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Introduction

In the present paper, a novel model for a shallow cable with small bending stiffness subjected to
transverse loading conditions is presented. The proposed model is based on a simple yet accurate
phenomenological description of the non-linear moment-curvature law of stranded cables. Numerical
solutions are first compared to experimental results  of  the literature,  to assess the validity of the
proposed formulation. Parametric analyses are then carried out to investigate the effect of different
non-dimensional variables controlling the bending stiffness variation within the boundary layers.

BACKGROUND

Bending fretting fatigue of cables is a major concern in the design and retrofitting of many structures,
such as electrical transmission lines, suspended and stayed bridges and mooring systems for offshore
engineering applications.  Fretting fatigue failures typically  occur close to suspension or anchoring
devices, where the stress-strain state is markedly different with respect to the one predicted by the
perfectly flexible structural models, often adopted to characterize the large-scale static and dynamic
response of cables (e.g.  [1]).  In fact,  within these critical  regions,  also termed  bending boundary
layers (see e.g. [2]), transverse oscillations due to environmental loads can induce both significant
alternate bending stresses and relative displacements between the wires of the cable.
The onset and propagation of relative displacements between the wires of the cable is controlled by
the activation of complex internal sticking/sliding contact patches, that makes the bending response of
the cable inherently non-linear and non-holonomic and determines a transition from a full-sticking to a
full-slipping behavior of the cable cross sections for increasing values of the curvature (see e.g. [3-5]).
Differences between the bending stiffness associated to the full-sticking and full-slipping conditions
are typically of two orders of magnitude for multi-layer stranded cables. Accurate modeling of the
cable  bending  behavior  within  the  boundary  layers  is  a  fundamental  prerequisite  to  a  deeper
comprehension of bending fretting fatigue phenomena. 
Being typically developed under the assumption of linearly elastic bending behavior (see e.g. [6, 7]),
available analytical models dealing with the determination of the stress-strain state within the cable
boundary  layers  fail  to  capture  the  effects  related  to  the  variations  of  bending stiffness  with  the
curvature.
This  paper  presents a  novel  model  for a suspended cable with small  bending stiffness  subject  to
transverse loading conditions. The proposed model is based on a simple yet accurate smooth moment-
curvature constitutive law that allows to account for non-linearities due to the onset and propagation
of relative displacements between the wires of the cable.
Numerical solutions are first compared to available experimental results of the literature, to assess the
validity  of  the  proposed formulation.  A minimal  set  of  non-dimensional  variables  controlling  the
bending stiffness  variation  within  the  boundary  layers  is  identified.  Parametric  analyses  are  then
carried out to investigate the role played by  these non-dimensional  variables on the solution of the
mechanical problem.
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THE CONSIDERED PROBLEM

In this paper, the static response of a tensioned cable suspended to horizontal supports is investigated
focusing on two archetypal transverse loading conditions (see Fig. 1): (a) uniformly distributed force
per unit of length w (e.g. cable self-weight), and (b) weightless cable subject to a concentrated force F
applied at  the midspan. The first  loading condition is typically  considered to determine the static
equilibrium configuration of suspended cables, such as overhead electrical line conductors and guard
wires,  subject  to  dead loads  and the  static  component  of  wind forces.  The  second  loading  case,
instead, is herein considered to reproduce bending tests on short cable specimens (with length in the
order of 1-5 m) that have been often reported in the literature [3, 8].
The cable is assumed to be clamped at both ends (i.e. rotations of the end sections are assumed to be
perfectly restrained) and axially inextensible. Focusing on monotonic loading conditions, the bending
stiffness (EI) of the cable cross sections is assumed to be a non-linear single-valued function of the
cable curvature  i.e.  EI = EI((s)) where s is an arc-length coordinate spanning the length l of the
cable.
Both loading conditions (a) and (b) lead to a structural problem symmetric with respect to the cable
midspan and can be described within a unitary framework. To this aim let us denote as  H and  V,
respectively, the horizontal and vertical reactions of the supports. The horizontal reaction is assumed
as a known parameter of the problem and is expressed as a ratio of the Rated Tensile Strength (RTS)
of the cable: H = 0 RTS. The vertical reaction is easily calculated, by simultaneously considering the
two loading conditions (a) and (b), as: V = (wl + F)/2.

Figure 1. Considered problems: (a) suspended cable subject to the constant load per unit of length w, (b) weightless (w=0) cable
subject to a concentrated force F applied at the midspan. In both cases the cable is assumed to be pre-tensioned and the horizontal force

at the supports is denoted as H.

The equilibrium equations

Local and global equilibrium equations can be obtained by considering, respectively, an infinitesimal
(Fig. 2(a)) or finite (Fig. 2(b)) portion of the cable (see e.g. [1, 6]). Starting from Fig. 2(b), the axial
(N) and shear (T) force can be evaluated as: 

N = H cos() + (V – w s) sin() (1)

T = H sin() - (V – w s) cos() (2)

where (s) denotes the inclination angle of the cable centerline to the horizontal direction.

Figure 2. Local (a) and global (b) equilibrium of the cable.



Equilibrium with respect to the rotation of an infinitesimal segment of the cable (see Fig. 2(a)), then,
allows to relate the first derivative of the bending moment with respect to the arc-length coordinate s
to the shear force: 

dM/ds = -T (3)

The cross-sectional bending stiffness

Metallic  cables  are  typically  made of  helical  wires,  twisted  around an  initially  straight  core  and
gathered together in concentric layers. The bending stiffness of the cable is mainly controlled by the
evolution of frictional interaction phenomena between adjacent wires. When a cable is bent, indeed,
interwire friction forces are initially large enough to prevent any relative displacement between the
wires. As a result, the wires can be considered as perfectly stuck together (full-stick state) and the
bending stiffness attains its maximum theoretical value EImax, which is of the same order of magnitude
as the one of a solid circular cross section with the same diameter as the cable. The friction forces,
however, can increase only up to a maximum value, that depends on the geometry of the wires, the
value of the axial force of the cable and the interwire friction coefficient. By monotonically increasing
the value of the bending curvature , the effects of the friction forces can be overcome allowing for
the relative sliding of the wires. Progressive sliding of the wires determines a reduction of the cross-
sectional  tangent  bending stiffness. When all  the wires are in the sliding state (full-slip state) the
tangent bending stiffness reaches its minimum theoretical value EImin, which is of the same order of
magnitude as the one of a bundle of independently bent wires.
Closed form analytical expressions have been proposed in the literature to evaluate EImax and EImin on
the  basis  of  the  sole  knowledge  of  the  material  and  geometrical  properties  of  the  wires.  These
expressions are mostly based on the assumption of rigid contact interfaces between the wires and lead
to fairly good predictions of  EImin. The maximum theoretical bending stiffness  EImax, on the other
hand,  is  typically  overestimated  as  a  consequence  of  neglecting  the  deformability  of  the  internal
contact  interfaces  between the  wires  [8,  9].  On a  practical  ground,  an  effective  maximum value
(EImax,ef) of the cross sectional bending stiffness can be conveniently defined as [10, 11]: 

EImax,ef = EImax (4)

where   is a stiffness reduction factor (0< ≤1). Typical values of  can be assumed in the range  =
0.5-0.95  for  overhead  electrical  line  conductors.  Different  models  have  been  developed  in  the
literature to describe the non-linear transition from the full-stick (small curvature regime) to the full-
slip (large curvature regime) state. Most of them rely on a wire-by-wire modeling strategy that leads
to a moment-curvature (M-) constitutive law that can be expressed in the form: 

M =EImin  +Madd() (5)

where  the  linear  term  corresponds  to  the  theoretical  response  of  the  cable  under  the  full-slip
assumption, while the non-linear term Madd() accounts for the additional contribution to the bending
moment of the cable coming from the axial force of each wire. Starting from the formulation proposed
in [4, 5, 10, 11], a smooth moment-curvature (M-) constitutive law is herein defined as: 

M =EImax,ef {2 + (1 – 2) 0 sgn() [1-exp(-|| / 0)]} (6)

where  = d/ds is the bending curvature of the cable, 2= EImin/ EImax,ef (values of 2 are typically  in
the order of few percent) and 0 is a reference curvature value related to the activation of gross-sliding
phenomena between the wires of the strand. This value is typically associated to the onset of gross-



sliding between the wires of the outermost layer of the strand and the wires of the penultimate one.
The following equation has been proposed in [10, 11] to calculate 0: 

0 =c0  (7)

where  is the interwire friction coefficient (an indicative range of values for   can be 0.15-0.7, with
lower values associated to new and well-lubricated cables and higher values associated to old or non-
lubricated ones),  c0 is a coefficient depending only on the internal geometry of the strand (typical
values of c0 are in the range 0.1-0.2 m-1, see [11]), and  is the ratio between the axial force of the
cable and its Rated Tensile Strength (RTS), i.e: (s) = N(s)/RTS.

The boundary value problem

By recalling that  = d/ds, derivation of Eq. (6) with respect to the arc-length coordinate s yields:

dM/ds =EImax,ef [2 + (1 - 2) exp(-|d/ds| / 0)] d2/ds2 (8)

By combining Eqs.  (2), (3) and (8) the following non-linear  second order differential  equation is
obtained: 

EImax,ef [2 + (1 - 2) exp(-|d/ds| / 0)] d2/ds2 = H sin() - (V – w s) cos() (9)

Due to the symmetry of the considered problems, the equation (9) can be integrated over the interval
s∈[0, l/2] along with the boundary conditions: 

(s=0) = (s=l/2) = 0 (10)

Eqs. (9) and (10) define a boundary value problem that can be solved to evaluate the inclination angle
(s). Once  (s) is known, the internal forces (N,  T) and bending moment (M) distributions can be
retrieved through eqs. (1), (2) and (3) (or (6)).

THE NON-DIMENSIONAL FORMULATION

In this Section, the considered problem is re-stated in a more convenient non-dimensional form. To
this aim, let us introduce the non-dimensional arc-length coordinate: 

= s/l,    ∈ [0, 1/2] (11)

Substitution of Eq. (11) in (9) yields the non-dimensional equation: 

2 [2 + (1 - 2) exp(-|´| / X0)] ´´ = sin() – [(+)/2 - ] cos() (12)

where =(s()), a prime denotes differentiation with respect to  and the following non-dimensional
variables have been introduced: 

2 = EImax,ef /(Hl2),   X0 = 0l,    = wl/H,   = F/H (13)

Eq. (12) should be integrated over the interval   ∈ [0, 1/2] with boundary conditions (cf. Eq. (10)): 

(=0) = (=1/2) = 0 (14)



The main features of the solutions of the boundary value problem (12)-(14) depend on the order of
magnitude of the non-dimensional  parameters  ,  X0,  ,  and  .  As an example,  let  us consider a
widespread class of overhead electrical conductors made of a steel core surrounded by one or more
layers  of aluminum wires,  i.e.  the Aluminum Conductors  Steel  Reinforced (ACSR). Focusing on
ACSR with diameter in the range 1.5-4.5 cm, strung at 10%-50% of their Rated Tensile Strength
(RTS) the non-dimensional  bending stiffness parameter    can be in the range 10-4-10-2 for spans
ranging from 50 to 250 m. Larger  values  of  ,  in  the order of  10-2-10-1 can be attained in  short
experimental testing spans (with lengths in the order of 1-5 m). Typical values of the non-dimensional
reference curvature for the onset of gross sliding phenomena,  X0, are in the range 10-1-101 for spans
ranging from 50 to 250 m. In testing spans ranging from 1 to 5 m, instead, X0 is in the order of  10-3-
10-1. The non-dimensional catenary parameter  can be in the order of 10-2-100 for spans ranging from
50 to 250 m. Significantly smaller values, in the order of  10-4-10-2, instead, are associated to testing
spans ranging from 1 to 5 m. Finally,  the non-dimensional transverse load parameter  has been
typically assumed in the order of 0.03-0.125 in experimental tests reported in the literature [3, 8].
It is worth noting that the small number multiplying the highest order derivative in Eq. (12) makes
the boundary value problem (12)-(14) singularly perturbed and hints the existence of boundary layers
in  the  static  equilibrium  configuration.  These  boundary  layers  have  been  already  studied  in  the
literature under the assumption of constant bending stiffness  EI  (e.g. [6, 7]). The latter case can be
recovered as a special case of the proposed formulation by letting the reference curvature 0 tend to
infinite (such that EI→ EImax,ef) or to zero (such that EI→ EImin). Consideration of the smallness of the
parameter  naturally paves the way for solutions strategies based on perturbation techniques and
ongoing research is oriented towards this goal. The present paper, instead,  focuses on preliminary
numerical simulations with a twofold goal: (1) showing the soundness of the proposed model and (2)
investigate the role of different non-dimensional groups on the bending stiffness variations along the
cable.  Special  care  will  be  taken within  this  context,  to  highlight  stiffness  transitions  within  the
boundary layers, that cannot be captured by available analytical models of the literature based on the
simplifying constant stiffness assumption.

APPLICATION EXAMPLES

In this Section, the proposed model is first applied to simulate a well-documented bending test of the
literature [8]. Parametric analyses are then carried out to investigate the role played by different non-
dimensional  variables controlling the bending stiffness variation within the boundary layers. In all
cases, solutions of the  boundary value problem (12)-(14) have been obtained through a numerical
solver based on a collocation algorithm. 

Comparison with experimental results

Baumann and Novak [8] reported results of a bending test performed on a short stretch (2 m in length)
of an ACSR Drake. The cable was first subjected to a horizontal force  H=0.2·RTS and then loaded
with a transverse force  F growing from zero up to the maximum value 0.05·H and applied at the
midspan as it  is schematically  depicted in Fig. 1(b). Geometric  and mechanical parameters  of the
ACSR Drake have  been calculated  according to  the  ASTM standard  [12].  They are  listed  in  the
following:  diameter  D=2.81  cm,  Rated  Tensile  Strength  RTS=138  kN,  mass  per  unit  of  length
m=1.626 kg/m, maximum value  of  the bending stiffness  EImax=1487 Nm2,  minimum value of the
bending stiffness EImin=42.9 Nm2. Notice that a slightly lower value of  EImax is reported in [8]. This
difference can be due to slight differences on the geometric and mechanical properties of the wires.
Based on the previously reported values and assuming a unitary stiffness reduction parameter (i.e.
=1), the ratio 2 turns out to be equal to 2= EImin/ EImax,ef =0.0289. The construction parameter c0 has
been calculated based on the formulation presented in [4] and is equal to 0.161 m-1. All simulations
have been run by assuming an interwire friction coefficient  =0.5 ,coherently with the assumption
reported in [8].



Fig. 3(a) shows the static equilibrium configuration under the maximum transverse load F= 0.05·H:
the non-dimensional transverse displacements y*=y(s())/l are plotted versus the non dimensional arc-
length  coordinate    ∈ [0,  1/2].  The  outcomes  of  the  proposed  model  are  compared  to  both
experimental data and results of a three-dimensional finite element model from [8] showing a good
agreement. The two curves obtained from the application of the proposed model under the simplifying
assumption of constant bending stiffness equal to EImin and EImax are also shown in Fig. 3(a). Fig. 3(b)
shows the variation of the cable non-dimensional bending stiffness (EI*=EI/(Hl2)) predicted by the
proposed model over the interval   ∈ [0, 1/2].

Figure 3. (a) Static equilibrium configuration of a 2m long Drake ACSR subject to H=0.2RTS and F=0.05H. The
outcomes of the proposed model are compared to experimental data and results of a Finite Element (FE) model from [8].

(b) Calculated non-dimensional bending stiffness distribution over the interval   ∈ [0, 1/2].

Parametric analyses

Parametric analyses have been carried out by considering the loading condition depicted in Fig. 1(a),
which is relevant e.g. for the assessment of overhead electrical line spans under self-weight and static
wind  loading  conditions.  The  analyses  have  been  carried  out  by  assuming  =10-2,  2=0.0289,
0=H/RTS=0.2  and  interwire  friction  coefficient  =0.5.  These  values  can  be  considered  as
representative of suspended cables employed in overhead electrical lines. Results are shown in Fig. 4
in terms of the inclination angle  (),  the non-dimensional bending stiffness  EI*=EI/(Hl2) and the
static equilibrium configuration y*(). 
Figures  4(a)-(c)  show  the  results  obtained  by  assuming  different  values  of  the  non-dimensional
catenary  parameter   =  wl/H (governing  the  tautness  of  the  cable)  and  a  constant  value
X*

0=c0l=1.61 in order to calculate the reference non-dimensional curvature value  X0 =  0l  =  X*
0

N(s())/RTS  =  X*
0  ().  As  expected,  by  increasing  the  parameter   the  static  equilibrium

configuration significantly varies (see Figs. 4(a) and 4(c)).More interestingly, Fig. 4(b) shows that
different values of  are associated to significantly different bending stiffness distributions along the
length of the cable. In this plot there are two ranges of interest: in-span ( ~0.5) and in the boundary
layer ( <<1). When EI*/ is equal to 1, EI= EImax,ef and the curvature of the cable is smaller than the
threshold corresponding to gross sliding. In all considered cases, there is at least one abscissa where
EI*/It corresponds to the inflexion point: the curvature is negative on the left of this point and is
positive on the right. For a small catenary parameter  the cable is rather flat, with a small curvature
and the in-span bending stiffness is close to EImax,ef, see values close to  =0.5. On the contrary, for a
significantly sagging cable (larger  catenary parameter  ), the in-span curvature is so large that the
bending stiffness is also reduced in the span, see for instance  EI*/ for  =1. In the boundary
layer, in the neighbourhood of the origin, the curvature is negative due to the boundary condition. For
all considered cases, the curvature is so large (in absolute value) that the bending stiffness corresponds
to the minimum value. When =0.1 or =1 the behaviour in the boundary layer is the same exhibiting
a so-called 2-deck boundary layer approximation. The extent of the boundary layer is much larger for



=0.01 (the highly taut cable). This numerical simulation indicates that larger axial forces in the cable
tend to increase the extent of the boundary layer, which generalizes what is known for cables with
constant bending stiffness [6]. 
Figures 4(d)-(f) show the results obtained by assuming different values of X*

0 and a constant value of
the non-dimensional catenary parameter, namely  =0.01. As it can be noticed by Figs. 4(d) and 4(f),
changes in  X*

0 do not significantly affect the deformed shaped of the cable, which is already highly
taut. The pattern of the boundary layer solution is highly dependent on X*

0 : for a large threshold the
most important part of the cable is under low curvature,  as expected and  the maximum bending
stiffness is observed along almost the whole length of the cable. Conversely, for a small threshold, the
profile of the bending stiffness is very much alike the profile obtained for slacker cables, i.e. with a
shorter boundary layer, a sharp transition and a smaller in-span bending stiffness.

CONCLUSIONS

In this paper, we have unveiled the specific nature of the 2-deck boundary layer in stranded cables
which exhibit a smooth transition from full bending stiffness to reduced bending stiffness, as a result
of the gross sliding of the different wires making up the cross section. Numerical simulations have
been used for this study. They highlight the main features of the boundary layer solution.  At this
stage, it is too early to derive simple analytical formulations to predict the different response profiles.
However, this analysis shall serve as a solid basis to inspire a perturbation analysis solution. It is clear
though, that the profile of the response is the neighbourhood of the support is highly dependent on the
tautness parameter and the geometrical parameters of the cable. These simulations and the arguments
developed  in  the  scope of  this  paper  tend  to  question  the  systematic  use  of  experiments  with  a
systematic measurement at a distance of 89 mm from the support to describe or quantify the response
of  the  cable.  Indeed,  a  fixed  distance,  which  seems  appealing  for  codification  purposes,  could
certainly fall inside or outside the boundary layer, whose profile is furthermore highly dependent on
the  considered  configuration.   The use  of  a  systematic  distance  seems therefore  inappropriate  to
capture  all  possible  configuration.  Further  studies  are  required  to  derive  clean  2-deck  matched
asymptotic solutions and eventually derive the exact conditions under which the 89-mm is appropriate
to represent the actual cable behaviour.
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