
G-BEAM: Graph-Based Exploration And Mapping
for Autonomous Vehicles

Leonardo Cecchin, Danilo Saccani and Lorenzo Fagiano

Abstract— A novel solution to the problem of exploration and
mapping of an unknown environment by an autonomous vehicle
is presented. A hierarchical control system is adopted: a low-
level reactive controller manages obstacle avoidance, and two
high-level strategies are in charge of mapping and navigation
tasks. The decision strategy implemented at the high-level
is named G-BEAM, standing for “Graph-Based Exploration
And Mapping”. It builds a reachability graph used both as a
trajectory planning tool and as a map. The reachability graph
representation requires less storage resources with respect to
a more traditional occupancy-map, and it can be directly
exploited to compute the system’s path towards a given target
or unexplored locations. The latter are ranked according to
the expected information gain that is realized when they are
visited. Such information gain is then used in the cost function
of the navigation strategy, which is based on a receding horizon
concept. The controller has been successfully tested in various
simulated environments. Comparison with other approaches in
state of the art shows promising performance.

I. INTRODUCTION

In recent years the use of unmanned vehicles, such as
marine, ground, and aerial ones has been increasing signif-
icantly and steadily [1]. A traditional but still very active
topic of research pertains to fully autonomous operation
in environments that are partially or entirely unknown a-
priori [2]. In such a framework, the autonomous vehicle
must achieve three goals: safety (moving in the environment
without colliding with obstacles), mapping (building a model
of the environment, containing the information on accessible
and blocked areas), and navigation (planning a feasible
path from the current position to a reachable one in the
environment).
Achieving these goals is challenging, also considering that
the controller must run in real-time, limiting the complexity
of the numerical computations used to model the environ-
ment and take action. Safety is usually fulfilled by reactive
obstacle avoidance algorithms, taking into account real-time
available information provided by sensors such as LiDAR
(Light Detection And Ranging) devices, 2D or 3D vision
cameras, etc., see e.g. [3]–[8].
When the environment is known, safety and navigation
can be achieved together through properly designed path
planning algorithms. These can be based on model predictive
approaches, [9], Dynamic Visibility Graphs, [10], and graph
search approaches, [11]. The environment can be represented

This research has been supported by the Italian Ministry of University
and Research (MIUR) under the PRIN 2017 grant n. 201732RS94 “Systems
of Tethered Multicopters”. The authors are with the Dipartimento di
Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Italy. Email addresses: {name.surname}@polimi.it

in different ways, with Voronoi diagrams, generalized cones,
occupancy grids, or graphs. In the case of partially or entirely
unknown environments, however, path planning approaches
cannot be directly used. Here, the second goal comes into
play: mapping. The most common solutions make use of
occupancy maps, see, e.g., [12], [13]. The mapping routine
must be paired with an exploration one, which is typically
frontier-based: it aims to detect the border between free and
unexplored regions to select the next target, e.g., [14]. The
frontiers can be computed by updating the ones from the
previous time step with sensor readings, or by re-processing
the entire map. Graph-based exploration has been proposed
as well, see [15].
Despite the variety of solutions to achieve either mapping or
navigation, an integrated approach that manages both of them
at once appears to be not available in the literature. The lack
of integration between the algorithms employed to address
each goal may lead to poor efficiency and computationally
expensive control routines. To address this problem, a novel
approach is proposed here, named G-BEAM (Graph-Based
Exploration And Mapping). The main idea is to use a
reachability graph as the map of the environment, which can
be used seamlessly for both exploration and navigation tasks.
At the same time, a new reactive logic is proposed to enforce
safety. The approach provides very competitive exploration
performance at low computational cost and with high safety.
The approach is tested in simulation with a detailed model
of an autonomous multicopter, showing excellent results in
environments of various size and complexity. The G-BEAM
navigation performance is finally compared with that of state-
of-the-art solutions based on randomization, demonstrating
a significant improvement in terms of both computational
speed and length of the computed paths.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We consider an autonomous aerial vehicle, in particular
a multicopter drone, equipped with a 360-degrees planar
LiDAR. The drone’s position is supposed to be measured
accurately. The system needs to move in an initially unknown
environment. The approach we propose can also be used with
different types of vehicles, with relatively minor changes
on the low-level control algorithms. Moreover, the work fo-
cuses on motion in a two-dimensional (2D) environment for
simplicity. Extension of the approach to 3D is conceptually
possible with rather limited modifications.

A. Autonomous system model

The position of the autonomous vehicle is denoted by

p =
[
px py

]T
Where (x, y) are the inertial coordinates of the environment
at hand. The orientation of the vehicle, ψ, is supposed to be
known as well. [·]T indicates the matrix transpose operation,
while bold notation is used for 2D vectors. The multicopter
is controlled using a common nested architecture. At the
lowest level, attitude and altitude controllers manipulate the
rotors’ speed to generate suitable rotational moments and
total thrust force to track a velocity vector reference, denoted
as ˙̄p =

[
˙̄px ˙̄py

]T
, and angular speed reference, ˙̄ψ.

Vehicle movements are limited by its maximum velocity vec-
tor ṗmax and acceleration vector p̈max, which for simplicity
are assumed to be equal in all directions.
A position controller generates the speed reference ˙̄p in order
to reach the desired position and orientation references

p̄ =
[
p̄x p̄y

]T
, ψ̄

The 360-degrees planar LiDAR sensor is assumed to be al-
ways horizontal, independently from the vehicle movements:
this can be achieved for example with an active gimbal.
The LiDAR produces at each time step a set of N = 2π

αr

measurements:
S = {(ρk; θk)}Nk=1

where αr is the angular resolution of the sensor. The LiDAR
is also characterized by its maximum sensing range, rmax.
Each measurement can be expressed in polar coordinates,
ρk, θk, k = 1, . . . , N , with respect to the drone position, so
that the absolute position of the k−th sensed point is:

xk = px + ρk cos(θk)

yk = py + ρk sin(θk)

B. Environment model

The environment considered in this work can be repre-
sented by a two-dimensional map. The obstacles can be of
any shape. An example of an environment considered in our
tests is reported in Fig. 3.

C. Problem formulation

The problem we address is that of thoroughly exploring
the unknown environment, building a map, while trying to
reach an external target location, p̄ext, if provided. The
controller must rely on the available information from the
position feedback of the vehicle, p, and the LiDAR sensor
measurements, S. The output of the controller is a suitable
speed reference, ˙̄p

′, so that the resulting behaviour satisfies
safety, mapping and navigation to the target requirements.
The resulting controller has to be executed in real-time on-
board the autonomous vehicle. All the required computations
must be carried out within the execution period of the control
routine (e.g. 1 s for the high-level logic, and 10 ms for the
low-level ones), also on a micro-controller with relatively
low computational power.

Velocity
Controlled

Autonomous
Vehicle

Obstacle
Avoidance

Position
Controller

Receding
Horizon Path

Planning

Graph
Update

Receding
Horizon

Navigation

event based

Fig. 1. Overview of the controller layout. The highlighted blocks represent
functions for which a new approach is proposed in this paper: the Graph
Update procedure (Section III-B), executed with sampling period Th = 1 s,
the Receding Horizon Navigation technique (Section III-B), event based, and
the Obstacle Avoidance controller (Section III-A), executed with sampling
period Tl = 10ms.

III. PROPOSED APPROACH

The proposed solution entails the addition of a further hier-
archical layer above the position controller and the inclusion
of a low-level obstacle avoidance strategy, see Fig. 1. The
obstacle avoidance technique guarantees a safe movement,
while at high-level two algorithms perform mapping and
navigation: the Graph Update procedure, used to add new
features to the graph representing the map of the environ-
ment, and the receding horizon navigation procedure, which
computes the position reference by solving a suitable optimal
control problem on the updated graph.
The choice of this structure is motivated by the difference in
complexity and speed of the involved algorithms. In Fig. 1
we also indicate typical sampling periods of each introduced
function: for notational simplicity, in the remainder we omit
the dependence of variables on the (either continuous- or
discrete-) time, as this will be clear from the context.

A. Obstacle Avoidance strategy

The obstacle avoidance controller receives as input the
LiDAR sensor readings, S, and the reference speed ˙̄p. It
computes a modified speed reference ˙̄p

′ so that

˙̄p′//,k < λ (ρk − ρmin) ,∀k (1)

where ρmin is the minimum allowed distance from the center
of the vehicle to any object, and ˙̄p′//,k is the component of
the modified speed reference in the direction of the k−th
LiDAR measurement relative to the vehicle:

˙̄p′//,k =
[
cos(θk) sin(θk)

]
˙̄p
′

The parameter λ defines the relationship between the dis-
tance from the obstacle and the maximum allowed speed in
its direction.
Note that, with this formulation, as the vehicle moves closer

to an obstacle, the reference speed component in its direction
decreases, becoming null when the minimum distance is
reached, preventing the vehicle from getting any closer.

For the algorithm to be effective, the modified velocity
reference must always be small enough so that the vehicle
can stop before reaching the minimum allowed distance from
the obstacle. This property depends on the choice of λ, in
particular it holds if

λ < 2
p̈max

ṗmax
.

B. Graph update

This controller performs mapping of the environment by
creating a reachability graph and by expanding and modify-
ing it in order to include newly acquired information, as new
areas are explored. The update is carried out by a mechanism
that guarantees that nodes are added only in reachable
positions, and only obstacle-free arcs are added. In this
approach, the graph has a threefold use: as a tool to compute
obstacle-free trajectories, as a map of the environment, and
as a repository of information about the borders between
explored and unexplored areas. The graph update procedure
is composed of two main steps.

1) Polytope generation: The first step is the generation
of a convex polytope containing the current vehicle position
in its interior, which under-approximates the surrounding
obstacle-free area. This simplification is essential for the
subsequent operations: it allows one to reduce the amount
of data needed to represent the area, provides few essential
points that characterize the free space, and yields fast and
straightforward computations thanks to convexity.
The polytope is represented by the set of its vertices:

V = {1 . . . n} ⊆ N (2)

each vertex h features a position vh =
[
vx,h vy,h

]T
, an

exploration gain value ηh ∈ R+ and a boolean variable γh
indicating whether the vertex is close to an obstacle (within
a selected tolerance) or not.

The polytope is then denoted with Co(V), indicating the
convex hull of its vertices: V = {vh}nh=1.

The polytope generation procedure begins by positioning
the n vertices along the directions αh = 2π

n h + ψ, h =
1, . . . , n, so that ‖vh − p‖2 = ρmin:

vh =
[
px + ρmin cos(αh) py + ρmin sin(αh)

]T
(3)

Then, the position of the vertices is iteratively modified:
cycling anti-clockwise, each one is shifted further away from
the vehicle by a quantity dh = δv

[
cos(αh) sin(αh)

]T
:

vh = vh + dh (4)

If the convex hull of the new polytope contains any LiDAR
reading (i.e. it interferes with an obstacle), the modification
is discarded and vertex h is marked to not be moved again
(mh = true):

∃ k : (xk; yk) ∈ Co (V)⇒ vh = vh − dh; mh = 0 (5)

-20 -15 -10 -5 0 5 10 15 20
x [m]

-5

0

5

10

15

y
[m

]

22

22
21

 4

15

22
15 0

Fig. 2. Polytope generation step: example of a resulting polytope with
indication of the exploration gains ηh of each vertex h = 1, . . . , n.

The iterations stop when mh = 0 ∨ ‖vh − p‖2 ≥ rmax,∀h.
Finally, the exploration gain value ηh of each vertex is
computed. This value shall be proportional to the amount
of additional information on the environment that could be
gathered by moving to the location of that particular vertex h.
To estimate such an information gain, a subset Rh of LiDAR
measurements is assigned to each vertex, subdividing them
in n circular sectors around the vehicle, each one centered
around a vertex of the polytope:

Rh :=

{
k : |θk − αh| <

2π

n

}
(6)

Once the sets are defined, the exploration gain of each vertex
is computed with the following equation:

ηh :=
∣∣{k ∈ Rh : ‖vk − vk−1‖2 ≥ dobsmin ∨ ρk ≥ rmax

}∣∣
(7)

where the operator |A| denotes the cardinality of a countable
set A. According to equation (7), the exploration gain of each
vertex is equal to the number of nearby LiDAR readings that
are out of range, plus the number of subsequent measurement
pairs that leave a gap large enough for the vehicle to pass
through it. Fig. 2 shows an example of a polytope obtained
with the proposed algorithm.

2) Graph update: The second step consists in updating
the reachability graph with the latest available information.
This operation shall retain all the useful information, without
compromising the simplicity of the representation. The graph
shall moreover represent all obstacle-free paths inside the
environment, to enable navigation to every explored location,
but should be at the same time composed of the least
amount of elements possible, so that operations on it can
be computationally efficient. The graph G = (N , E) is
composed of a set of nodes, N = {1, . . . , nnodes} ⊆ N
, and a set of edges, E ⊆ {(i; j) : i, j ∈ N ∧ i 6= j} In a
way similar to the polytope vertices (2), each node i ∈ N
is characterized by its position ni =

[
nx,i ny,i

]T
, its

exploration gain value ηi, and a boolean variable γi, that
indicates proximity to an obstacle.

The graph update is performed by adding nodes and edges
if certain criteria involving the nodes V are met.

Each vertex h ∈ V is added as a node of the graph if the

following condition is met:

(γh ∧ δh > dmin) ∨ δh > dopen (8)

Where δh = min
i∈N

(‖vh − ni‖2) i.e. it is the distance from
vertex h to the nearest node of the graph.
Condition (8) checks if one of two alternatives occurs: either
the vertex is close to an obstacle and at a distance dh >
dmin from the nearest node, or it is at a distance dh >
dopen from all other nodes. The two threshold distances dmin
and dopen are used to set respectively a minimum distance
among vertices near obstacles, and in open spaces, in order
to influence the density of graph nodes. Examples of how
these parameters affect the behaviour of the algorithm are
presented in Section IV. Let us denote with N+ the new set
of graph nodes after the described procedure has been applied
to all vertices in V . Then, new graph edges are created by
connecting each pair of nodes in N+ that are inside the
polytope Co(V).

E+ = E ∪
{

(i; j) | i, j ∈ N+ ∧ ni,nj ∈ Co(V) ∧ i 6= j
}
(9)

Since by construction the polytope Co(V) is an under-
approximation of the obstacle-free area surrounding the
vehicle, the additional edges are guaranteed to be obstacle-
free connections. They are created indistinctly between new
nodes, new and old nodes, and also among old nodes. This
ensures that the largest possible information on the explored
area is gathered and stored inside the graph, and connections
are added if missing.
The last operation is the update of the exploration gain values
of the nodes: we set to zero that of all nodes that are at a
distance ‖ni − p‖2 < ρmin from the vehicle, or that lay in
the interior of A+. This ensures that nodes on the borders
of the explored area maintain their exploration gain value,
while internal ones have zero gain. This is intuitive since
very little to no information can be gained by moving to
an already explored area. The nodes N+ and edges E+are
finally used as starting quantities N , E for the graph update
at the following time step.

C. Receding Horizon Navigation

The navigation approach in G-BEAM is an event-based
receding horizon one: each time the current reference node
is reached, a new one is computed by planning a path of
several connected nodes in the graph and culminating at a
target node t ∈ N . The latter is computed by maximizing
a reward function that trades off the amount of information
gathered and the will to reach an assigned target location (if
provided).
The starting node s of the path to be planned is taken as the
nearest one to the current vehicle’s position:

s = argmin
i∈N

‖p− ni‖2 (10)

Let us denote with Q = {q1, q2, . . . qL} a sequence of
indexes of length L. For a given target node t, the shortest

path Q∗(t) starting from s is then computed as

Q∗(t) = arg min
Q

D(t) (11a)

s.t.
qi ∈ N ∀i = 1, . . . , L (11b)

(qi; qi+1) ∈ E ∀i = 1, . . . , L− 1 (11c)

D(t) =

L−1∑
i=0

∥∥nqi − nqi+1

∥∥
2

(11d)

q0 = s (11e)
qL = t (11f)

Let us denote with D∗(t) the length of path Q∗(t) (see
(11d)). Then, the best target t∗ is obtained by solving the
following optimization problem:

t∗ = arg max
t∈N

ηt
(D∗(t) + ‖nt − p̄ext‖2)

ε (12)

The reward function in (12) is designed in order to
maximize the ratio between the amount of information
that can be acquired by reaching the target t and the
a possible length of the path to the external reference
location p̄ext, D∗(t) +

∥∥nt − p̄ext
∥∥
2
. The coefficient ε

is used to adjust the relative weight between information
gain and distance to be travelled. The selected path is thus
Q∗(t∗) = {q∗1(t∗), q∗2(t∗), . . . , q∗L(t∗)}. In an analogy with
model predictive control, the value of L can be considered
as the prediction horizon. After solving problem (12), the
first node in the sequence, q∗1(t∗), is used as reference for
the position controller (recall Fig. 1):

p̄ = nq∗
1(t

∗) (13)

The path planning procedure is then repeated in a receding
horizon fashion, when the selected reference is reached, in
particular when the following event occurs:

‖p̄− p‖ ≤ dthr, (14)

with dthr being a suitably selected threshold distance.
Finally, the exploration task is considered to be concluded

when there are no more graph nodes whose exploration gain
is greater than zero:

ηi = 0, ∀i ∈ N (15)

Remark 1: If an external reference position p̄ext is pro-
vided and it is also in the interior of the explored area, i.e.
p̄ext ∈ A, then instead of (12) the node t∗ is selected as:

t∗ = arg min
t∈N
‖ni − p̄ext‖2 (16)

i.e. the closest node to the external reference position.
Regarding the computational complexity, note that problem
(11) amounts to a standard shortest path computation over
the graph, which can be efficiently solved, and problem (12)
is an integer program with one optimization variable, which
can be solved by extensive evaluation in very short time, as
shown in the results presented in the next section.

TABLE I
PARAMETERS EMPLOYED IN THE SIMULATION TESTS.

dstep 0.5m ρmin 1.5m
dmin 1.5m λ 1
dopen 10m n 8

ε 10

αr 5◦ Rmax 20

-100 -50 0 50 100
x (m)

-100

-80

-60

-40

-20

0

20

40

60

80

100

y
(m

)

(a) Vehicle trajectory

-100 -50 0 50 100
x (m)

-100

-80

-60

-40

-20

0

20

40

60

80

100

y
(m

)

(b) Reachability graph

Fig. 3. Exploration test results in a first environment featuring both narrow
corridors and wide open areas: (a) environment and final trajectory of the
drone; (b) final graph.

IV. SIMULATION RESULTS

We tested the approach in a simulation environment
developed in Matlab and Simulink, using a nonlinear
multicopter model [16], [17]. A ROS implementation of
the approach is available at https://github.com/
leonardocecchin/gbeam_ros. Multiple tests have
been performed to evaluate all aspects of the proposed
solution. The first tests assess the exploration capabilities
of the controller: different environments are mapped, with
different levels of detail. The other tests compare the path
planning performances of the proposed approach with a very
common one, these give a reference on the computational
effort required to run this controller.

A. Simulation setup

The vehicle model and the “Position controller” are exe-
cuted with a cycle time of T ls = 10ms, while the high-level
exploration and mapping controller is executed with a cycle
time of Ths = 1s. The parameter values used in the simulation
setup are listed in Table I.

The tests have been executed on a laptop equipped with
an Intel core i7-10520U CPU and 16 Gb of RAM.

B. Environment exploration

In this batch of tests the vehicle started from position
(0; 0), with no external goal provided, and its only goal was
to explore and map the environment.

Fig. 3 shows the results of a first test. Fig. 3(a) shows the
environment used for this test, together with the trajectory
of the drone. Fig. 3(b) shows the final graph obtained by the
controller. From a comparison of the graph with the model
of the environment, it is possible to appreciate the ability of
the former to represent all the reachable areas of the map.
It is possible to see the effect of the two different distance

-20 -10 0 10 20
x (m)

-20

-15

-10

-5

0

5

10

15

20

y
(m

)

(a) Vehicle trajectory

-20 -10 0 10 20
x (m)

-20

-15

-10

-5

0

5

10

15

20

y
(m

)

(b) Reachability graph

Fig. 4. Exploration test results in a second environment featuring both
narrow passages and wide corridors: (a) environment and final trajectory of
the drone; (b) final graph.

thresholds, dmin and dopen (see (8)): thanks to them the
density of nodes is much lower in open areas, whilst being
higher where more detail is needed. The final graph contains
1096 nodes and 10736 edges.

Fig. 4 shows the results of a second test. The graph shown
in Fig. 4(b) is again complete, and includes all the walkable
paths in the environment, without representing at all the small
corridor in the top right of the map, which is too small for the
vehicle to pass through. This graph is composed of 177 nodes
and 1362 edges, which is much less than the previous tests,
because of the smaller size of the map. By comparing the
trajectory of the vehicle (Fig. 4(a)) with the graph, it can be
noted that the three vertical passages around (−2; 6), (6; 6)
and (18; 8), have been mapped, and connections across them
are present, also if the vehicle never actually passed trough
neither one of them. This is due to the fact that if two nodes
are inside the free polytope around the vehicle, then they are
connected, without the need for the vehicle to move to one
of the nodes. This feature allows the vehicle to reduce the
traveled distance, improving the overall efficiency. A video
representing the graph being created during another test on
this approach can be found in [18].
It is also worth noting that the setup for these tests was the
same, and there was no need to set parameters such as map
dimensions or map resolution. This is another strong point
of this approach.

C. Target navigation test

This test aims at testing the ability of the controller
in guiding the vehicle through an unknown environment
towards a target location, in this case the target was (30; 50).
The results are reported in Fig. 5: the approach explores the
environment moving towards the target until the latter falls
in the mapped area, at which point it is reached directly
by solving problem (16) in the receding horizon navigation,
instead of problem (12).

D. Performance comparison with Probabilistic RoadMap

We finally compared G-BEAM to a benchmark approach
using an occupancy grid mapping combined with a Prob-
abilistic RoadMap (PRM) path planning approach, using
Random Space Sampling, see [19]. The test was executed

https://github.com/leonardocecchin/gbeam_ros
https://github.com/leonardocecchin/gbeam_ros

-10 0 10 20 30 40
x (m)

0

10

20

30

40

50
y

(m
)

Start

Target

(a) Vehicle trajectory

-20 -10 0 10 20 30 40 50
x (m)

-20

-10

0

10

20

30

40

50

60

y
(m

)

(b) Reachability graph

Fig. 5. Target navigation test

Fig. 6. Comparison between G-BEAM and an approach based on
Probabilistic RoadMap (PRM) path planning.

choosing a fixed trajectory for the drone and then applying
the two control strategies successively in order to create
a map of the environment. Each time the explored area
increases by 2000m2, the two approaches are used to com-
pute the path towards 100 randomly selected points inside
the already explored area. From this test it is possible to
analyze the computing time required, as well as the resulting
path length. It is also possible to evaluate the trend of
the computational time with respect to the map size. Fig.
6 presents the results of this test: it is easy to appreciate
the beneficial effects of the graph representation of the
environment, with computational times for G-BEAM that are
one order of magnitude smaller than the randomization-based
approach. This result indicates that the computational effort
is low enough to allow the use of G-BEAM also on low-end
micro-controllers.
We also compared the length of the obtained paths towards
the same target point: PRM resulted to provide on average
16% longer paths than G-BEAM.

V. CONCLUSIONS

A new, integrated technique to exploration and navigation
of unknown environments by an autonomous vehicle has
been proposed. The approach, named G-BEAM, features
several novel ideas: a velocity-based obstacle avoidance strat-
egy, the use of a graph as environment map, a graph update

strategy based on convex polytopic under-approximations of
the free space, and a receding horizon navigation strategy.
The approach has been tested in many scenarios, showing
good performance and outperforming state-of-the-art meth-
ods based on randomization. Next steps in this research aim
to provide theoretical coverage guarantees and to test G-
BEAM in real-world experiments.

REFERENCES

[1] D. Goodwin, “The evolution of autonomous mobile robots.” Available
at https://control.com/technical-articles/
the-evolution-of-autonomous-mobile-robots/.

[2] S. Tang and V. Kumar, “Autonomous flight,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 29–52, 2018.

[3] V. J. Lumelsky and T. Skewis, “Incorporating range sensing in the
robot navigation function,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, no. 5, pp. 1058–1069, 1990.

[4] V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1-4, pp. 403–430, 1987.

[5] I. Kamon, E. Rivlin, and E. Rimon, “A new range-sensor based glob-
ally convergent navigation algorithm for mobile robots,” in Proceed-
ings of IEEE International Conference on Robotics and Automation,
vol. 1, pp. 429–435, IEEE, 1996.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles, pp. 396–404, Springer, 1986.

[7] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle
detection and obstacle avoidance algorithm based on 2-d lidar,” in
2015 IEEE international conference on information and automation,
pp. 1648–1653, IEEE, 2015.

[8] J.-H. Cho, D.-S. Pae, M.-T. Lim, and T.-K. Kang, “A real-time
obstacle avoidance method for autonomous vehicles using an obstacle-
dependent gaussian potential field,” Journal of Advanced Transporta-
tion, vol. 2018, 2018.

[9] A. Bemporad and C. Rocchi, “Decentralized linear time-varying model
predictive control of a formation of unmanned aerial vehicles,” in 2011
50th IEEE conference on decision and control and European control
conference, pp. 7488–7493, IEEE, 2011.

[10] H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path
planning,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3,
pp. 2813–2818, IEEE, 2004.

[11] J.-M. Yang, C.-M. Tseng, and P. Tseng, “Path planning on satellite
images for unmanned surface vehicles,” International Journal of Naval
Architecture and Ocean Engineering, vol. 7, no. 1, pp. 87–99, 2015.

[12] G. C. Anousaki and K. J. Kyriakopoulos, “Simultaneous localization
and map building of skid-steered robots,” IEEE Robotics & Automa-
tion Magazine, vol. 14, no. 1, pp. 79–89, 2007.

[13] D.-L. Almanza-Ojeda, Y. Gomar-Vera, and M.-A. Ibarra-Manzano,
“Occupancy map construction for indoor robot navigation,” Robot
Control, 2016.

[14] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation CIRA’97.’Towards New
Computational Principles for Robotics and Automation’, pp. 146–151,
IEEE, 1997.

[15] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 3105–3112, IEEE,
2019.

[16] L. Fagiano, “Systems of tethered multicopters: modeling and control
design,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4610–4615, 2017.

[17] M. Bolognini and L. Fagiano, “Lidar-based navigation of teth-
ered drone formations in an unknown environment,” arXiv preprint
arXiv:2003.12981, 2020.

[18] L. Cecchin, D. Saccani, and L. Fagiano, “G-beam: a fast exploration,
mapping, and graph generation approach for autonomous vehicles.”
Available at https://youtu.be/9D0L84BI0Cg.

[19] E. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou, “A review
of global path planning methods for occupancy grid maps regardless
of obstacle density,” Journal of Intelligent & Robotic Systems, vol. 84,
no. 1-4, pp. 829–858, 2016.

https://control.com/technical-articles/the-evolution-of-autonomous-mobile-robots/
https://control.com/technical-articles/the-evolution-of-autonomous-mobile-robots/
https://youtu.be/9D0L84BI0Cg

	Introduction
	System description and problem formulation
	Autonomous system model
	Environment model
	Problem formulation

	Proposed approach
	Obstacle Avoidance strategy
	Graph update
	Polytope generation
	Graph update

	Receding Horizon Navigation

	Simulation results
	Simulation setup
	Environment exploration
	Target navigation test
	Performance comparison with Probabilistic RoadMap

	Conclusions
	References

