
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Scalable Approach for Service Chain (SC)
Mapping with Multiple SC Instances in a

Wide-Area Network
This is a preprint electronic version of the article submitted to IEEE JSAC Series on Network

Softwarization And Enablers

Abhishek Gupta, Brigitte Jaumard, Massimo Tornatore, and Biswanath Mukherjee

Abstract—Network Function Virtualization (NFV) aims to
simplify deployment of network services by running Virtual
Network Functions (VNFs) on commercial off-the-shelf servers.
Service deployment involves placement of VNFs and in-sequence
routing of traffic flows through VNFs comprising a Service Chain
(SC). The joint VNF placement and traffic routing is called SC
mapping. In a Wide-Area Network (WAN), a situation may arise
where several traffic flows, generated by many distributed node
pairs, require the same SC; then, a single instance (or occurrence)
of that SC might not be enough. SC mapping with multiple SC
instances for the same SC turns out to be a very complex problem,
since the sequential traversal of VNFs has to be maintained while
accounting for traffic flows in various directions.

Our study is the first to deal with the problem of SC mapping
with multiple SC instances to minimize network resource con-
sumption. We first propose an Integer Linear Program (ILP) to
solve this problem. Since ILP does not scale to large networks,
we develop a column-generation-based ILP (CG-ILP) model.
However, we find that exact mathematical modeling of the
problem results in quadratic constraints in our CG-ILP. The
quadratic constraints are made linear but even the scalability of
CG-ILP is limited. Hence, we also propose a two-phase column-
generation-based approach to get results over large network
topologies within reasonable computational times. Using such
an approach, we observe that an appropriate choice of only a
small set of SC instances can lead to a solution very close to
the minimum bandwidth consumption. Further, this approach
also helps us to analyze the effects of number of VNF replicas
and number of NFV nodes on bandwidth consumption when
deploying these minimum number of SC instances.

I. INTRODUCTION

T raditionally, communication networks have deployed net-
work services through proprietary hardware appliances

(e.g., network functions such as firewalls, NAT, etc.) which
are statically configured. With rapid evolution of applications,
networks require agile and scalable service deployment.

Network Function Virtualization (NFV) [1] offers a solution
for an agile service deployment. NFV envisions traditional
hardware functionality as software modules called Virtual Net-
work Functions (VNFs). VNFs can be run on commercial-off-
the-shelf hardware such as servers and switches in datacenters
(DCs), making service deployment agile and scalable.

A. Gupta, M. Tornatore, and B. Mukherjee are with the Univer-
sity of California, Davis, USA. E-mail: {abgupta, mtornatore, bmukher-
jee}@ucdavis.edu; B. Jaumard is with Concordia University, Canada. E-mail:
bjaumard@cse.concordia.ca; M. Tornatore is also with Politecnico di Milano,
Italy. E-mail: massimo.tornatore@polimi.it

When several network functions are configured to provide a
service, we have a “Service Chain”. The term “service chain”
is used “to describe the deployment of such functions, and
the network operator’s process of specifying an ordered list of
service functions that should be applied to a deterministic set
of traffic flows” [2]. So, a “Service Chain” (SC) specifies a set
of network functions configured in a specific order. With NFV,
we can form SCs where VNFs are configured in a specific
sequence that minimizes the bandwidth usage in the network
(an example is discussed below).

Unfortunately, since VNFs in a single SC may need to be
traversed by several distinct traffic flows (i.e., flows requested
by multiple geographically-distributed node pairs) in a specific
sequence, it becomes difficult to improve network resource
utilization. For example, consider Figs. 1(a) and 1(b), where
three traffic requests r1 (from node 4 to 13), r2 (from node 6
to 3), and r3 (from node 14 to 1) demand SC c1 composed
of VNF1, VNF2, and VNF3 (to be traversed in this order
VNF1→VNF2→VNF3). In Fig. 1(a), if we consider only
one mapping occurrence (or instance) for SC c1, then some
traffic flows (in our example, r3 and r2) will be ineffectively
routed over long paths. Instead, as shown in Fig. 1(b), if we use
two SC instances for the same SC, we can improve network
resource utilization, at the expense of a larger number of VNFs
to be deployed (or replicated) in the network to serve the same
SC. This results in a more complex problem when, in a Wide-
Area Network (WAN), a large number of distributed node
pairs generate traffic flows, creating heavy traffic demands.
Our objective in this work is to reduce the network resource
consumption for a WAN with heavy traffic demands.

So the question is: how many SC instances for the same SC
are required for optimal network resource utilization?

A possible (trivial) solution to the problem of SC mapping
in case of multiple node pairs requiring the same SC is to use
one single instance that would most likely lead to host SCs
at a single node (e.g., a DC) which is centrally located in the
network. However, traffic flows may have to take long paths
to reach the node hosting the SC, which will result in a high
network resource consumption.

The other extreme case would be to use a distinct SC
mapping per each node pair (in other words, the number of SC
instances is equal to the number of traffic node pairs). Now, we
can achieve optimal network resource utilization as each node
pair will use an SC effectively mapped along a shortest path

ar
X

iv
:1

70
9.

04
77

2v
1

 [
cs

.N
I]

 1
3

Se
p

20
17

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

(a) One single SC instance mapping: requests r3 and r2 take longer paths. All traffic
requests get mapped to the single instance.

(b) Two SC instances mapping: requests r3 and r2 take
shorter paths. Here, each traffic request chooses to map
to one of two given instances.

Fig. 1: Deploying more SC occurrence mappings reduces network resource consumption.

in the network1. However, this approach will increase the net-
work orchestration overhead and increase capital expenditure,
as there will be a large number of replicated VNF instances
across nodes. To reduce excessive VNF replication, we bound
the maximum number of nodes hosting VNFs.

Intuitively, the number of SC instances for a good solution
will be a value between these two extremes. This solution
will minimize the network resource utilization while not
excessively increasing the number of nodes hosting VNFs.

A reasonable trade-off that leads to the optimal solution
is difficult to calculate, as the problem of SC mapping with
multiple SC instances results in quadratic constraints [3] that
severely hamper the scalability of the solution. In this study, to
answer the question above, we propose a two-phase solution,
relying on a column-generation-based ILP model, which pro-
vides quasi-optimal solutions with reasonable computational
time. Sub-optimality comes from the fact that we solve the
problem in two phases: in the first phase, we group node pairs
that will be forced to use the same SC instance; in the second
phase, we run our scalable column-generation approach to find
a solution starting from the grouping already performed in the
first phase. Applying this approach over two realistic network
topologies, we observe that an appropriate choice of only a
small set of different SC mappings can lead to a solution
very close to the minimum theoretical bandwidth consumption,
even for a full-mesh traffic demand matrix.

The rest of this study is organized as follows. Section II
overviews the existing literature on the SC mapping problem
and remarks the novel contributions of this study. Section
III formally describes the problem and its input parameters.
Section IV describes the Integer Linear Program (ILP) formu-
lation for the problem, while Section V describes the quadratic
column-generation-based ILP model. Section VI introduces a
heuristic to cluster groups of node pairs that will use the same
SC instance; and then describes our column-generation-based
ILP solution method. Section VIII provides some illustrative
examples which demonstrate that a limited number of SC
instances can lead to quasi-optimal solution of the problem.
Section IX concludes the study.

1Using the shortest path also has the added effect of reducing latency for
the service chain, but this aspect is out of scope for this study.

II. RELATED WORK

A number of studies exist on the VNF placement and
routing problem. Ref. [3] was the first to formally define
the problem of VNF placement and routing. However, they
developed a Quadratic Constrained Program (QCP), making it
unscalable beyond small problem instances. Ref. [4] studied a
hybrid deployment scenario with hardware middleboxes using
an ILP, but did not enforce VNF service chaining explicitly.
Ref. [5] used an ILP to study trade-offs between legacy and
NFV-based traffic engineering but did not have explicit VNF
service chaining. Ref. [6] modeled the problem in a DC setting
using an ILP to reduce the end-to-end delays and minimize
resource over-provisioning while providing a heuristic to do
the same. Here too VNF service chaining is not explicitly
enforced by the model. Ref. [7] modeled the batch deployment
of multiple chains using an ILP and developed heuristics to
solve larger instances of the problem. However, it enforced
that VNF instances of a function need to be on a single
machine and restricts all chains to three VNFs. Our model
does not impose such constraints, and we allow any VNF
type to be placed at any node and any number of VNFs
in a SC while service chaining VNFs for a SC explicitly.
Ref. [8] accounted for the explicit service chaining of VNFs
but focused on compute resource sharing among VNFs. Ref.
[9] used a column-generation model to solve VNF placement
and routing but considered dedicated SC instances per traffic
pair, hence solving the second extreme case mentioned in
the introduction, which is a particular case of our approach.
Ref. [10] also used a column-generation model to solve the
dynamic VNF placement and routing problem but considered
a single SC instance per SC, which as mentioned earlier will
lead to a sub-optimal solution.

Recently, there have been a few works on using multi-
ple VNF instances for load balancing to reducing resource
utilization and improve QoS. There are several differences
between these and our work which we clarify below. Ref. [11]
developed a load-balancing scheme for the Virtual Evolved
Packet Core (vEPC) SC, given a set of pre-computed paths
by replicating the instances of certain (not all) VNFs. Our
approach deals with a SC in general without any prior com-
putation of paths. Ref. [12] developed an online approach for
scaling SCs by using VNF replicas and an approximate version
of an offline scheme. It provided theoretical bounds for its

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

technique; however, the method does not provide a general
mapping of an SC instance to network node and VNF replicas
which is done by our approach. Ref. [13] looked at selection
of NFV nodes and VNF assignment separately. Our approach
does node selection and VNF assignment jointly while also
holistically mapping SC instances to the allowed number of
NFV nodes and VNF replicas for each SC.

Our previous work [14] and most existing works solve the
problem for multiple SCs, but for each SC only a single
instance of the SC is allowed. We remark again that, in the
current work, we consider multiple SCs, but for each SC,
multiple instances per SC are allowed; hence most existing
works represent a particular case of our current work, where
each node pair requesting an SC has its own instance. Fur-
ther, we also consider multiple geographically-distributed node
pairs which create heavily-populated (dense) traffic demands.
As extending the model to multiple instances per SC results
in quadratic constraints, we propose a novel decomposition
model (column generation) for SC mapping with multiple SC
instances, which, together with a traffic-grouping heuristic,
provides a scalable solution to the problem (Section VI).

To the best of our knowledge, this is the first attempt to
address the solution of the complete SC mapping problem (i.e.,
with multiple SC instances) over large network instances.

III. PROBLEM DESCRIPTION

An operator’s network provides multiple services, and each
service is realized by traversing a Service Chain (SC). To pro-
vide multiple services, the operator has to map corresponding
SCs into network. We develop three solution approaches for
this multiple SC mapping problem. First is the ILP described
in Section IV. Second is a column-generation-based ILP (CG-
ILP) detailed in Section V. Finally, we solve the problem using
a two-phase approach described in Section VI.

A. Problem Statement

Given a network topology, capacity of links, a set of network
nodes with NFV support (NFV nodes), compute resources
at NFV nodes, maximum number of NFV nodes that can
be used, traffic flows for source-destination pairs requiring
a specific SC with a certain bandwidth demand, a set of
VNFs, and a set of SCs, we determine the placement of
VNFs and corresponding traffic routing to minimize network-
resource (bandwidth) consumption. Note that VNFs can be
shared among different SCs.

B. Input Parameters

• G = (V,L): Physical topology of backbone network; V
is set of nodes and L is set of links.

• V NFV ⊆ V : Set of nodes that can host VNFs (NFV
nodes).

• Ic: Number of instances for SC c.
• K: Maximum number of NFV nodes allowed to host

VNFs.
• F , indexed by f : Set of VNFs.
• Rf : Maximum number of replicas of VNF f .

• nCORE: Number of CPU cores present in a NFV node.
• nCORE

f : Number of CPU cores per Gbps for function f .
• C: Set of chains, indexed by c.
• nc: Number of VNFs in SC c.
• SD: Set of source-destination (vs, vd) pairs.
• SDc: Set of source-destination (vs, vd) pairs for SC c.
• Dc

sd: Traffic demand between vs and vd for SC c.
• σi(c): ID of ith VNF in SC c where fσi(c) ∈ F .
• Tcfi: Utility for translating the ith VNF in SC c to its

VNF index f .
To facilitate model formulation and discussion, we propose

the concept of configuration (γ̂). We use the following notation
for SC representation. Each SC, denoted by c, is characterized
by an ordered set of nc functions:

[SC c] fσ1(c) ≺ fσ2(c) ≺ · · · ≺ fσnc (c) (1)

Each deployment of SC c is defined by a set of VNF locations,
a set of paths, from location of first VNF to location of last
VNF, and set of traffoc flows traversing this deployment.

We generate a set of SC configurations where each con-
figuration (γ̂) is associated with a potential provisioning of a
SC c, i.e., with a potential node placement of its functions
and a potential subset of traffic flows from SDc. Let Γ̂ be the
set of configurations, and Γ̂c be the subset of configurations
associated with service chain c ∈ C: Γ̂ =

⋃
c∈C

Γ̂c.

Potential set of configurations for a SC c is given by:

Γ̂c =

NSDc∑
sd=1

(
NSDc
sd

)
× {NV NFV }

nc × Ppathsnc−1

where sd is the number of number of source-destination
(vs, vd) pairs using a configuration, NSDc gives the number
of source-destination (vs, vd) pairs for SC c, NV NFV gives
the number of NFV nodes and Ppaths refers to the number of
paths from the location of fσi(c) to the location of fσi+1(c).

A chain configuration (γ̂) is characterized by the following
parameters:
• Traffic flows: δγ̂sd = 1 if (vs, vd) uses configuration γ̂; 0

otherwise.
• Location of functions: aγ̂vi = 1 if ith function fi ∈ c is

located in v in configuration γ̂; 0 otherwise.
• Connectivity of locations: path from location of current

VNF to next VNF in SC c. If link ` is used in the path
from location of fσi(c) to location of fσi+1(c), then bγ̂i` =
1; 0 otherwise.

IV. INTEGER LINEAR PROGRAM

We precompute Γ̂, which is an input for our ILP model.
ILP selects the best configuration (γ̂) based on other input
parameters and constraints, and computes the route from vs
(source) to first VNF of c and from last VNF of c to vd
(destination) for each source-destination (vs, vd) pair.

Variables:
• zγ̂ = 1 if configuration γ̂ is selected; 0 otherwise.
• xciv = 1 if ith function of c is located in v; 0 otherwise.
• y

f1(c),sd
` = 1 if ` is on path from vs to location of first

VNF in c; 0 otherwise.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

• y
fnc (c),sd
` = 1 if ` is on path from location of last VNF

in c to vd; 0 otherwise.
• hv = 1 if v is used as a location for a VNF; 0 otherwise.

Objective: Minimize bandwidth consumed:

min
∑
c∈C

∑
γ̂∈Γ̂c

Overall traffic using c︷ ︸︸ ︷ ∑
(s,d)∈SD

Dc
sd


Number of links
in the route of c︷ ︸︸ ︷(∑

`∈L

∑
i∈I

δγ̂sdb
γ̂
i`

)
zγ̂+

∑
c∈C

∑
`∈L

∑
(s,d)∈SD

Dc
sd

(
y
f1(c),sd
` + y

fnc (c),sd
`

)
(2)

Total bandwidth consumed in placing multiple SCs depends
on configurations (γ̂’s) selected for each SC c. Each γ̂ for c
locates VNFs of c and gives the route to traverse these VNF
locations. So, bandwidth consumed when going from vs to vd
and traversing the SC depends on selected γ̂.

Constraints:∑
γ̂∈Γ̂c

zγ̂ ≤ Ic c ∈ C (3)

∑
c∈C

∑
γ̂∈Γ̂c

nc∑
i=1

Tcfia
γ̂
vi zγ̂ ≤Mxvf f ∈ F, v ∈ V NFV (4)

∑
c∈C

∑
γ̂∈Γ̂c

nc∑
i=1

Tcfia
γ̂
vi zγ̂ ≥ xvf f ∈ F, v ∈ V NFV (5)

∑
v∈V NFV

xvf ≤ Rf f ∈ F (6)

Mhv ≥
∑
f∈F

xvf ≥ hv v ∈ V NFV (7)∑
v∈V NFV

hv ≤ K (8)∑
c∈C

∑
γ̂∈Γ̂c

∑
(vs,vd)∈SD

Dc
sd δ

γ̂
sd∗∑

f∈F

nc∑
i=1

Tcfin
CORE
f aγ̂vi

 zγ̂ ≤ NCORE v ∈ V NFV (9)

∑
c∈C

∑
(vs,vd)∈SD

Dc
sd∗yf1(c),sd

` + y
fnc (c),sd
` +

∑
γ̂∈Γ̂c

δγ̂sd zγ̂

nc−1∑
i=1

bγ̂i`


≤ CAP` ` ∈ L (10)∑

γ̂∈Γ̂c

δγ̂sdzγ̂ = 1 c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0 (11)

Constraints (3) guarantee that we select exactly Ic config-
urations for SC c and force c to have Ic instances. Each γ̂
is associated with a set of aγ̂vi required to be consistent with
xvf , which is resolved by Eqs. (4), (5) where Tcfi is to find
the VNF f at sequence i in SC c. Eq. (6) is used to limit the
number of VNF replicas. Eq. (7) is used to keep track of NFV
nodes used for hosting VNFs while Eq. (8) limits the number
of NFV nodes allowed to host VNFs. Constraints (9) ensure
that each NFV node has a sufficient number of CPU cores for

hosting f . Eq. (10) constrains link capacity. Eq. (11) enforces
that, for each source-destination pair (vs, vd) requesting SC c,
there is exactly one configuration γ̂.

Route from vs to first function location:∑
γ̂∈Γ̂c

δγ̂sd a
γ̂
vs,1

zγ̂ +
∑

`∈ω+(vs)

y
f1(c),sd
` = 1

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0 (12)∑

γ̂∈Γ̂c

δγ̂sd a
γ̂
v1zγ̂ −

∑
`∈ω−(v)

y
f1(c),sd
` ≤ 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V NFV \ {vs} (13)∑
γ̂∈Γ̂c

δγ̂sd a
γ̂
v1zγ̂ +

∑
`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V NFV \ {vs} (14)∑
`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V \ (V NFV ∪ {vs}) (15)

We assume that an unique route exists from vs to first VNF
location. This is imposed by selecting exactly one outgoing
link from vs unless first VNF is located at vs. We account
for these scenarios using Eq. (12). To find the route from vs
to first VNF, flow conservation needs to be enforced at the
intermediate nodes which may or may not have NFV support.
Eqs. (14) and (15) enforce flow-conservation constraints at
nodes with and without NFV support, respectively.

Route from last function location to vd:∑
γ̂∈Γ̂c

δγ̂sd a
γ
vd,nc

zγ̂ +
∑

`∈ω−(vd)

y
fnc (c),sd
` = 1

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0 (16)∑

γ̂∈Γ̂c

δγ̂sd a
γ̂
v,nczγ̂ −

∑
`∈ω+(v)

y
fnc (c),sd
` ≤ 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V NFV \ {vd} (17)∑
γ̂∈Γ̂c

δγ̂sd a
γ̂
v,nczγ̂ −

∑
`∈ω+(v)

y
fnc (c),sd
` +

∑
`∈ω−(v)

y
fnc (c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V NFV \ {vd} (18)∑
`∈ω+(v)

y
fnc (c),sd
` −

∑
`∈ω−(v)

y
fnc (c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V \ (V NFV ∪ {vd}) (19)

Eq. (16) selects one incoming link to vd to ensure a route
to vd. For cases where last VNF is placed at destination node,
we use Eq. (17). Eqs. (18) and (19) enforce flow conservation
at nodes with and without NFV support, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

V. COLUMN GENERATION - ILP

Pre-computing all configurations becomes computationally
expensive for large networks. As the number of configurations
grows with network size, the problem fits naturally in the
column-generation framework [15].

Column generation (CG) is a decomposition technique,
where the problem (called Master Problem-MP) to be solved
is divided into two sub-problems: restricted master problem
(RMP) (selection of the best configurations) and pricing prob-
lems (PP SC(c))c∈C (configuration generators for each chain).
CG process involves solving RMP, querying the dual values
of RMP constraints, and using them for PP SC(c) objective.
Each improving solution (i.e., with a negative reduced cost) of
PP SC(c) is added to RMP, and previous step is repeated until
optimality condition is reached ([15], [16]), with PP SC(c)
explored in a round-robin fashion.

The advantage here is that we do not have to precompute
configurations. CG generates a column (here, a configuration)
by itself, adds them to RMP and solves RMP. This set of
steps is repeated until reduced cost becomes non-negative
(RED COST ≥ 0). We convert the final RMP to an ILP and
solve to get integer solution. RMP selects the best γ ∈ Γc for
each SC c. Also it finds a route from vs (source) to first VNF
of c and from last VNF of c to vd (destination).

An illustration of the constraint splitting between RMP and
PP SC(c) is depicted in Fig. 2. Nodes circled in purple are
NFV nodes, yellow nodes do not host VNFs at present but have
NFV support, and orange nodes currently host VNFs. Figure
2(a) has f1 located at v1. When a different configuration is
selected in Fig. 2(b) and f1 is located at v2, then RMP finds
the path from vs to location of f1. Similarly, RMP finds the
path from last VNF to vd, i.e., f5 to vd here.

A. Reduced Master Problem (RMP)

Objective: Minimize bandwidth consumed:

min
∑
c∈C

∑
γ̂∈Γ̂c

 ∑
(s,d)∈SD

Dc
sd


∑
`∈L

∑
i∈I

δγ̂sdb
γ̂
i`︸ ︷︷ ︸

yγ̂,sdi`


︸ ︷︷ ︸

COSTγ̂

zγ̂+

∑
c∈C

∑
`∈L

∑
(s,d)∈SD

Dc
sd

(
y
f1(c),sd
` + y

fnc (c),sd
`

)
(20)

The formulation for the reduced master problem is same
as the ILP in Section IV. However, the RMP is solved as a
Linear Program (LP) for the duration of the CG. After the CG
solves the RMP optimally (when RED COST ≥ 0), we solve
the final RMP as an ILP to get integer solution.

B. Pricing Problem: PP(c)

PP SC(c) generates configurations. Here, we discover that
the configuration (γ̂) structure results in quadratic constraints
since we have to also determine which traffic flows will make
up the configuration. Quadratic expressions can be seen in
Eqs. (21), (22), and (23). We linearize these constraints using

(a) A first configuration (γ1) for c

(b) A second configuration (γ2) for c

Fig. 2: Two configuration examples for chain c = (f1 ≺ f2 ≺
f3 ≺ f4 ≺ f5).

Eqs. (25) and (26), however, the performance of the CG is
still affected.
Objective: Minimize reduced cost of variable zγ̂ (after lin-
earization):

[PP SC(c)] RED COSTγ̂ = COSTγ̂ + u(3)

+
∑

v∈V NFV

∑
f∈F

nc∑
i=1

u(4)
fvTcfiavi −

∑
v∈V NFV

∑
f∈F

nc∑
i=1

u(5)
fvTcfiavi

+
∑

v∈V NFV

u(9)
v

∑
(vs,vd)∈SD

Dc
sd

nc∑
i=1

Tcfin
CORE
f psdv,i

+
∑
`∈L

∑
(vs,vd)∈SD

u(10)
` Dc

sd

nc−1∑
i=1

qsdi` −
∑

(vs,vd)∈SD

u(11)
sd δsd

−
∑

(vs,vd)∈SD

u(12)
sd p

sd
vs,1 +

∑
(vs,vd)∈SD

∑
v∈V NFV\{vs}

u(13)
sd,vp

sd
v,1

−
∑

(vs,vd)∈SD

∑
v∈V NFV\{vs}

u(14)
sd,vp

sd
v,1

−
∑

(vs,vd)∈SD

u(16)
sd p

sd
vd,nc

+
∑

(vs,vd)∈SD

∑
v∈V NFV\{vs}

u(17)
sd,vp

sd
v,nc

−
∑

(vs,vd)∈SD

∑
v∈V NFV\{vs}

u(18)
sd,vp

sd
v,nc (21)

where u(3), u(4)
fv , u(5)

fv , u(9)
v , u(10)

` , u(11)
` , u(12)

sd , u(13)
sd,v , u(14)

sd,v , u(16)
sd ,

u(17)
sd,v and u(18)

sd,v are dual variables associated with Eqs. (3),
(4), (5), (9), (10), (11), (12), (13), (14), (16), (17) and (18)
respectively.
Variables:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

• δsd = 1 if configuration γ̂ to be generated contains node
pair (vs, vd) requiring c; 0 otherwise.

• psdv,i = δsd avi = 1 if node pair (vs, vd) is provisioned
using the provisioning of c / placement function (ith
function of SFC c in location v) of the configuration
under construction; 0 otherwise

• qsdi` = δsd bi` = 1 if node pair (vs, vd) is provisioned
using the provisioning of c (with link ` being used in the
path from the location of the ith function to the location
of the (i + 1)th function) / placement function of the
configuration under construction; 0 otherwise

Constraints:∑
(vs,vd)∈SD

Dc
sd

nc∑
i=1

nCORE
f Tcfi δsd avi︸ ︷︷ ︸

psdv,i

≤ NCORE

v ∈ V NFV (22)∑
(vs,vd)∈SD

Dc
sd

nc−1∑
i=1

δsdbi`︸ ︷︷ ︸
qsdi`

≤ CAP` ` ∈ L (23)

Eq. (22) enforces a capacity constraints in CPU cores on
all NFV nodes while Eq. (23) imposes link capacity.∑
v∈V NFV

avi = 1 i = 1, 2, . . . , nc (24)

psdv,i = avi ∧ δsd (vs, vd) ∈ SD : Dc
sd > 0,

v ∈ V NFV, i = 1, 2, . . . , nc (25)

qsdi` = bi` ∧ δsd (vs, vd) ∈ SD : Dc
sd > 0,

` ∈ L, i = 1, 2, . . . , nc − 1 (26)∑
`∈ω−(v)

b1,` ≤ 1− av,1 v ∈ V NFV (27)

∑
`∈ω+(v)

bnc−1,` ≤ 1− av,nc v ∈ V NFV (28)

∑
`∈ω+(v)

bi` −
∑

`∈ω−(v)

bi` = avi − av,i+1

v ∈ V NFV, i = 1, 2, . . . , nc − 1 (29)∑
`∈ω+(v)

bi` −
∑

`∈ω−(v)

bi` = 0

v ∈ V \ V NFV, i = 1, 2, . . . , nc − 1 (30)

Eq. (24) ensures that each VNF in SC c is placed exactly
once. Eqs. (25)2 and (26) introduce the variables to linearize
the model. Eq. (27) ensures that, if f1(c) is located in v, there
is no flow b that is incoming to v. Eqs. (29) and (30) are flow-
conservation constraints: Eq. (29) for nodes with NFV support

2 Linearization details:

∀(vs, vd) ∈ SD : Dc
sd > 0, ∀v ∈ V NFV, i = 1, 2, . . . , nc

Eq. (25) can be linearly represented as below.

psdv,i ≤ avi (31)

psdv,i ≤ δsd (32)

avi + δsd − 1 ≤ psdv,i (33)

Eq. (26) can also be similarly represented.

and Eq. (30) for other nodes. Eq. (28) ensures that, if fnc(c)
is located in v, there is no flow b that is outgoing v.

C. Solution Scheme

The PP SC(c) are solved in a round-robin fashion, and the
final RMP is solved as an ILP, as in [15], [16].

VI. TWO-PHASE MODEL

As already mentioned, we are solving this problem con-
sidering that each SC request chooses to map to one of
multiple instances, which leads the model discussed in Section
V to have quadratic constraints, reducing the scalability of the
model. So, to avoid quadratic constraints, we develop a new
solution approach consisting of two phases:
• Phase 1: We fix the number Nc of instances accepted per

SC (Nc can go from 1 up to the number of demands for
that SC), and then we group the traffic requests in Nc
groups of requests. All the requests in a group are forced
to use the same SC instance (Section VI-A). Then we
pass the Nc instances as distinct SCs to the next phase.

• Phase 2: We solve the SC mapping problem with one
single instance per SC based on the inputs of Phase
1. The solution of this simplified (linear, yet still very
complex) problem is based on a column-generation-based
decomposition model (Section VI-B).

As a result of Phase 1, we no longer have to account for
traffic flows as part of a configuration. This happens because
we partition the traffic flows in Phase 1, and so it becomes
much easier to find the best possible configuration for each
partition in the second phase. For the two-phase-model, the
configuration is γ. A chain configuration γ in the two-phase
model is characterized by the following parameters:
• Location of functions: aγvi = 1 if ith function fi ∈ c is

located in v in configuration; 0 otherwise.
• Connectivity of locations: path from location of current

VNF to next VNF in SC c. If link ` is used in the path
from location of fσi(c) to location of fσi+1(c), then bγi` =
1; 0 otherwise.

A. Phase 1: Shortest-Path Traffic Grouping (SPTG) Heuristic

Now, we propose a Shortest-Path Traffic Grouping (SPTG)
heuristic, which forms Nc groups of node pairs for each SC
(given by SDc), to be given as input to the decomposition
model in Section V that will treat them as distinct SC and
decide the best SC mapping for each of the Nc node-pair
groups. As a result, we will have a solution mapping multiple
SC instances per SC.

The logic of the SPTG algorithm is that groups are formed
among node pairs that share links along their shortest path(s).
SPTG is designed to make the largest flows take shortest
paths, the intuition being that, if largest flows take shortest
paths, network resource consumption will be reduced. Details
of SPTG approach can be found in Algorithm 1.

If Algorithm 1 terminates with SDLEFT
c = ∅ and a number

of groups that is < Nc, partition some of the groups in order
to reach Nc groups.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1 SPTG(c)

Require: G, SDc, Nc
Ensure: PARTITION ← partition of node pairs (vs, vd) into

groups
1: PARTITION ← ∅
2: numberOfGroups← 0
3: SDLEFT

c ← SDc . list of (vs, vd) for c
4: bigF low ← largestF low(SDLEFT

c) . selects largest flow
in SDLEFT

c

5: while numberOfGroups < Nc & SDLEFT
c 6= ∅ do

6: for (vs, vd) in G do
7: CLUSTERsd ← set of traffic pairs whose shortest

path passes through (vs, vd)
8: end for
9: largestCluster ← max

(vs,vd):Dcsd>0
CLUSTERsd &

bigF low ∈ CLUSTERsd
10: SDLEFT

c ← SDLEFT
c \ largestCluster . remove traffic

pairs of largestCluster from SDLEFT
c

11: Add largestCluster to PARTITION
12: numberOfGroups← numberOfGroups+ 1
13: bigF low ← largestFLow(SDLEFT

c)
14: end while
15: if SDLEFT

c 6= ∅ then
16: for trafficPair ∈ SDLEFT

c do
17: add trafficPair to GROUP ∈ PARTITION, such

that the (vs, vd) associated with GROUP provides the
shortest path for provisioning trafficPair

18: end for
19: end if

B. Phase 2: Column-Generation Approach

Since our definition of configurations (γ) has been simpli-
fied, CG becomes linear and faster.

1) Restricted Master Problem (RMP) : Variables:
• zγ = 1 if configuration γ is selected; 0 otherwise.
• xciv = 1 if ith function of c is located in v; 0 otherwise.
• yfirst(c),sd

` = 1 if ` is on path from vs to location of first
VNF in c; 0 otherwise.

• ylast(c),sd
` = 1 if ` is on path from location of last VNF in
c to vd; 0 otherwise.

• hv = 1 if v is used as a location for a VNF; 0 otherwise.

Objective: Minimize bandwidth consumed:

min
∑
γ∈Γ

Overall traffic using c︷ ︸︸ ︷ ∑
(s,d)∈SD

Dc
sd


Number of links
in the route of c︷ ︸︸ ︷(∑
`∈L

∑
i∈I

bγi`

)
︸ ︷︷ ︸

COSTγ

zγ+

∑
c∈C

∑
`∈L

∑
(s,d)∈SD

Dc
sd

(
y
f1(c),sd
` + y

fnc (c),sd
`

)
(34)

Total bandwidth consumed in placing multiple SCs depends
on configuration γ selected for each SC c. Each γ for c
locates VNFs of c and gives the route to traverse these VNF

locations. So, bandwidth consumed when going from vs to vd
and traversing the SC depends on selected γ.
Constraints:∑

γ∈Γc

zγ = 1 c ∈ C (35)

∑
c∈C

∑
γ∈Γc

∑
(vs,vd)∈SD

Dc
sd (

nc∑
i=1

aγviδ
c
fin

CORE
f) zγ ≤ nCORE

v ∈ V NFV (36)∑
c∈C

∑
(vs,vd)∈SD

Dc
sdyf1(c),sd

` + y
fnc (c),sd
` +

∑
γ∈Γc

nc−1∑
i=1

bγi` zγ


≤ CAP` ` ∈ L (37)∑

γ∈Γc

aγvizγ = xciv fi ∈ F (c), c ∈ C, v ∈ V NFV(38)

Mxvf ≥
∑

c∈C:f∈c

∑
i∈{1,2,...,nc}:fi=f

xciv ≥ xvf

v ∈ V NFV, fi ∈ F (39)

Mhv ≥
∑
f∈F

xvf ≥ hv v ∈ V NFV (40)∑
v∈V NFV

hv ≤ K (41)

Constraints (35) guarantee that we select exactly one γ for
SC c and force c to have a single instance. Each γ is associated
with a set of aγvi (from PP SC(c)) required to be consistent
with xciv in RMP, which is resolved by Eqs. (38).

Constraints (36) ensure that each NFV node has a sufficient
number of CPU cores for hosting f . Eq. (37) enforces link-
capacity constraints for the complete route for SC c from vs
to vd for all (vs, vd) ∈ SD : Dc

sd > 0).
Eq. (39) keeps track of VNF replicas. Eq. (40) keeps track

of NFV nodes used for hosting VNFs while Eq. (41) enforces
the number of NFV nodes allowed to host VNFs.

Route from vs to first function location:∑
`∈ω+(vs)

y
f1(c),sd
` = 1− xc,1vs c ∈ C,

(vs, vd) ∈ SD : Dc
sd > 0 (42)∑

`∈ω−(v)

y
f1(c),sd
` ≥ xc,1v c ∈ C,

(vs, vd) ∈ SD : Dc
sd > 0, v ∈ V NFV \ {vs} (43)∑

`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = −xc,1v

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0, v ∈ V NFV \ {vs} (44)∑

`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0, v ∈ V \ (V NFV ∪ {vs}) (45)

We assume that an unique route exists from vs to first VNF
location. This is imposed by selecting exactly one outgoing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

link from vs unless first VNF is located at vs. We account
for these scenarios using Eq. (42). To find the route from vs
to first VNF, flow conservation needs to be enforced at the
intermediate nodes which may or may not have NFV support.
Eqs. (44) and (45) enforces flow-conservation constraints at
nodes with and without NFV support, respectively.

We can enforce same functionality as Eqs. (42), (44), (45),
and (43), on route from location of last VNF to vd. For the
interested reader, similar details are provided in [17].

2) Pricing Problem: Mapping configurations for each SC c
(c ∈ C) corresponds to the solution of pricing problems. The
number of pricing problems to be solved equals the sum of
the number of SC instances to be deployed.

Pricing problem PP SC(c) generates: (i) A set of locations
for VNFs of c; and (ii) a sequence of paths from the location
of VNF fi to the location of VNF fi+1, for i = 1, 2, . . . , nc−1
for chain c. Each solution that is generated by PP SC(c) with
a negative reduced cost leads to a new potential γ for c of
interest. Please see [17] for further details.

Let u(35)
c Q 0, u(36)

v ≥ 0, and, u(38)
vf ≥ 0 be values of

dual variables associated with constraints (35), (36), (38),
respectively.

Variables:

• avi = 1 if ith function fi of c is located in v ∈ V NFV; 0
otherwise.

• bi` = 1 if ` is on the path from location of fi to location
of fi+1; 0 otherwise.

Objective: Minimize reduced cost of variable zγ :

[PP SC(c)] RED COSTγ = COSTγ − u(35)

+
∑

v∈V NFV

u(36)
v

∑
(vs,vd)∈SD

Dc
sd

nc∑
i=1

nCORE
fi avi

+
∑
`∈L

∑
(vs,vd)∈SD

u(37)
` Dc

sd

nc−1∑
i=1

bi` −
nc∑
i=1

∑
v∈V NFV

u(38)
vciavi.

(46)

where RED COST value indicates whether an optimal γ for c
has been found. A non-negative value of RED COST indicates
optimality for our model.

Constraints:∑
(vs,vd)∈SD

Dc
sd

nc∑
i=1

nCORE
f δcfiavi ≤ nCORE

v ∈ V NFV (47)∑
(vs,vd)∈SD

Dc
sd

nc−1∑
i=1

bi` ≤ CAP` ` ∈ L (48)

Eqs. (47) and (48) are compute resource and capacity
constraints, similar to those in RMP and are linear. The rest
of the equations are the same as Eqs. (24) to (30) in Section
V-B and perform the same function.

3) Solution Scheme: Same as in Section V-C.

(a) 4 node (b) 5 node

(c) 6 node

Fig. 3: Network topologies.

Fig. 4: Comparison of bandwidth used.

VII. COMPARISON OF SOLUTION APPROACHES

To benchmark our solution approaches ILP, CG-ILP, and
Two-Phase model, we use the All Shortest Path (ASP) cal-
culation. ASP assumes that, in the best possible scenario, all
traffic flows requiring a SC c will have a SC instance deployed
on their shortest path. Thus, total bandwidth used will be equal
to all traffic flows taking a shortest path.

Fig. 4 compares bandwidth consumption of our three ap-

Fig. 5: Comparison of total time.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) NSFNET K=14 (b) NSFNET K=1,2,3,4,5,14

(c) COST239 K=11 (d) COST239 K=1,2,3,4,5,11

Fig. 6: Bandwidth vs. number of NFV nodes in NSFNET and COST239 networks.

Service Chain Chained VNFs %traffic
Web Service NAT-FW-TM-WOC-IDPS 18.2%

VoIP NAT-FW-TM-FW-NAT 11.8%
Video Streaming NAT-FW-TM-VOC-IDPS 69.8%
Online Gaming NAT-FW-VOC-WOC-IDPS 0.2%

TABLE I: Service Chain Requirements [8]; Network Address
Translator (NAT), Firewall (FW), Traffic Shaper (TM), WAN
Optimization Controller (WOC), Intrusion Detection and Pre-
vention System (IDPS), Video Optimization Controller (VOC).

proaches across three network topologies shown in Fig. 3
for a single SC c deployment. We consider all-to-all traffic
flows in each network and allow Ic instances for all solution
approaches. ILP is shown to be as good as ASP for four-
node networks; however, it does not scale for larger networks
because of pre-computation of all possible configurations. CG-
ILP does not provide optimal solutions because of ε-optimality
gap (difference between ILP and LP values). Two-Phase model
performs as well as ASP for all topologies.

Fig. 5 shows total time taken by various approaches. Note
that Two-Phase Model scales best across all topologies.

VIII. ILLUSTRATIVE NUMERICAL EXAMPLES

A. Single Service Chain Scenario

We first tested our two-phase optimization process on a 14-
node NSFNET WAN topology [17] with a complete traffic
matrix, i.e., with traffic flows between all node pairs, assuming
all nodes can be made NFV nodes. The link capacities are
sufficient to support all flows. Each traffic flow is 1 Gbps
and demands the same 5 VNF service chain (SC) for video
streaming, as shown in Table I. Compute resource (CPU) at
each node is sufficient to support traffic demand, which helps
in determining the optimal location to deploy CPU cores and
number of CPU cores at each location. The second run of the
model is on an 11-node COST239 WAN topology [18] under
the same specifications as above.

Figure 6(a) shows the bandwidth consumption as the num-
ber of SC instances increases. Here, we allow all nodes (K=14)
to host VNFs. We find that, as number of deployed SC
instances increases, bandwidth consumption decreases. With a
higher number of instances, more groups of traffic node pairs
are able to take short paths. We see that, at 38 instances, we
achieve minimum possible bandwidth consumption, meaning
all traffic flows are taking the shortest path. Note that number
of traffic node pairs in the network is 182, requiring apriori
upto 182 different instances (solving the problem for 182
instances would be equivalent to obtaining a solution with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

existing models as in [5][6][7]). Instead, our approach, with
only 38 instances, achieves minimum bandwidth consumption.
This is important as an operator may deploy multiple SCs and
manage multiple instances per SC including routing flows to
a particular SC instance. So, a lower number of instances will
lower the orchestration overhead for the operator.

Fig. 7: CPU core distribution across K (NSFNET).

On the other hand, number of NFV nodes increases as
number of SC instances increases. Indeed, as SC mappings
become more distributed, more nodes are being used for host-
ing virtual functions. In Fig. 6(a), 11 nodes are NFV enabled
for 38 different SC mappings. For a network operator, capital
expenditure in making 11 out of 14 nodes capable of hosting
VNFs is very high. So, operators may want to minimize the
number of NFV nodes while also trying to reduce bandwidth
consumption by using multiple SC mapping instances. This led
us to explore how the bandwidth consumption varies when the
numbers of NFV nodes are limited.

Fig. 8: Bandwidth used across R (NSFNET).

Figure 6(b) shows bandwidth consumption for SC mapping

Fig. 9: Mean number of SC instances across varying number
of traffic flows.

instances for various K values. When K = 1, all traffic flows
have to traverse the one node in the network; hence, number of
instances does not affect bandwidth consumption. At K = 2,
deploying more than 10 instances does not improve bandwidth
utilization. For K = 3 and 35 instances, we are able to achieve
close to 10% of the minimum bandwidth utilization. Similarly,
at K = 4, we reach within 5% of the optimal bandwidth
consumption. Bandwidth consumption comes to within 2%
of the optimal when K=5 and 38 instances. Thus, we can
achieve near-optimal bandwidth consumption by a using a
small number of instances and nodes.

Figures 6(c) and 6(d) corroborate our findings in Figs. 6(a)
and 6(b) over COST239 network.

Fig. 10: Mean number of SC instances for uniform and skewed
traffic.

Figure 7 shows amount of compute resources (CPU cores)
and their location for different values of K, given that we know
optimal number of SC instances required. CPU cores used by
each VNF depends on VNF type and throughput required as
shown in Table II. At K = 1, node 8 will be selected for
deploying CPU cores. When K = 2, the best location for
deploying CPU resources are nodes 8 and 6. Note that the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) NSFNET K=14 (b) COST239 K=11

Fig. 11: Bandwidth vs. number of NFV Nodes in NSFNET and COST239 when deploying all service chains in Table I.

Application
Throughput

1 Gbps 5 Gbps 10 Gbps

NAT 1 CPU 1 CPU 2 CPUs

IPsec VPN 1 CPU 2 CPUs 4 CPUs

Traffic Shaper 1 CPU 8 CPUs 16 CPUs

TABLE II: VNF requirements as per throughput [19].

traffic remains the same across K = 1 and K = 2, so the
total amount of CPU cores used remain the same. However,
when K = 2, two nodes get selected as it reduces the total
bandwidth consumption, and the distribution of CPU cores
happens across nodes. We find that more nodes are selected
for K = 3, 4, 5, 14, and the compute resources become more
distributed. At K=14, we find that only 7 nodes are used to
host CPU cores, which means we need to have at max 7 NFV
nodes to achieve ASP bandwidth consumption.

In the above results, we determine the number of SC
instances required for each K to get minimum bandwidth
consumption. We define this count of SC instances to be
optimal. Now, given this optimal number of SC instances,
we want to observe the effect different number of replicas
of VNFs (R) has on different K values. Here, R = 14 means
all VNFs in the SC are allowed 14 replicas. Fig. 8 compares
bandwidth used in NSFNET (when K = 1, 5, 14) when
different R are allowed. We find that when K = 5, R = 5
our bandwidth consumption is close to ASP , implying that
we require a small number of K and R.

Figure 6(a) shows the number of SC instances required to
achieve ASP bandwidth consumption when there are traffic
flows between all traffic pairs. We call this a 100% traffic
matrix fullness, i.e., all entries in the traffic matrix have been
filled. Fig. 9 shows the mean number of SC instances required
to reach ASP bandwidth consumption across different traffic
matrix fullness percentages (percentage of entries that are
filled in the traffic matrix) under the same traffic load. We
find that the mean number of SC instances required to reach
ASP bandwidth consumption increases as the traffic matrix

fullness percentage increases for both COST239 and NSFNET.
All results until now assumed an uniform traffic distribution.

However, traffic can be skewed. So, we skew the traffic load
based on [20] (skewed based on population size of the nodes)
for varying number of traffic flows (traffic matrix fullness
percentage) and display the number of SC instances required
to achieve ASP bandwidth consumption. We compare SPTG
performance for uniform and skewed traffic in Fig. 10. We
find that SPTG can achieve ASP bandwidth consumption for
skewed traffic distribution for lower number of SC instances,
especially as number of traffic flows increase.

B. Multiple Service Chain Scenario

In the previous subsection, we performed simulations where
all traffic flows require the same service chain, i.e., all traffic
requires the same VNFs. However, when traffic requires dif-
ferent service chains, not all VNFs are required by all traffic
requests and the conclusions on a single SC may not hold.
Hence, it becomes important to analyze the effect of varying
the number of allowed VNF replicas (R) to focus on the role
of each VNF on bandwidth consumption separately. In this
subsection, we jointly deploy the four service chains in Table
I for a total traffic load of 1 Tbps. The distribution of traffic
across service chains follows realistic relative popularity of
the four services (see last column in Table I). All four service
chains are requested by all traffic pairs in the network, i.e., all
four service chains have 100% traffic matrix fullness.

Figure 11(a) shows bandwidth consumption as SC instances
increase for all SCs deployed in NSFNET. We find that 35
instances for each SC deployed is sufficient to achieve ASP
bandwidth consumption. Number of NFV nodes used also does
not vary much from previous result of Fig. 6(a).

We then analyze the effect of varying number of VNF
replicas (R). Figure 12 shows the bandwidth consumed when
K = 5 and R = 1, 2, 3, 4, 5. We reduce the number of replicas
for a specified VNF to R while the remaining VNFs have R=K,
i.e., R=5 here, for all the unspecified VNFs. So here, when
R = 1 for FW, that means the number of replicas allowed for
FW is 1 while the other VNFs have replicas equal to K (here,
K = 5). We always see R ≤ K since a VNF can only be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 12: Bandwidth consumed for varying VNF replica (R) for
K = 5 (NSFNET).

Network Nodes Links Mean Time (s)
COST239 11 44 12.1
NSFNET 14 40 14.2
EON[21] 16 46 25.5
JAPAN 19 62 225.3

US24[22] 24 86 755.9
GERMANY[9] 50 176 108000

TABLE III: Mean run time across networks (in seconds).

allowed to replicated in K locations at maximum. Note that
some VNFs like FW and NAT are shared across all service
chains, while others like WOC and VOC are only shared
across two service chains. When R = 1 for FW and NAT,
highest bandwidth consumption is experienced as these VNFs
are shared across all four service chains. Conversely, when
R = 1 for WOC, least bandwidth consumption is experienced
since WOC is required by only 18.4% of total traffic. When
R = 2, 3, 4, bandwidth consumption reduces as R increases,
and decrease in bandwidth consumption across VNFs for each
R is seen to be dependent on amount of traffic requiring
the VNF. This relative deference in bandwidth consumption
between VNFs reduces as R increases. This happens as R
becomes a less salient parameter for bandwidth consumption
as R approaches K. At R = 5, bandwidth consumption is the
same for all VNFs. This happens as when R = 5 for FW, R
values for the unspecified VNFs are also 5. Each column when
R = 5 represents the same situation where all VNFs used are
allowed 5 replicas. We find that when K = 5, R = 5 (when
all VNFs have 5 replicas) is sufficient for achieving close to
ASP bandwidth consumption.

C. Scalability

Scalability of a solution determines its applicability in real
scenarios. So, we show mean run times of our Two-Phase
model for networks of different sizes in Table III. Run time
is the second phase (CG+ ILP) execution time. First phase
(SPTG) execution times were excluded as they were found
to be negligible compared to second phase. Note that the Two-
Phase model scales well for all networks.

IX. CONCLUSION

We introduce the problem of multiple service chain (SC)
mapping with multiple SC instances in presence of highly-
populated traffic demands. We developed a Two-Phase model,
based on a column-generation model along with a Shortest-
Path Traffic Grouping (SPTG) heuristic which results in a
scalable linear model, thereby solving this complex problem in
a relatively small amount of time. Further, we demonstrate that
a near-optimal network resource consumption can be achieved
with a relatively small number of SC instances, NFV nodes,
and VNF replicas for a 100% populated traffic matrix. This is
critical to reduce the network operator’s orchestration overhead
and capital expenditures.

ACKNOWLEDGMENT

This work was supported by NSF Grant No. CNS-1217978.

REFERENCES

[1] ETSI, “Network functions virtualisation: Introductory white paper,”
portal.etsi.org/NFV/NFV White Paper.pdf, 2012.

[2] IETF, “Network service chaining problem statement,” https://tools.ietf.
org/html/draft-quinn-nsc-problem-statement-00, 2013.

[3] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on
Cloud Networking (CloudNet), Oct 2014, pp. 7–13.

[4] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM), Nov. 2014, pp. 418–423.

[5] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” https://hal.inria.fr/hal-
01170042/, 2015.

[6] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in IFIP/IEEE Intl.
Symp. on Int. Netw. Mgmt (IM), May 2015, pp. 98–106.

[7] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating
virtual network functions in NFV,” Computing Research Repository,
vol. abs/1503.06377, 2015. [Online]. Available: http://arxiv.org/abs/
1503.06377

[8] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), 2015, pp. 191–197.

[9] N. Huin, B. Jaumard, and F. Giroire, “Optimization of Network
Service Chain Provisioning.” [Online]. Available: https://hal.inria.fr/
hal-01476018

[10] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic Service Function
Chain Deployment and Readjustment,” IEEE Transactions on Network
and Service Management, vol. PP, no. 99, 2017.

[11] F. Carpio, W. Bziuk, and A. Jukan, “Replication of Virtual Network
Functions: Optimizing Link Utilization and Resource Costs,” Computing
Research Repository (CoRR), vol. abs/1702.07151, 2017. [Online].
Available: http://arxiv.org/abs/1702.07151

[12] Y. Jia, C. Wu, Z. Li, F. Le, and A. X. Liu, “Online Scaling of
NFV Service Chains across Geo-distributed Datacenters,” Computing
Research Repository (CoRR), vol. abs/1611.08086, 2016. [Online].
Available: http://arxiv.org/abs/1611.08086

[13] X. Fei, F. Liu, H. Xu, and H. Jin, “Towards load-balanced VNF
assignment in geo-distributed NFV Infrastructure,” in IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS), June 2017.

[14] A. Gupta, M. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee,
“Joint Virtual Network Function Placement and Routing of Traffic in
Operator Networks,” Technical Report, UC Davis, 2015.

[15] B. Jaumard, C. Meyer, and B. Thiongane, “On column generation
formulations for the RWA problem,” Discrete Applied Mathematics, vol.
157, pp. 1291–1308, 2009.

[16] B. Jaumard and M. Daryalal, “Efficient spectrum utilization in large
scale RWA problems,” IEEE/ACM Transactions on Networking, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[17] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “Multiple
Service Chain Placement and Routing in a Network-enabled Cloud,”
Computing Research Repository (CoRR), vol. abs/1611.03197, 2016.
[Online]. Available: http://arxiv.org/abs/1611.03197

[18] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukher-
jee, “Design of disaster-resilient optical datacenter networks,” Journal
of Lightwave Technology, vol. 30, no. 16, pp. 2563–2573, 2012.

[19] Cisco, “Cisco Cloud Services Router 1000V 3.14 Series Data
Sheet,” http://www.cisco.com/c/en/us/products/collateral/routers/
cloud-services-router-1000v-series/datasheet-c78-733443.pdf, 2015.

[20] R. Hulsermann, A. Betker, M. Jager, S. Bodamer, M. Barry, J. Spath,
C. Gauger, and M. Kohn, “A set of typical transport network scenarios
for network modelling,” ITG FACHBERICHT, vol. 182, pp. 65–72, 2004.

[21] N. M. Garcia, P. P. Monteiro, M. M. Freire, J. R. Santos, and
P. Lenkiewicz, “A new architectural approach for optical burst switching
networks based on a common control channel,” Optical Switching and
Networking, vol. 4, no. 3, pp. 173–188, 2007.

[22] S. Ferdousi, F. Dikbiyik, M. F. Habib, M. Tornatore, and B. Mukherjee,
“Disaster-aware datacenter placement and dynamic content management
in cloud networks,” Journal of Optical Communications and Networking,
vol. 7, no. 7, pp. 681–694, 2015.

