highest efficiency and it is thus a condition

viable for regeneration.

The regeneration curve in this condition is more critical

than in the previous cases. Here, the motor is actively working

against the cyclist and, despite her high pedaling efficiency, the

cyclist may not appreciate the instantaneous extra effort. For

these reasons, we designed the nominal cruise regeneration

curve, Inomcruise
(v), based on heuristics and cyclists’ feed-

back. Figure 9 shows the resulting characteristic as a function

of speed. One notes that:

Fig. 9. Cruise maneuver nominal current curve.

• the regeneration level is smaller at low speed, where

the friction resistance of the mechanical transmission is



higher and where the pedaling cadence is not comfortable

for most cyclists.

• The regeneration is completely cut off below a threshold.

• The regeneration increases at high speed, corresponding

to a more comfortable cadence.

The actual current is scaled by of u1 and the regeneration is

active only if the bike speed is above the value of the threshold

u4, resulting in:

Icruise(v) =

{

u1Inomcruise
(v) if v ≥ u4
0 if v < u4.

(8)

Note that among the five maneuvers, three ( Mc =
{start, cruise, uphill}) are influenced by scaling parame-

ters, we will call these controlled maneuvers; while two

(Muc = {braking, downhill}) are not scaled. These are

the uncontrolled maneuvers. All the scaling variables have

a minimum, ulbk , and maximum, uubk , value; these limits are

tuned according to comfort considerations.

B. Battery power closed loop

The maneuver assistance strategy makes sure that assistance

and regeneration are active in the correct cycling phases and

helps guaranteeing a predictable behavior of the assistance.

Note however that

• the maneuver assistance strategy is open-loop from the

energy perspective.

• It interfaces with the outer loop with 4 control variables,

u(t) =
[

u1(t) u2(t) u3(t) u4(t)
]

.

The battery power closed loop allocates the outer control

variables uk closing a loop on the average battery power so

to track a desired value Pref . As there are 4 control variables,

the control problem is a Multiple Input Single Output problem.

Designing controller for multiple inputs systems is challeng-

ing, we tackle this complexity with a model-based controller

and control allocation strategy. The basis of this approach is a

control-oriented model that describes the effect of each control

variable uk on the trip average power.

We derive the control-oriented model by considering a spe-

cific ride, indicated by the subscript j. Let’s initially assume

that the ride velocity, vj(t), slope, θj(t), and duration, tride,j ,

are known. We can compute the instantaneous battery power

for each maneuver type, i ∈M , as

Pi,j(t) =
keIj(t)ωj(t)

η⋆j
σi(t) (9)

where

Ij(t) = Imot(vj(t), θj(t),uj(t))

and σi(t) is an activation variable that is 1 when maneuver i
is active and 0 otherwise and does not depend on the control

variables ū but only on the ride characteristics. Note that in (9),

η⋆ is an overall powertrain generalized efficiency that depends

on the current and on the motor speed. For clarity of notation,

through a small abuse of notation, the generalized efficiency

is greater than 1 when the motor electrical power is negative.

Recalling the classification in controlled and uncontrolled

maneuvers, we write the average power for ride j as:

P̄batt,j =
∑

i∈Mc

∫ tride,j

0
Pi,j(t)dt

tride,j
+ (10)

+
∑

i∈Muc

∫ tride,j

0
Pi,j(t)dt

tride,j
+ Pload.

The power profiles associated to the uncontrolled maneuvers

do not depend on the control variables, therefore their average

power contributions, βi,j , are insensitive to the control and

constant. Conversely, the average powers associated to the

controlled maneuvers depend on the control variables. By re-

ferring to fi,j as the average power associated to the maneuver

i, one can thus write:

P̄batt,j(u) = fcruise,j(u1(t), u4(t)) + fstart,j(u2(t))+

fuphill,j(u3(t)) + βbraking,j + βdownhil,j + Pload.
(11)

Note that, owing to the assistance maneuver strategy, u1 and

u4 only affect the power associated to cruising; u2 influences

the start maneuver and u3 the uphill contribution. To obtain

the control-oriented model, we study the dynamics from the

control variables to P̄batt,j(u).

Starting from fcruise,j(u1(t), u4(t)), one notes that it non-

linearly depends on the value of the control variables and

the trip characteristics. To deal with this complexity, we

describe the trip characteristics as random variables with two

independent probability densities; pv is the speed probability

density limited to the cruise maneuver and pσ is the probability

for the cruise maneuver to be active. We recall that u4 is

the speed below which the controller stops regenerating while

cruising. Therefore, the instantaneous regenerated power,

P̃j(v, u1) =
keu1Inom1

(vj)ωj(vj)

η⋆cruise,j
,

becomes a function of the random variable v. We write the

average of the cruising power as

fcruise,j(u1, u4) =

=

∫

v

∫ tride,j

0
P̃j(v, u1)pv,j(v)pσ,j(vj)1v>u4

dtdv

tride,j
=

=

∫

∞

u4

(

∫ tride,j

0
P̃j(v, u1)pv,j(v)pσ,j(v)dt

)

dv

tride,j
.

The idea is to associate at each velocity its average power

contribution in cruise, and then compute the overall average

power by integrating over all velocities above u4 (the only

velocities contributing to the power) accounting for their

probability of being reached in cruise. In order to simplify

the parametrization of the speed density function, we assume

it to be a gaussian with mean v̄cruise,j and variance σ2
cruise,j .

Similarly, we approximate the cruise activation probability as

uniform over speed: pσ,j(v) ≃ ρcruise,j , with ρcruise,j =



tcruise,j

tride,j
the proportion of time the cyclist actually spent in

cruise; thanks to this assumption, we can write:

fcruise,j(u1, u4) =

=

∫

∞

u4

P̃j(v, u1)pv,j(v)
(

∫ tride,j

0
pσ,j(v)dt

)

dv

tride,j
≃

=

∫

∞

u4

P̃j(v, u1)pv,j(v)ρcruise,jtride,jdv

tride,j
=

=ρcruise,j

∫

∞

u4

P̃j(v, u1)pv,j(v)dv.

Note that, strictly speaking, P̃j(v, u1) depends on a time-

varying efficiency; to avoid this additional complexity, in

the derivation of the control-oriented model, we consider the

average efficiency η̄⋆.

The situation for fstart,j(u2(t)) and fuphill,j(u3(t)) is less

complex simpler. They also depend on the control variables

and the trip characteristics, but the dependence of on u2 and u3
is linear due to the fact the the motor current linearly depends

on u for all maneuvers as indicated in (5), (7) and (8).

We can therefore consider the following nonlinear control-

oriented model that describes the average battery power for

ride j:

P̄batt,j(u) =fcruise,j(u1, u4) + α2,ju2(t)+

+ α3,ju3(t) + βbraking,j+

+ βdownhill,j + Pload (12)

where

α2,j =
∂fstart(u2)

∂u2

∣

∣

∣

∣

ū

=

=

∫ tride,j

0
keInom2,j(t)ωj(t)σstart(t)dt

tride,j

α3,j =
∂fuphill(u3)

∂u3

∣

∣

∣

∣

ū

=

=

∫ tride

0
keInom3,j(t)ωj(t)σuphill(t)dt

tride,j η̄⋆j
.

By linearizing fcruise,j(u1(t), u4(t)) around the control value

ū, one obtains

∂P̄batt,j(u) =α1,j(ū4)∂u1 + α2,j∂u2+

+ α3,j∂u3 + α4,j(ū1, ū4)∂u4. (13)

where

α1,j(ū4) =
∂fcruise,j(u1, u4)

∂u1

∣

∣

∣

∣

ū

=

= ρcruise,j

∫

∞

ū4

keInom1
(v)ω(v)

η̄⋆j
pv,j(v)dv

α4,j(ū1, ū4) =
∂fcruise,j(u1, u4)

∂u4

∣

∣

∣

∣

ū

=

= −ρcruise,j ū1
keInom1

(ū4)ω(ū4)

η̄⋆j
pv,j(ū4). (14)

The control sensitivities αk,j describe how a variation of the

control variables determines a variation of the average power.

They depend on the linearization point (expressed in term of

ū) and a number of exogenous parameters that describe the

specific ride properties. Thanks to the stochastic description of

the ride, It is possible to summarize its energy characteristics

in the following ride profiling vector:

ψj = [v̄cruise,j σ2
cruise,j ρcruise,j η̄⋆j α2,j α3,j

βbraking,j βdownhill,j]
T .

(15)

The above model still assumes the knowledge of the ride

characteristics, but it parametrizes them in a compact way.

Later on, the paper shows how to remove this assumption.

The power control loop exploits the control-oriented model

in two phases: initialization, and power tracking.
1) Initialization: During the initialization phase (which

happens when the cyclist reserves a bicycle through the app),

the nonlinear model of the power expenditure and the cyclist

profile determine the equilibrium value of the control variables

by solving P̄batt,j(ū) = Pref , based on the nonlinear power

model defined in (12) and on the reference computed by the

State of Charge outermost loop. The initialization equation is

under constrained as it depends on four control variables. We

solve the nonlinear initialization equation iteratively: starting

from an initial guess u0 =
[

u1,0 u2,0 u2,0 u3,0 u4,0
]T

,

we sequentially compute the initial value of the control vari-

ables with Algorithm 1. In solving the equation, we adopt a

Algorithm 1 Initialization algorithm

ū = u0
for i=1 to 4 do

if ∃ui : E[P̄batt,j(ū1:i−1, ui, ūi+1,4)] = Pref then

ūi = u1
return ū

end if

P lb = P̄batt,j(ū1:i−1, u
lb
i , ūi+1,4)

Pub = P̄batt,j(ū1:i−1, u
up
i , ūi+1,4)

if
∣

∣P lb − Pref

∣

∣ <
∣

∣Pub − Pref

∣

∣ then

ūi = ulbi
else

ūi = uubi
end if

end for

method inspired by the daisy chaining logic [33]. We define

a priority ordering of the control variables and the algorithm

achieves the desired battery power using the highest priority

variable first. If modifying the highest priority variable cannot

reach the objective, the algorithm saturates the highest priority

variable to its maximum (or minimum) value and move to

the next variable in the priority list. We defined the priority

ordering through a series of heuristics: the order is mainly

determined by the values of αk, giving highest priority to

the variables that have the largest control authority, with the

only exception of u4. α4 is similar to α1 but a variation of

u4, by changing an activation velocity, has a large impact

on the predictability of the user experience. Based on this

consideration, it has been given the lowest priority. The

sequential method does not guarantee to find a solution, but



it has the advantage of running in real time on the bicycle

electronics.

2) Power Tracking: The initialization is an open loop

computation of the control variables based on two main

assumptions: (1) the velocity profile and the probability of

being in the cruise maneuver can be described by respectively

a gaussian and a uniform probability densities and (2) the trip

parameters are known apriori. The actual trip will very likely

be different from the modeled one, and the open loop control

will not guarantee the desired power tracking. To avoid this,

while cycling, a closed loop controller determines the variation

of the control variables based on the actual battery power and

on the linearized model described by the control sensitivities

αk,j .

We need to design a control for a MISO system, where

the output is the battery power and the control inputs are the

four control variables. Similarly to the initialization phase, the

closed loop control is based on the daisy chaining approach.

Each control variable uk has a regulator Rk, and a priority

level defined as before. At each instant, only the regulator

with the highest priority which has not yet reached neither ulbk
nor uubk is active.

The control-oriented linearized model is the basis for the

design of a model-based controller for each control action:

Rk(s) =
1

αk,j

Ik
s

1
(

1 + s
p

) . (16)

We tune each controller to achieve closed loop stability on

the linearized model and a nominal bandwidth of 0.009 rad/s

(equivalent to a settling time of about 10 minutes). The choice

of a slow control is dictated by the fact that any sudden

variation of the control variable is perceived as negative by the

rider who would experience an unpredictable bicycle. In this

context, having a model-based initialization of the controller is

critical as it reduces the need to modulate the control variables

during the ride.

3) User profiling: Both the initialization and the power

tracking steps require the knowledge of the characteristics of

the trip. These are, in general, not known a priori. However,

bike sharing users tend to be creatures of habit. Most users use

bike sharing as a last mile means of transportation to reach the

main public transport hubs from their place of work or living

and, the bicycles can be ridden in a constrained geographical

area characterized by its topography and traffic patterns. In

this scenario, the information needed to compute the control-

oriented model and its control sensitivities do not considerably

change from one trip to another (for the same user).

The idea is therefore that of creating and updating a profile

of each user, storing the parametrization described in (15).

After each ride of a user, we compute ψj based on the data

of that ride, and the profile updated according to

ψ(k + 1) = γψ(k + 1) + (1 − γ)ψj (17)

where k is the ride index. We use γ = 2/3 to have a

settling time of the filter of about 8 rides. At each ride,

the EMS computes the control-oriented model based on the

latest ψ, making it an adaptive EMS. Note that, in this

context, the choice of parametrizing the velocity profile as

a gaussian considerably reduces the data that has to be stored

and transmitted at each rental.

C. State of Charge loop

The inner levels guarantee an accurate tracking of the

requested power. However, power measurement errors may

cause slow drifts in the state of charge. This makes it necessary

to have an outer SoC controller. Thanks to the inner power

loop, an integral controller, tuned on the closed-loop dynamics,

and augmented with a feedforward action suffices. Figure

6 shows a schematic of the control architecture: the power

reference depends on the current SoC and the desired SoC

profile, as determined by a fleet-level management.

The main focus of this paper is the bicycle-level control

(i.e. the State of Charge Loop); however an extensive and

realistic validation of the EMS requires a reasonable SoC0.

Designing the fleet level manager is a complex task that needs

to consider several aspects such as ride frequency, users price

elasticity, maintenance costs and number of bicycles. In the

following, with the objective to have a realistic reference to

use for validation, we introduce a simple, yet realistic logic.

In particular, we aim at achieving charge sustaining of the

average state of charge of the fleet.

One could choose SoC0 so to offset the energy lost during

the previous idling period of the bicycle. This approach how-

ever leads to an uneven distribution of the effort among users,

since the required energy would depend on the duration of the

idling period of the bicycle being rented. A fairer approach

is to operate at the daily level; the aim is to compensate the

average energy loss during all idling periods of all bicycles.

The average variation of SoC is

∆SoCp =
−100

Q0

[

Pload

(

1−
ν

24
t̄ride

)

+ P̄batt

ν

24
t̄ride

]

where Q0 is the total battery capacity, Pload is the idling power

absorption of the sharing box, ν the average daily number of

rides of the bike and t̄ride the average ride duration. Imposing

∆SoCp = 0, we obtain the recharging objective

P̄goal = −
Pload

(

1− ν
24
t̄ride

)

ν
24
t̄ride

.

The corresponding reference SoC to be tracked is:

SoC0(t) =
−1

3.6Q
P̄goalt+ SoCinit (18)

where SoCinit is the SoC at pick up and t the time from the

pick-up. Note that SoC0 depends on the pick up frequency

and it assumes a uniform pick up frequency.

Once the desired SoC profile is available, the State of

Charge loop tracks it in closed loop.

V. VALIDATION

The EMS validation considers several aspects. Using both

simulations and experimental tests, we focus on the ability of

the control system to track the required SoC0 while helping

the rider, and on the role of user profiling. Note that the



scope of our analysis is on the EMS at the bicycle level; we

assume an average daily number of rides of ν = 3, which

is comparable with the one of existing passive bike sharing

services [34]. The study of the EMS and its interaction with

the fleet management is out of scope of this work; as a matter

of fact, the proposed EMS will enable the development of the

fleet management.

A. Simulation results

The simulation of the entire system provides a convenient

way to exemplify the main features of the control system

and quantify its effect on the cyclist’s effort. The first set

of simulations use the mission profile of Figure 10 which

corresponds to a fit user. The figure also shows the distribution

 

 

 

Fig. 10. Test mission profile generated by the trip generator: speed profile,
slope profile and the speed distribution when in cruise maneuver.

of velocities during the cruise maneuver and its gaussian fit,

which accurately describes the velocity distribution. Figure 11

plots the control variables behavior over the 20 minutes trip.

The figure shows the ideal case of a perfect profiling: the

 

 

 

 

Fig. 11. Control variables trend over simulation test.

controller is using the trip parameters of that specific trip.

Figure 12 plots the corresponding motor power and battery

SoC. From figures, the following remarks are in order:

• despite the fact that the conditions are ideal, the controller

is not using the full trip information, but only the cyclist’s

profiling.

 

 

Fig. 12. State of Charge tracking over simulation test, the continuous line is
the simulated value of State of Charge and the dashed line is the reference
set-point.

• The daisy chain control allocation only needs to modulate

u1 as the other control variables are determined by the

initialization. As u1 never reaches its saturation limits,

the other variables are not modulated. Note that u1 varies

smoothly.

• The desired battery SoC is tracked. Note that the objec-

tive is not a perfect instantaneous tracking of the reference

as that would imply a lack of assistance.

• The motor power plot clearly shows that the motor

provides assistance when needed. The small negative

offset is the cruise maneuver contribution.

The previous simulations take advantage of an ideal pro-

filing of the trip. The following simulations better quantify

the impact of cyclist profiling. Profiling serves two goals:

it initializes the power-loop and determines the controller

gains to guarantee the desired bandwidth. We run a series

of simulations considering multiple rental of the three types

of users. The profile of each rider is initialized with the same

level and updated with the algorithm described in the previous

section using different rentals generated with the mission

profile generator. Figure 13 plots the difference between the

desired and the actual SoC at the end of each rental and the

variance of u1 during each rental (the first and therefore more

used control variable in the daisy chaining approach). From

figure, one notes that

• the tracking of the desired SoC improves as the profiling

of the specific rider improves. While initially the EMS

is not capable of reaching the desired SoC as it does

not have enough information on the average trip; after

10 rentals, the EMS can guarantee the compensation of

the average lost charge between rentals.

• The EMS tracks the desired SoC with progressively

smaller variations of the control variables as the profiling

vector converges. This is due to the initialization proce-

dure.

These results indicate that the chosen profiling vector captures

in an efficient way, the most relevant characteristics of the

trip and that cycling profiling considerably improves the EMS

performance.



 

 

Fig. 13. Variance of u1 and SoC tracking error at the end of each rental for
three different types of users over 14 rentals.

Figures 14 and 15 further show the benefit of the cyclist

profiling in the time domain. They depict the SoC and control

variables behavior on the same trip, characterized by a steep

ascent (up to 5◦) with adaptive cyclist profiling and without.

The time domain analysis confirms that cyclist profiling both

 

Fig. 14. SoC reference tracking during a single rental with steep incline.
Comparison between the case with adaptive cyclist profiling and without.

improves the desired SoC tracking while at the same time

yielding a more predictable cycling experience.

 

 

 

 

Fig. 15. Control variable during a single rental with steep incline. Comparison
between the case with adaptive cyclist profiling and without.

The final set of simulations analyzes the cyclists’ effort.

Figure 16 plots the relative increment of the weighted state of

fatigue and variance of the cyclist’s torque when comparing a

muscular bicycle against the hybrid bicycle with user profiling

enabled. The figure considers 200 randomly generated trips

executed by the three types of cyclists and computes the

increment by repeating the same trip with the muscular and

the hybrid bicycle. The fatigue model parameters are randomly

generated for each cyclist considering nominal parameters for

each cyclist type and adding a random variability of 10% at

each run. We consider MV C = 1000 N, k = 0.0153 s−1,

and R = 0.0063 s−1 for the fit cyclist; MVC = 1200 N,

k = 0.0169 s−1, and R = 0.0056 s−1 for the athletic cyclist

and MVC = 800 N, k = 0.0192 s−1, and R = 0.0047
s−1 for the sedentary cyclist. The figure shows that the EMS

Fig. 16. Effort indices comparison for the same trip for a muscular bicycle
and the hybrid bicycle.

can recharge the battery without an appreciable increment in

cyclist’s fatigue, while yielding a median reduction of 25%
of the cyclist’s torque variance. The EMS successfully shaves

the pedaling torque peaks, considerably improving the cyclist’s

comfort and pedaling efficiency. The figure also shows that

the State of Fatigue remains the same for both the muscular

and hybrid bicycle. This result should be considered in the

context of bike sharing; recall that each ride contributes to

regenerating the average power lost during the idling periods.

The fact that, despite recharging the battery of 2% over the

trip, the fatigue does not increase indicates that the EMS is

effective in improving the pedaling efficiency.

B. Experimental results

To experimentally validate the EMS, we implemented it

locally on each bicycle on its onboard microcontroller; at the

beginning and end of each rent, the bicycle communicates

with the central server the user identification number and the

ψ vector.

The experimental campaign refers to the data collected

during the trials of the hybrid sharing free-floating service

bitride tested in Milan between April and November 2018

[35]. Milan is a metropolitan area in Italy characterized by a

relative flat terrain with slopes mainly due to overpasses and

small hills. The main focus of the experimental analysis is the

validation of the bicycle level EMS considering all the non-

idealities that the model cannot quantify and the assessment

of the user profiling algorithm on real data. We consider 13

rentals of a volunteer user. As expected, the specific user

was quite regular in his rental habit; in particular, he picked

and dropped the bicycle approximately in the same place for

all his 14 rentals. Interestingly, the user’s route crosses two

overpasses. Figure 17 plots the velocity, slope and distribution

of speed during the cruise maneuver of one of the 13 rentals



 

 

Fig. 17. Experimental ride input: speed profile, the slope profile and the
distribution of speed during when the cruise maneuver is active.

Figure 18 plots the behavior of the iterative update of the

cyclist profiling vector over the testing period. Note that, after

    

Fig. 18. Cyclist profiling vector evolution over 13 rentals of the same user.

around 10 rentals, the cyclist’s parameters converge to their

steady state, proving that the cycling style of the user is re-

peatable, of course within the possibilities of riding in a urban

setting with traffic. Figure 19 shows the difference between the

desired and the actual SoC at the end of each rental and the

variance of u1. As the profiling of the user converges and

with it the controller adapts to a more accurate model of the

system, the EMS needs to modulate the control variables less

and the SoC objective is better achieved. As a matter of fact,

starting from rental #6, the adaptation guarantees that the SoC
tracking is achieved by only using u1 and keeping the other

control variables at their initial values.
Finally, Figure 20 plots the time evolution of the motor

power and battery SoC in the last rental of the user. The

figure shows that the bicycle, while still being recharged to

compensate the loss of energy during idling, is capable of

assisting the cyclist when he starts and accelerates and during

the two overpasses.

VI. CONCLUSIONS

We propose a bicycle level EMS for a full hybrid bicycle

designed to operate in a free-floating bike sharing system.

 

 

Fig. 19. Variance of u1 and SoC tracking error at the end of each rental over
13 rentals of the same user.

 

Fig. 20. Motor power and battery SoC tracking over an experimental test.

The energy management achieves three main objectives 1)

it guarantees tracking of the desired SoC as determined by

a fleet-level management strategy over a single rental 2) it

provides assistance, improving the cycling experience, 3) it

yields a natural cycling experience. We analyze the system in

terms of a bike-sharing service and its peculiarities concerning

mission profile, multi-user system and energy expenditure due

to the communication and bicycle tracking.

The EMS is multi-layered. The innermost layer guarantees

that the bicycle behavior is intuitive for the cyclist making sure

that assistance is provided when needed and energy harvesting

is used only during high efficiency pedaling. The middle level

modulates the battery power based on an adaptive model of

the cyclist and bicycle energy dynamics. The adaptive model

is based on a user profiling. The outermost loop guarantees

the SoC tracking increasing the robustness against power

measurements offsets.

Extensive simulation and experimental campaigns validate

this approach in terms of usability and desired SoC tracking.

User profiling is paramount to provide assistance and, at the

same time, avoid battery depletion of the bicycle battery. The

proposed EMS can be used as the fundamental building block

of an entire charge sustaining bicycle sharing system. Design-

ing the charge sustaining system requires the development of

the fleet level manager whose main task is the definition of



SoC0 for each ride. The choice depends on several factors as

pick-up distribution, rental frequency, maintenance costs and

users demand. For example, the level of assistance and thus

user acceptance of a free-floating electric bike sharing system

depends on the number of bicycles and rentals per day. The

higher the number of rentals, the less idling energy needs to

be harvested during the rental and the higher the assistance

can be. The interested reader is referred to [35] for a more

detailed discussion at the fleet-level.
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