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Abstract—Recently a minimum-loss control strategy for the 

Dual-VSI-DFIG system was proposed. It is implemented using 
three rules for the determination of the optimal stator frequency, 
of the stator/rotor magnetizing current split and of the airgap-flux 
magnitude. The method uses airgap-flux orientation with direct 
airgap flux and rotor current control. In this paper, two syntheses 
of the Proportional Integral controllers based respectively on the 
symmetrical optimum and on the ITAE criteria are presented. The 
stability is analyzed computing the eigenvalues of the closed loop 
model. For both cases the system is stable if the parameters are 
computed according to the synthesized rules. Instability can be 
found when these rules are not respected.   

Keywords—Control, DC power system, Dual-VSI DFIG, 
Efficiency improvement, Minimum loss control, Stability. 

NOMENCLATURE 
General 
a Design parameter of the symmetrical optimum criterion. 
D Damping. 
i, Current (p. u.). 
𝒌𝒑,𝒌𝒊 Parameters of the PI controllers. 
𝑳𝒔,	𝑳𝒌   Stator/ Leakage inductance (p. u.). 
𝑳𝒎 Mutual inductance (p.u.). 
𝒓𝒔,𝒓𝒓 Stator and rotor resistances (p. u.). 
𝑻𝒄𝒊 Switching small time constant. 
u Voltage (p. u.). 
U Independent terms matrix. 
𝐑, 𝐋 State model matrixes. 
𝐗 Vector of state variables. 
𝝑 Normalized state variable integral. 
𝝍𝒎 Airgap flux linkage (p.u.). 
𝝎𝒃 Base frequency (rad/s). 
𝝎𝒄𝒓𝒐𝒔𝒔 Crossing frequency (rad/s). 
𝝎𝒃𝒂𝒏𝒅 Bandwidth (rad/s). 
𝝎𝒎 Rotor speed (p. u.). 
𝝎𝒔, 𝝎𝒓 Speed of the common reference frame, slip frequency. 

Superscripts 
* Reference value. 
Subscripts 
d, q Variables on rotor moving reference frame. 
s, r Stator/ rotor. 
ol, cl Open loop/ closed loop. 

I. INTRODUCTION  
The Doubly-fed Induction Generator (DFIG), interfaced 

with the ac mains, is one of the most popular systems in wind 
energy conversion systems [1]. For the interconnection of wind 
generators in wind farms, dc power systems are receiving more 
interest [2]. In these applications, the dc version of the DFIG, 
the DFIG-dc, is attractive because it simplifies dc 
interconnection, [3], [4]. The dual voltage source inverter (VSI) 
version, Fig. 1, is also a possible choice. In this system a wound 
rotor induction machine (WRIM) is fed by the stator and rotor 
by two VSI converters connected to a common dc link. 
Recently, optimizing efficiency and thus reducing losses has 
become a major concern in DFIG-dc systems [5] - [9]. A 
comprehensive minimum-loss control strategy, obtained using 
Lagrange multipliers, was presented in [9]. This strategy leads 
to three simple rules for carrying out minimum loss condition. 
A possible control system, using airgap flux orientation, was 
also presented in [9]. A first stability study was presented in 
[10]. In this paper additional insights are introduced. The 
synthesis of the Proportional Integral (PI) controllers using 
symmetrical optimum and ITAE (Integral of the time weighted 
absolute error) criteria are compared. This leads to different PI 
parameters, dynamics, and stability. 

 
Fig. 1 System Layout. 

Section II present the background of the strategy under 
study, [9]. Section III briefly presents the model of the system in 
open and closed loop. The synthesis of the PI flux and rotor 
current controllers, for optimal operating points is presented in 
section IV. The closed-loop operation is then studied 



introducing the dynamics of PI controllers and leading to an 8th-
order dynamic model. The stability is analyzed by computing 
the eigenvalues of the state matrix in Section V. Section VI 
presents the conclusion. 

II. MINIMUM-LOSS CONTROL STRATEGY 
The optimization and control system presented in [9] is 

based on airgap flux orientation. The theory developed for this 
method provides three conditions for minimum loss operation. 

The first optimal condition allows the optimal stator and 
rotor frequency to be obtained. In practice, this condition leads 
to optimal slip values close to (𝑠 = −1). Fig. 2 presents a phasor 
diagram of the system in this case. 

The second optimal condition gives the optimal d-axis 
current split between stator and rotor. If VSI losses are 
neglected, it results 𝑟!𝑖!" = 𝑟#𝑖#". 

 
Fig. 2 Steady state phasor diagram for (𝑠 = −1) close to the minimum loss 
control point of operation (airgap flux reference frame). 

The third optimal condition tells that the optimal flux value 
makes two suitable ancillary functions 𝑃"$%&'!  and 𝑃($%&'! 
(defined in [9]) equal to each other. Therefore, the airgap flux 
should be adjusted by the control system to force these two 
terms to match.  

Fig. 3 presents the optimal airgap flux surface and shows that 
there are four different operating regions:  

A – Minimum flux region: for small torque, when the flux 
hits the minimum value set at 0.5 p. u..  

B – Low torque region: field weakening for reducing core 
loss – no constraints active; here the optimal flux depends 
strongly on torque and weakly on speed.  

C – Maximum flux region: for high torque and low-medium 
speeds. 

D – Maximum voltage region: voltage constraint active, this 
is the classic flux weakening region.  

The third condition is implemented by adjusting the 
reference airgap flux controller. 

The block diagram of the control implementation method 
from [9] is presented in Fig. 4. The airgap flux is controlled 
using two PI controllers whose outputs are the stator voltage 
components. The q-axis reference flux component is set at zero 
to synchronize the reference frame with the airgap flux, 
implementing flux orientation. The flux reference is obtained by 
a “flux optimizer” block that implements the third optimal 
condition by forcing the difference "𝑃"$%&'! - 𝑃($%&'!" to zero.  

 
Fig. 3 Airgap flux from numerical optimization, [9]. 

 
Fig. 4 Control implementation, [9]. 

Rotor currents are directly controlled using two PI 
controllers, one setting the d-axis component determined by the 
optimal split condition, and the other one setting the q-axis 
current which is related to the torque set-point. 

III. MODEL FOR STABILITY ANALYSIS 
The input functions of the system analyzed in this paper and 

represented in Fig. 4 are rotor speed and torque. The strategy 
optimizes the dual DFIG-DC system for any rotor speed and 
torque. The rotor connection with the outer system is not 
considered here. This depends on the application where the 
system is used. 

Because the control system is implemented using airgap flux 
orientation, the appropriate variables for the study are the d- and 
q-axis airgap flux and rotor current components. Using these 
variables in p. u. values, and expressing the time in seconds, 
results the matrix formalism for the system in open loop [10]: 
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The first optimality condition returns an optimal slip close to 
𝑠 = −1. Thus, for a constant rotor speed, 𝜔/ , it results two 
symmetrical values 𝜔! = 𝜔/ 2⁄  and 𝜔# = −𝜔/ 2⁄ . These are 
algebraic functions that set the two frequencies in function of an 
input variable 𝜔/. For constant values of rotor speed 𝜔/, and 
consequently of the stator and rotor frequencies, the resulting 
dynamic system is a linear time-variant system. Thus, it is not 
necessary to linearize the equations around an operating point. 
Since the system cannot be used in open loop, this analysis is not 
reproduced in this paper, [10].  

The model in closed loop is presented in [10]. To easy the 
readiness of this paper, it is briefly described here. The model 
uses similar variables and parameters when symmetrical 
optimum method of design of PI controllers or ITAE are used. 
Only the parameters values are different. The general equation 
for PI controllers can be written as: 

 𝑦)2. = 𝑘3(𝑥∗ − 𝑥) + 𝜔5𝑘' ∫(𝑥∗ − 𝑥)𝑑𝑡 (5) 

Defining the p. u. integral of variable x (time in seconds) as: 

 𝜗 = 𝜔5 ∫ 𝑥	𝑑𝑡             that is         𝑥 = +
,!

"6
".

 (6) 

4 new state equations and variables should be considered: 
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Introducing (5) - (10) into the model yields the following 8th-
order closed-loop model.  

 𝐔7* = 𝐑7*𝐗7* + 𝐋7* 	
+
,!

"𝐗)#
".

 (11) 

Where the matrixes are defined as (12), (13) and (14). 
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The model should include the condition of optimal d-axis 
current split. Using an estimate of 𝜓/"  the rotor d-axis 
reference current is computed. 

 𝑖#"∗ = +
9+:((($

;0%
𝜓/" (15) 

This is introduced in the model by suppressing the 3rd 
element in Ucl matrix and changing elements “(3,1)” and “(3,5)”.  

This model ignores the delay related to the switching process 
of the semiconductors represented by a small time-constant 𝑇7'. 
It can be introduced in the model easily, then resulting in a 12th-
order model. Only the poles that are far from the origin differ 
from those of the 8th-order model. 

The stability analysis in closed loop can now be performed 
computing the system matrix 𝐀 = 𝐋7*$+	𝐑7* and its eigenvalues. 



The system in closed loop is characterized by eight almost 
all complex-conjugate poles. 

IV. SYNTHESIS OF THE PI CONTROLLERS 

A. Using symmetrical optimum criterium 
The synthesis of the PI controllers using symmetrical 

optimum criterium can be found in [11]. This uses a design 
parameter a, related to damping of the oscillatory portion of the 
response 𝐷 = (𝑎 − 1) 2⁄ .  Formulas for PI parameter 
calculation based on this criterium are presented in [10]. Here, 
only the final formulas are shown. Note that, when p. u. 
variables are used, the true integral parameter in (5) is 𝜔5𝑘'. 

1) Airgap Flux Controller 
The flux PI controller gains are as follows [10]: 
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The open-loop cross-over frequency is given by: 

 𝜔7#)!! =
+
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2) Rotor current control  
Since the equations are similar, it results: 

 𝑘3'( =	
,)("$$
,!

	𝐿1#          𝑘''( =	
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%	,!
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B. Using ITAE criterion 
1) Air-gap flux control 
The open-loop transfer function can be written as: 

 𝐺>( =
1-!:,!1*

!
	 0%
#$:0$

$
.!

 (20) 

The ITAE criterion uses the PI zero cancelling the pole, 

 1-
,!1*

= 0$
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 (21) 

Replacing in the transfer function, in closed loop, results: 
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In terms of closed loop bandwidth, 𝜔5%@", the PI parameters 
for flux control become:  

 𝑘38 =
0$
0%
	,!23&

,!
 𝑘'8 =

#$
0%
	,!23&
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 (23)  

2) Rotor current control  
Considering only the main loop, and neglecting the 

disturbance terms, the rotor current control can be modelled as: 

 𝐺>( =
1-!:,!1*

!
	 +
#$:00(

$
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 (24) 

As this is like the airgap flux controller, results for the rotor 
current controller: 

 𝑘3'( =
,!23&
,!

	𝐿1# 𝑘''( =
,!23&
,!

	𝑟# (25) 

In this paper PI controllers are synthesized to have higher 
closed loop bandwidth for rotor current control than for airgap 
field control. This second control loop is used, in a slow process, 
to adjust the flux level to have minimum losses. The switching 
frequency was assumed to be 2 kHz. For airgap field control a 
bandwidth close to 2 p. u. was assumed. In the case of the 
symmetrical optimum criterium this corresponds approximately 
to a=8. For rotor current control it was used a=3. This leads to 6 
p. u. bandwidth that is usual in industry. The parameters using 
ITAE were obtained directly using (23) and (25). They are 
presented in Table 1. 

TABLE I.  PI PARAMETERS 

 Air-gap flux 
controller 

Rotor current 
controller 

 𝑘38 𝑘'8 𝑘3'# 𝑘''# 
ITAE 2.13 0.08 0.6 0.3 

Symmetrical 
optimum 1.7 0.34 0.42 0.6 

 

 
Fig. 5 Response to steps using symmetrical optimum criterion. 

Fig. 5 presents simulation results to steps on the reference 
flux (at 𝑡 = 0.1	𝑠), followed by a step on the reference rotor d-



axis current at (𝑡 = 0.4	𝑠) followed by a step on the rotor q-axis 
reference at (𝑡 = 0.5	𝑠).  

From Fig. 5, it can be concluded that the flux is controlled 
accurately with some minor influence of disturbances in the q-
axis flux controller, that is, the flux orientation is kept operating 
when perturbations occur. The rotor current controllers preform 
also well. 

 
Fig. 6 Step response using ITAE criterion. 

For the PI controllers synthesized using the ITAE criterium, 
similar results, Fig. 6, were obtained. The q-axis flux response 
is not as good as in the previous case. The system become more 
sensitive to external disturbances. Since the closed loop 
bandwidth is similar, the resulting responses to steps in the 
references becomes also similar. 

V. STABILITY ANALYSIS RESULTS 

A. Stability study using PI parameters properly synhesized 
1) Symmetrical optimum 
Fig. 7 presents all the closed-loop eigenvalues when the rotor 

speed varies within the 0.01 - 2 p. u. range. The pole variation in 
the complex plane is due to the influence of the terms neglected 
in the PI synthesis. Fig. 7 shows that the damping worsens at 
high rotor speed, but remains acceptable for the usual speed 
range [0 - 2 p. u.]. Fig. 8 shows only the dominant poles. The 
system has a good damping characteristic. It behaves as a second 
order system and, for dominant poles, the negative real part is 
always greater than the imaginary part. 

If a 12th-order model were used considering the power 
electronics semiconductors switching delay, there would be no 
significantly different results. 

 
Fig. 7 All closed loop eigenvalues using the symmetrical optimum. 

 
Fig. 8 Dominant closed loop eigenvalues using the symmetrical optimum. 

2) ITAE  
As in the previous case, the system has also 8 poles that 

moves on the plane. The dominant poles are shown in Fig. 9. 

 
Fig. 9 Dominant closed loop eigenvalues using the ITAE criterium. 

In this case the most dominant poles are closer to the origin. 
If a higher flux controller bandwidth is used, for example 4 p.u., 
no significant modification on the dominant poles is found. For 
lower bandwidths considered in the design (in a reasonable 
range) the stability is guaranteed if the criteria (16), (17), (19) or 



(23, (25) rules are respected. The poles move in the complex 
plane but remain in the stability zone. 

B. Instability under de-tuned PI parameters 
Instability can occur when the PI parameters differ from the 

ones computed in section IV. For example, the poles obtained 
when 𝑘38 = 0 are presented in Fig. 10 and Fig. 11, showing 
instability. At zero speed, in the symmetrical optimum case, the 
poles are on the complex positive real half plane. When speed 
increases, these two pairs follow different trajectories. For the 
ITAE case, at zero speed, both poles are in the stability zone but 
with increasing speed two poles cross the stability border and 
return to stability again.  

 

 
Fig. 10 Instability using the symmetrical optimum. (𝑘./ = 0). 

 
Fig. 12 Instability using the ITAE criterium. (𝑘./ = 0). 

VI. CONCLUSION  
Some aspects of the stability of the dual-VSI DFIG 

minimum-loss control strategy are presented in this paper. 

The symmetrical optimum criterion, as well as the ITAE 
criterium for designing PI controllers are presented and used for 

control and stability analysis. This was made computing the 
eigenvalues of the system model in closed loop. It is shown that 
under normal conditions the system is stable independently of 
the rotor speed and load level. However, when the PI parameters 
are far from the optimal ones, for example when 𝑘38 =
0,	instability can occur. 

APPENDIX 
Wound Rotor Induction Machine ratings: 3.2 kW, 4-pole, 

380/110 V, 8.1/19 A. Per-unit parameters: rs=0.06, rr =0.05, 
Lm=1.5, Lks=0.10, Lkr=0.10. Base values: SB=5350 VA, fB=50 
Hz, UB= 380 V, TB=34 Nm. 
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