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Abstract—The availability of maps of indoor environments is
often fundamental for autonomous mobile robots to efficiently
operate in industrial, office, and domestic applications. When
robots build such maps, some areas of interest could be inac-
cessible, for instance, due to closed doors. As a consequence,
these areas are not represented in the maps, possibly limiting
the activities robots can perform. In this paper, we provide a
method that completes 2D grid maps by adding the predicted
layout of the rooms behind closed doors. The main idea of our
approach is to exploit the underlying geometrical structure of
indoor environments to estimate the shape of unobserved rooms.
Results show that our method is accurate in completing maps
also when large portions of environments cannot be accessed by
the robot during map building.

I. INTRODUCTION

In recent years, ground mobile robots have been success-
fully employed in several indoor applications in industrial,
office, and domestic environments [1]. When a robot is de-
ployed in a new setting, it often autonomously builds a map

representing the environment in which it operates. Then, the
robot exploits the map to efficiently localize, navigate, and
plan paths and tasks in the environment. Sometimes, the robot
building the map and the robot using the map are different.
2D metric maps, like grid maps, are widely employed since
they can be built from data coming from pervasive and
relatively cheap sensors like 2D laser range scanners by using
consolidated 2D SLAM methods [2]. Moreover, such maps
are rather robust to events like day/night light changes, the
presence of people, and objects moving around [1].

Ideally, a map should represent the entire operational en-
vironment of the robot. However, during the process of map
building, it could happen that some areas of interest for the
robot’s activity are inaccessible, due to temporary conditions
that are beyond the robot’s control, like a blocked path or a
closed door. As a consequence, these areas are not represented
on the map, and this can limit the autonomy and operations
of the robot exploiting the map. For example, if the robot is
unaware of the presence of some rooms behind closed doors,
it has no means to plan in advance the actions to be performed
when the doors are opened (e.g., in order to map them).

In this paper, we provide an initial contribution towards
solving the above problem, by presenting a method that com-
pletes robot 2D grid maps with the predicted layouts (i.e., the
geometrical shapes) of unobserved rooms behind closed doors,
which we call closed rooms. The main idea of our approach
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(a) Map built when some doors are closed.

(b) Predicted layouts of closed rooms.

Fig. 1: An example run of our approach for predicting layouts
of rooms that are behind doors closed at mapping time (blue
dots), where we simulated 5 closed doors in a map from [5].

is to exploit the underlying geometrical structure of indoor
environments that can be detected from the walls to provide
knowledge about parts of the environment that are not di-
rectly observable at mapping time. This estimated knowledge,
although approximated [3], could provide meaningful insights
to the robot about the structure of the environment and could
be exploited in tasks such as exploration [4], localization,
task planning, and reasoning. Note that this paper focuses on
how to predict and complete the map, while its uses will be
addressed in future work.

We assume a robot that is able to build a 2D grid map of
an indoor environment in which some doors are closed and
that is able to detect the positions of such closed doors. Since
detecting doors (e.g., from vision) is not the purpose of this
paper, we assume that the robot employs a method like [6], [7].
Given a grid map (Fig. 1a) and the positions in the map of the
closed doors, our method identifies the main structural features
of the environment by detecting the walls. The directions of the
walls are associated with representative lines that are used to
partition the map into a number of polygonal faces. Although
we assume that most of the walls can be approximated by
straight lines, which is the case for the vast majority of indoor
environments, we do not enforce any Manhattan structure, but
we use the walls’ main directions, directly retrieved from the
map, for making predictions. The predicted layout of a closed
room is the set of faces that maximize an evaluation function
that accounts for the consistency with the known portion of
the environment. Finally, the predicted layouts of closed rooms
are inpainted within the grid map (Fig. 1b). An interesting
feature of our method is that it can jointly predict the layouts
of multiple adjacent closed rooms (e.g., when all rooms along



the same side of a corridor are closed). Experimental evalu-
ation is performed by considering both large-scale simulated
environments and real-world grid maps from publicly available
datasets. Results show that our method successfully predicts
the layout of closed rooms and accurately completes grid
maps even when large portions of the environments are not
accessible at mapping time

II. RELATED WORK

In this section, we survey some techniques developed across
different fields to retrieve structural knowledge in indoor
environments and to predict their unobserved parts.

Within the field of mobile robotics, a popular approach
towards structure identification in indoor environments is
room segmentation, where rooms are identified by dividing
a metric map into semantically meaningful parts. A survey
that compares 2D room segmentation methods is reported
in [8]. Authors of [9] present a room segmentation method
that uses structural line features similar to the representa-
tive lines we use in this paper. Another popular problem is
the structure identification in indoor environments from 3D
point clouds [10]–[14]. We take inspiration from the structure
identification steps of [14], but we adapt them to noisy 2D
grid maps. While the above methods identify structures within
the map representing the observed part of the environment,
in this paper we are interested in predicting the structure of
unobserved rooms.

The method of [15], starting from a 2D metric map of an in-
door environment, reconstructs a geometrical representation of
(partially) observed rooms using Markov Logic Networks and
data-driven Markov Chain Monte Carlo (MCMC) sampling.
The shape of a room, approximated by a polygon, is obtained
using a set of logic rules identifying the desired properties
(e.g., perpendicular walls, box model). In [16], we propose a
method to complete partially observed rooms. In this paper, we
assume to have no knowledge about the closed rooms whose
layout we predict.

The idea of obtaining knowledge on unobserved parts of
environments has recently been addressed using heterogeneous
approaches. Some of them predict unknown features of an
environment by exploiting knowledge coming from other maps
previously acquired in the same or in other environments. For
instance, [17] predicts loop closures in a metric map. The parts
of the metric map that are yet unknown are completed by
superimposing matching maps from a database of previously
observed environments. The method of [18] uses a library
of map structures to predict the unknown parts of a map
incrementally explored by a team of robots. Another recent
method is that of [19], where a variational autoencoder (VAE)
is employed to predict unobserved regions of an environment
starting from a partial map. However, [19] considers buildings
that are very similar to each other (see [20] for a discussion
about a different, but related, setting), thus providing an
approach that seems difficult to generalize to other different
environments. Several methods predict the presence of specific
elements in the unobserved parts of environments using neural

networks trained on similar environments. For instance, [21]
trains a convolutional neural network (CNN) on a set of images
representing building floor plans and uses it to predict the
locations of emergency exits. In [22], U-nets, a type of CNNs,
are used to expand egocentric RGB-D observations to infer the
occupancy state beyond the visible regions. In doing so, the
robot can anticipate the next sensorial readings.

The method of [23] uses Conditional Neural Process for
predicting the local map of the unobserved parts of an envi-
ronment to improve online trajectories planning.

Some other approaches, like the one we present in this
paper, do not rely on external knowledge but only on the
content of the partial map. In this sense, a method that shares
some similarities with our approach is that of [24], which
reconstructs the neighborhood of a frontier between known and
unknown portions of a map by identifying similar structures in
the known map. If a local match is found, the matching portion
of the map is superimposed to the frontier, thus providing an
estimate of the structure of its neighborhood.

Some methods predict the existence and the semantic labels
of unobserved rooms, but they do not predict their geometrical
shapes nor update the metric map with the prediction, as we do
in this paper. Examples are the systems proposed in [25], that
uses semantic knowledge in the form of chain graphs to predict
the existence of a room (and its label) in the unexplored space,
and in [26], where the prediction of the existence of a new
room is made by using sum-product networks. The approach
of [27] predicts the topology and the labels of unobserved
rooms by matching the observed part of the environment
(represented as a labeled graph) to a database of environments.
Also [28] predicts the presence of new rooms in partially
observed environments by by reasoning on graphs using graph
kernels.

To the best of our knowledge, no method addresses our
specific problem, that of predicting the geometrical shape of
rooms behind closed doors.

III. OUR METHOD

Our method predicts the layout of rooms behind closed
doors in a purely geometrical way, without learning models
from other environments. It starts from a 2D grid map M of
an indoor environment obtained by a robot through a SLAM
mapping process using data acquired by a laser range scanner.
This map is composed of identical square cells that are labeled
as known or unknown according to the fact that they have been
perceived or not by the robot. Known cells are further labeled
as either free or obstacle, according to the occupancy of the
corresponding area. The grid map is assumed partial in the
sense that some rooms could not be accessed by the robot
during the mapping process due to some closed doors and,
as a consequence, are not included in the map. We propose
a method that predicts the possible layouts of these closed

rooms, which are then used to complete the grid map.
Our method assumes that the robot can detect the position

of closed doors inside the environment (blue dots in Fig. 2a),
for example by using existing computer vision methods like



(a) Partial map with
closed doors.

(b) Inpainted map with
predicted closed rooms.

(c) Full map.

Fig. 2: A partial map of a large-scale indoor environment with
14 closed doors (2a), the map completed by our method (2b),
and the full map of the same environment (2c).

[6], [7]. Consequently, the initial input of our method is a grid
map M and a set of closed door locations d ∈ D. Although
doors are represented as line segments in 2D maps, our
method considers their middle points. Hence, each d = (x, y)
represents the mid-point coordinates (coordinate system of M )
of the line segment corresponding to a closed door in the map.
We assume that each closed room has exactly one door.

Our method predicts the possible layouts of closed rooms by
leveraging the fact that, due to the structured nature of indoor
environments, their geometrical shapes have some common
features with other rooms and walls as in the metric map. The
method is based on a sequence of steps that are detailed in
the next sections using the map of Fig. 2 as a reference.

A. Structural features

In the first step, we use the method of [16] to extract the
structure of indoor environments by identifying the direction
of walls in the metric map M and to partition M using
those directions. The method starts by extracting a set of
line segments from M by using Canny edge detection [29]
and probabilistic Hough line transform [30]. Line segments
are clustered together in two steps. First, the mean shift
algorithm [31] clusters together line segments with similar
angular coefficients. Then, for each angular cluster, all line
segments that are also collinear (along the same line) are
clustered together by performing spatial clustering. Full details
are omitted for brevity, please refer to [16].

Each spatial cluster is then associated to a representa-

tive line, in red in Fig. 3, which indicates the direction of
collinear, but possibly spatially separated, walls. The result is
the detection of a (hopefully small) number of representative
lines that describe the direction of all the walls within the
environment. Four additional boundary lines are added at the
extremity of M at a fixed distance from the bounding box
of the map and with the same angular coefficients of the two
largest angular clusters of line segments. We do not assume
Manhattan environments, as the directions of the representative
lines are directly recovered from the map. However, in many
real-world indoor environments, most walls are perpendicular
(e.g., see [32]) and, consequently, the representative lines used
for map segmentation are often perpendicular. For example,
the Intel Lab map from [5], shown in Fig. 4, contains curved
walls, but representative lines corresponding to most walls

are perpendicular. The resulting approximation is adequate for
accurately predicting the geometrical shape of closed rooms,
as shown in Section IV.

The intersections of all the representative lines partition
the map into faces. A face f ∈ F is a polygon having as
edges the line segments obtained by the intersections of the
representative lines (Fig. 3). The faces with an edge belonging
to a boundary line are called border faces.

Finally, we separate the faces that are inside the part of
the environment observed by the robot from those that belong
to the unobserved parts of the environment, as only the latter
ones will be considered when predicting the layout of a closed
room. Specifically, we keep only faces f ∈ Fu ⊆ F where at
least a 30% of their area is unknown.

B. Closed room locations

The prediction of the geometrical shape of closed rooms
starts from the faces that are immediately behind closed doors.
We associate each closed door d = (x, y) to its closest edge ed
(on a representative line), thus determining the door orientation
as collinear to ed. As edges are the boundaries between faces,
we consider the two faces that share an edge ed: one of the
two faces is inside the known part of M and the other one
belongs to the unknown part of M . The latter face is the one
that is behind the closed door d and is inserted in the set of
initial faces I ⊆ Fu, which are used as seeds to estimate the
layouts of the rooms behind the closed doors. Initial faces of
closed rooms for the map of Fig. 2 are shown in Fig. 3.

A particular case arises when there are two closed doors,
d1 and d2, that are associated with the same edge ed along
a representative line ℓ (and, consequently, that have the same
initial face). As we assume that there is only one door for
each closed room, we artificially add a representative line
perpendicular to ℓ and passing at equal distance from the two
doors’ positions d1 and d2. In this way, ed is split into ed1 and
ed2 . This allows us to address situations, as in the corridors
of Fig. 6, with multiple closed rooms adjacent to each other.

C. Closed rooms expansion

The predicted layout of a closed room r in the environment
is composed of one or more faces f ∈ Fu and is obtained by
selecting the most likely set of faces from Fu, adjacent to its
initial face ir, according to the surrounding environment.

We define as d(f, f ′) the topological distance between faces
f and f ′. For instance, if two faces have one common edge,
their distance is 1. The process of identifying the predicted
layouts of closed rooms is performed greedily by jointly
iteratively expanding them by considering an increasingly
larger set of faces. More precisely:

(1) We initialize k = 1.
(2) For each closed room r, we select a set of candidate

faces from Fu as:

F k
r = {f : f ∈ Fu | ∃f ′ ∈ F̂ k−1

r and d(f, f ′) = 1},

where F̂ 0
r = {ir} (with ir ∈ I) is the initial face behind

door d of room r. Calling P(·) the power set and Φ(·)



Fig. 3: Representative lines (red) and faces obtained from
segmenting the map of Fig. 2. Initial faces of closed rooms are
shown with different colors: green for independent rooms and
light blue for dependent rooms, while initial faces of closed
rooms on the border (border faces) are in purple. A particular
case is the initial face in yellow, which represents a room that
is initially independent but, expanding, becomes dependent by
touching the predicted layout of a nearby closed room (in light
blue at its left).

Fig. 4: Representative lines for the Intel Lab map from [5].

an evaluation function (described in Section III-D), we
select the best layout for room r at step k as the set of
faces that maximize Φ(·), expanding the layout at step
k − 1:

F̂ k
r = argmax

F∈P(Fk
r )

Φ(F̂ k−1
r ∪ F ).

We remove the faces in F̂ k
r from Fu (so that a face

belongs to the predicted layout of at most one closed
room) and we consider the next closed room r. For a
given k, we consider closed rooms ordered from the
smallest to the largest F k

r (ties are broken randomly).
However, we empirically observed that room ordering
has a small impact on the final result.

(3) We increase k ← k+1 and we repeat from (2), until no
faces are left in Fu or a threshold for k is reached. For
each room, set of faces F̂ ∗

r = F̂ k
r selected in the last

step is considered as the predicted layout.
At a generic step k, the predicted layout F̂ k

r of a closed
room r is thus updated from the predicted layout F̂ k−1

r at
the previous step. The idea is that we jointly expand the
predicted layouts of all closed rooms until a good estimate
is found for each one of them. This is motivated by the fact
that closed rooms can belong to two categories: independent

closed rooms, whose predicted layout is not adjacent to the
predicted layout of any other closed room; dependent closed
rooms, which have at least a face of their predicted layout that
is adjacent to a face of the predicted layout of another closed
room. Examples of independent (dependent) rooms are shown
in green (light blue) in Fig. 3. Note that, with the increase of
k, some independent closed rooms may become dependent;
this happens when the predicted layouts F̂ k

r and F̂ k
r′ of two

rooms r and r′ are expanded in opposing direction, eventually
sharing adjacent faces. An example of this is the room in
yellow of Fig. 3. The reason for separating these two closed
room types is that, while the predicted layouts of independent
rooms should be consistent only with M , the predicted layouts
of dependent rooms should be jointly estimated with that of
the nearby closed rooms.

D. Predicted layout evaluation

A possible predicted layout of a room r, represented as a
set of faces F̂ k−1

r ∪F , is scored using an evaluation function
Φ(F̂ k−1

r ∪ F ). The function embeds competing objectives,
like to maximize the area of the room and to maximize the
coherence of the room structure wrt that of nearby rooms.
Because of that, the objective function is a weighted sum of
five different components, that are now described. In what
follows, with a slight abuse of notation, we use F to denote
the layout F̂ k−1

r ∪ F .
The first component, area(F ), is the room area.
The second component is the convex hull ratio CHR, that

prefers regular room layouts:

CHR(F ) = CH(F )/area(F ),

where CH is the area of the room’s predicted convex hull.
The third and fourth components are designed to maximize

the similarity between the predicted layout of the room and the
rest of the map. In particular, the third component minimizes
the edges of a predicted layout that touch the unknown parts
of the map. More precisely, the ratio of the free edges FER

is defined as the ratio between the sum of the length of the
edges of F that are also edges of a face f ∈ Fu (where Fu

is the set of unobserved faces remaining after the application
of the algorithm in the previous section) and the sum of the
length of all edges along the external contour of F . The
fourth component penalizes the predicted layouts that are not
regular. More precisely, free faces penalty FFP is defined as
the number of faces f ∈ F that have at least two edges in
common with faces f ∈ Fu.

The fifth component is the room proportion P , the ratio
between the two main dimensions of the room’s bounding
box, which is intended to favor regular predicted layouts.

We define two different evaluation functions, Φind and Φdep,
for independent and dependent rooms, respectively:

Φind(F ) = ω1 ·
!

area(F )− ω2 · CHR(F )

− ω3 · FER(F ) + ω4 · FFP(F ),



Φdep = ω1 ·
!

area(F )− ω2 · CHR(F )− ω5 · FER(F )

−max(ω4 ·(FFP(F )−1), 0)−ω6 ·(P (F )·min(FFP(F ), 1)).

In the case of multiple adjacent closed rooms, the last term in
Φdep tends to prevent that the expansion is stopped before all
these rooms have a similar shape.

We do not enforce a square or rectangular shape for the
predicted layouts (as shown, for example, Fig. 6), but our
evaluation function aims at predicting accurate room shapes
according to the observed map. However, since real-world
indoor environments are inherently structured and most walls
are perpendicular also in non-Manhattan environments (Sec-
tion III-A and Fig. 4), good predictions are usually rectangular.

The next two steps address special cases.

E. Joint rooms layout prediction

At the end of the expansion (Section III-C) it could be the
case that two adjacent dependent rooms have different shapes
(e.g., this happens when one of the two rooms is by chance
initially expanded in the direction of the other room’s initial
face, thus limiting the second room expansion). To adjust
such situations, we allow adjacent dependent closed rooms the
possibility to swap one or more faces between them. Given two
sets of faces F̂ ∗

r and F̂ ∗
r′ , representing the predicted layouts

of dependent rooms r and r′, we compute E as the set of
faces in F̂ ∗

r (or in F̂ ∗
r′ ) that have an edge in common with a

face in F̂ ∗
r′ (F̂ ∗

r ) and that, consequently, could be exchanged
between the two rooms. We jointly evaluate all the possible
combinations of face assignments P(E) (in one assignment,
some faces of E are assigned to r, the other ones to r′) by
evaluating the corresponding rooms’ predicted layouts F̄ ∗

r F̄ ∗
r′

using the following function:

Φjoint(F̄
∗
r , F̄

∗
r′) =

ω7 ·
"

min(area(F̄ ∗
r ), area(F̄ ∗

r′))/max(area(F̄ ∗
r ), area(F̄ ∗

r′))

− ω8 · (FFP(F̄ ∗
r ) + FFP(F̄ ∗

r′))

We eventually select the face assignment that maximizes Φjoint

and we swap the corresponding faces between r and r′. If the
adjacent rooms are more than two, they are considered in pairs.

F. Closed rooms on the borders

The layout of a closed room r may extend outside the
bounding box of the current map. In that situation, we cannot
directly use faces and representative lines to predict the layout
of r, as M does not provide any knowledge on one of the
dimensions of the room. This happens when the initial face
ir of a room r is one of the border faces (e.g., that in purple
in Fig. 3). To provide a layout also in this case with limited
information, we roughly predict the shape of the room as a
square (of the same size as the edge ed of the initial face ir, see
Section III-B). If there are multiple dependent rooms in this
condition, we adjust (by averaging) their outwards dimension
to the same value.

# env 1 1 1 2 2 4 9
max |D| 7 9 10 11 12 13 15

TABLE I: Number of simulated environments and correspond-
ing max |D| number of closed doors.

Fig. 5: Average and standard deviation of the IoU of the
predicted layout of closed rooms, wrt number of closed doors
in the environment.

G. Inpainting predicted layouts into the grid map

In this last step, we inpaint the predicted layouts of closed
rooms into the map M . This is done by creating open passages
corresponding to the positions of the doors D in the map (door
width is a customizable parameter, which we set to 80 cm) and
by changing the value of cells in M from unknown to free
or obstacle, according to the fact that they correspond to the
inner area of a predicted layout or to one of its external edges.
As a result, a complete grid map M̂ is eventually available to
the robot. The predicted map for the partial map of Fig. 2a
is shown in Fig. 2b. Note that the largest difference wrt the
actual environment of Fig. 2c is in the rough predictions of
closed rooms on the borders.

IV. EXPERIMENTAL EVALUATION

In this section we present the experimental activities per-
formed to evaluate the proposed method to predict the layouts
of closed rooms in indoor environments. We present both
quantitative results obtained in simulation and qualitative
results obtained by applying our method to real-world maps
from public datasets.

We start presenting results obtained in 20 simulated indoor
environments (office and school environments) in which we
consider up to 15 closed doors. Maps are obtained by running
the ROS implementation1 of the GMapping algorithm [33]
on data collected by a robot equipped with a laser range
scanner during the autonomous exploration of the buildings
simulated in Stage2. The environments have different sizes
and, accordingly, different maximum numbers of closed doors

1http://wiki.ros.org/gmapping
2http://wiki.ros.org/stage



(a) Partial map. (b) Predicted map. (c) Full map.

(d) Partial map. (e) Predicted map. (f) Full map.

Fig. 6: Two examples in which our method predicts the layouts
of 15 and 10 closed rooms.

max |D| that a robot can find (see Table I). We limit the
number of possible closed doors to 15 even for the larger
environments in order to have a balanced evaluation of the
method performance.

For each environment, we repeat 15 times the following
operation: we build N = max |D| different maps by incre-
mentally closing 1, 2, . . . , N doors (if a door is closed in a
map where i doors are closed, it is closed also for all maps
in which i + 1, . . . , N doors are closed). Closed doors are
selected randomly. For each map obtained in this way, we run
our method in order to predict the shape of the closed rooms.
Overall, we evaluated 3, 885 maps (for a total of 24, 045 pre-
dicted room shapes). In each run, our method receives in input
a grid map M and a set of closed doors D. We empirically set
values of weights [ωi] to [0.06, 10, 7, 10, 2.5, 2, 1, 2] and
the maximum number of expansion steps k of Section III-C
to 9. Experiments are performed on a commercial laptop and
each run requires less than 2 minutes for all maps.

Given the predicted layout of a closed room F̂ ∗
r and that of

its ground truth counterpart F ∗
r (obtained from the floorplan

of the simulated environment), we compute their Intersection

over Union (IoU) as:

IoU(F̂ ∗
r , F

∗
r ) =

F̂ ∗
r ∩ F ∗

r

F̂ ∗
r ∪ F ∗

r

.

An high IoU indicates that the geometric perdiction F̂ ∗
r

accurately resembles F ∗
r (IoU is commonly used for this type

of evaluation, as in [12]).
Since, as discussed in Section II, we are not aware of any

other method that predicts the layout of closed rooms, we
compare our method against two baseline methods. The first
one is called line of sight (LoS) baseline and predicts the layout
of a closed room as the free area that could be observed in line
of sight from the corresponding closed door d. This method is
based on the assumption that all the unobserved area behind a

closed door is part of the closed room. The predicted layout of
the room is spatially limited by the bounding box of the map.
The second method is called geometric baseline and adds to
the predicted layout of a room all the faces f ∈ Fu that are
in line-of-sight from the door d, until boundary faces are met.

Fig. 5 shows the performance of the proposed method
against the two baselines. Our method obtains stable and
accurate predictions of closed rooms’ layouts even when a
large number of doors are closed across the environments. On
the other side, baseline approaches perform well when few
rooms are closed (because they basically flood-fill gaps in the
maps), but have a dramatic drop in performance as the number
of closed doors increases.

Fig. 6 shows that our method can complete metric maps also
when large parts of the buildings are not explored (15 closed
doors). For instance, it provides a rather accurate prediction of
all the closed rooms connected to the upper corridor in Fig. 6b.
Fig. 6e shows a similar result where, despite the presence
of multiple closed doors connected to the same corridor, our
method provides a sound estimate of the environment map.

Finally, Figs. 1 and 7 show how our method can complete
real-world partial maps (obtained from publicly available
datasets [5], [34]) with multiple closed doors. For these results,
we manually remove some rooms from the original map and
we predict their possible layouts using our method. (Note that,
although some maps in [5] have multiple closed doors, their
locations are not provided.) Despite large missing portions of
the map, our method provides a valid estimate of layouts of
closed rooms even in the presence of clutter and inaccuracies.
Further results on both simulated and real-world maps are
available in a video3.

V. CONCLUSIONS

In this paper, we presented a method for predicting the
geometrical shape of closed rooms in indoor environments.
The proposed method starts from a grid map in which the
positions of closed doors that the robot could not enter are
known and exploits the structural regularities of buildings to
estimate the layouts of rooms behind such doors. The grid
map is then completed by inpainting the layouts of closed
rooms. Experiments show the effectiveness of our method, also
compared against baseline methods, for large environments
with up to 15 closed doors.

In future work we will lift the assumption that a closed room
has only one door and we will integrate the proposed method
in a deployed robot system, using a vision-based system for
identifying closed doors and developing a way to update the
predicted map as new knowledge is available. We are currently
investigating the possible uses of the maps completed by
our method for tasks as coverage, search, and exploration.
Finally, we will apply the proposed method to domains, like
collaborative and service robotics, where robots operate in
environments in which doors could be closed to enhance the
robots’ understanding of their working environments.

3https://amigoni.faculty.polimi.it/research/ECMR2021-completing-maps-
closed-rooms.html



(a) Partial map. (b) Predicted map. (c) Full map.

(d) Partial map. (e) Predicted map. (f) Full map.

Fig. 7: Application of our method to publicly available real-world maps from [5], [34].
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