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aFaculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, The Netherlands; bDepartment of Dike Safety, Deltares, Delft,
The Netherlands; cSoil Mechanics and Geotechnical Engineering, Politecnico di Milano, Milan, Italy

ABSTRACT
Hindcasting of past levee failures enhances insights in the performance and vulnerability of levees.
The scarcity of field evidence makes identifying the cause(s) of failure difficult. Under these
circumstances, multiple scenarios and model choices are possible to characterise and to model
the failure.

This paper shows how probabilistic Bayesian techniques advance the procedure of hindcasting
of levee failures. In the developed approach, a-priori levee information, and failure observations are
systematically taken into account to determine the most likely scenario and the most representative
model choices to characterise the failure most accurately. Observations, such as the slip surface, are
taken into account in the probability estimates.

The levee failure near Breitenhagen, Germany (2013) is used as a case study. The levee failed
during river floods due the instability of the landside slope. The levee failure was most likely
triggered by locally weak soil conditions and unexpected high water pressures due a connection
between a pond on the riverside of the levee and the aquifer. These conditions were likely
caused by the occurrence of a previous breach at this location.

The approach developed in this paper is expected to support a more systematic and objective
method of analysis of other levee failures.
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1. Introduction

Consequences of flood defence failures are very large
and it is therefore of great importance to gain insights
in the performance and vulnerability of these systems
flood defence (Vorogushyn, Merz, and Apel 2009;
Jonkman and Schweckendiek 2015). Hindcasting of
failed levees provides valuable insight into general
levee performance, quality of strength models and
dominant factors that contribute to levee failure.
Examples of the hindcasting of past failures include
analyses of levee failures in New Orleans, USA (Seed
et al. 2006), Breitenhagen, Germany (Grubert 2013)
and Yabe-river, Japan (Honjo et al. 2015). These
insights can be used to advance the design and engin-
eering of flood defences. As part of these hindcasts,
various model choices have to be made to calculatively
characterise the failure as accurately as possible. How-
ever, these model choices are often uncertain. Further-
more, field evidence is scarce: subsoil information is
often “washed away” and there are often no direct
visual observations during the failure. This makes
identification of the cause(s) of failure difficult.

Forensic analysis provides a systematic procedure of
analysis for the investigation of failures. The procedure
of forensic analysis roughly consists of three stages: (1)
collecting and reviewing of evidence, (2) utilising calcu-
lative models for a back analysis (hindcasting) to identify
the cause, and (3) reporting the findings (Carper 2000).
In previous work, it appeared that hindcasting using a
deterministic sensitivity analysis identifies several poss-
ible causes of failure (Zhang, Tang, and Zhang 2010;
Kool et al. 2019). However, the deterministic sensitivity
approach of hindcasting did not provide an explicit
insight into the likelihood of various failure scenarios.

In order to enhance levee hindcasting, probabilistic
Bayesian techniques are used in this paper to identify
the most likely scenario of failure, the most representa-
tive model choices to characterise the failure, and the
most dominant parameters triggering the failure. The
prior and posterior probabilities reflect the probability
that a model best describes the reality and that a scenario
of failure was present given the evidence. The combi-
nation of the most likely scenario of failure and most
representative model choices is referred to as “MLC” in
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the remainder of this paper. In the past, Bayesian tech-
niques have been used to characterise the lifetime
reliability of geotechnical structures (Zhang, Tang, and
Zhang 2010; Schweckendiek 2014b; Baecher 2017), and
have been applied to the hindcasting of different types
of geotechnical related structures (Luckman, Der Kiure-
ghian, and Sitar 1987; Gilbert, Wright, and Liedtke 1998;
Zhang, Tang, and Zhang 2010; Gilbert 2016). However,
to our knowledge, Bayesian techniques have not been
applied to hindcasting of specific levee failures. Another
novel element in the proposed approach in this paper is
that Bayesian updating is carried out using specific infor-
mation on the geometry of the observed failure, in this
case, the slip surface. This approach allows us to account
for the scarcity of evidence, as the available information
after failures is generally limited to a small number of
observations, photos and videos.

The article is structured as follows: The background of
the method for the hindcasting of levee failures using
Bayesian techniques is presented in section 2. In section
3 the case study of the levee failure near Breitenhagen in
the year 2013 is analysed using the Bayesian hindcasting
method. The results are discussed in section 4, and the
conclusion and recommendations in section 5.

2. Probabilistic hindcasting of slope instability
using Bayesian updating

2.1. Method background for Bayesian levee
hindcasting

The proposed approach for hindcasting levee failures
consists of defining scenarios that could explain the
failure and assign prior probabilities of occurrence to
these scenarios. Subsequently, the probability of failure
given a scenario is calculated (which is used as likeli-
hood) and Bayesian updating is used to update the
prior probabilities with the likelihood and failure obser-
vation (see e.g. [Gilbert, Wright, and Liedtke 1998;
Schweckendiek 2014b]). The objective is to find the
most likely scenario (Si) that has resulted in the failure
event (F).

2.1.1. Prior probabilities
The first step of the proposed hindcast approach is to use
the collected information for the identification of poss-
ible scenarios (Si) that could have resulted in failure of
the levee. A scenario typically represents the loading con-
ditions possibly triggering the failure as well as the sub-
soil conditions (e.g. pore water pressures, stratigraphy).
Prior scenario probabilities (i.e. P(Si)) are assigned in
such a way that they total a sum of 1 (e.g. Schweckendiek
et al. 2017).

2.1.2. Likelihood function based on failure and
observed evidence
The Bayes’ theorem makes it possible to incorporate evi-
dence in the analyses, such as observed failure infor-
mation (Schweckendiek 2014a). To apply Bayesian
updating of the previously assigned prior scenario prob-
abilities, two pieces of information are incorporated
using a likelihood function in the next steps, i.e. (A)
the actual occurrence of failure and (B) the geometry
of the observed slip surface (when available).

Hence, likelihood function in step (A, referred to as
likelihood A) is calculated by determining the probability
of failure (F) per scenario P(F|Si) according to:

P(F|Si) = P Z(X) 0〈 |Si( ) (1)

In this equation, the limit state function Z is used to
describe when failure occurs. This is evaluated in this
paper by using a slope stability model. The joint prob-
ability density function f(x) of the random variables
(X) is used to describe Z. Negative values of the limit
state function (Z) describe which combinations of ran-
dom variables (X) combination results in failure of a
scenario (Si). Hence, the likelihood function A shows
how likely it was that, according to a model, failure
would have occurred given a certain scenario. And
thus how likely it was that failure was observed given a
certain scenario. This likelihood is expressed as a prob-
ability of failure given the scenario. This probability of
failure is the results of all the uncertain input parameters
(X) in the model.

The First Order Reliability Method (FORM) is used in
this paper to estimate the probability of failure, Equation
(1). Subsequently, Equation (2) is used to find the design
point at Z(X) = 0 which is the combination of parameter
values that provide the highest probability density (see
Rackwitz 2001). Hence, this is the most likely combi-
nation of parameters values triggering a failure. When
this design point is found, the probability of failure is cal-
culated, using Pf = 1−f(β).

The design point is found using a process of iterations
in evaluating:

Z = b−
∑n

m=1

amum (2)

Where β is the reliability index and αm is the influence
coefficient, or the FORM sensitivity coefficient (for
which Σαm

2 = 1) of variable Xm; um is the standard nor-
mally distributed variable representing a normalised sto-
chastic variable. The value of the influence coefficient of
a variable provides a measure of its contribution to the
reliability. The highest value of the influence coefficients
(max αm) identifies the dominant basic variables. The
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process of iterations in the used FORM analysis using the
Probabilistic Toolkit is described in (Brinkman 2015).

Additionally, for slope instability analyses, the
observed shape of the slip surface of slope failure (h’)
can be combined with the likelihood function (A) and,
thereby as a next step, can be used for updating the scen-
ario probabilities. This combination of likelihoods is
further referred to as the likelihood (B). Evidence is
expressed by an observation function h’ and limit state
function (Z), as in Equation (3). Negative values of the
h’ conditioned limit state function (Z) describe which
random variable (X) combination result in both potential
failure of a scenario (Si) and observed slip surface shape
(h’). The following likelihood function combines the
influence of failure and slip surface (h’) (into likelihood
function (B)):

P(F > h′|Si) = P Z(X) 0〈 |Si( ) (3)

In which Z(X) is the limit state function that includes the
observed slip surface in the slope stability computation.

2.1.3. Posterior distribution of scenarios
probabilities with observed failure
Subsequently, the earlier assigned prior probabilities of
scenario Si are updated using both the information that
the slope has failed (A) and the geometry of the slip sur-
face that is observed (B). This posterior distribution is
shown in Equation (4):

P(Si|F > h′) = P(F > h′|Si)P(Si)
P(F > h′)

(4)

2.2. Bayesian hindcasting of slope instability

2.2.1. Steps of Bayesian hindcasting of slope
instability
A Bayesian method for the hindcasting of slope instabil-
ity is proposed in six steps, based on the method by Kool
et al. (2019) and described in Figure 1.

The presented Bayesian theory and the model for
slope instability analysis (introduced in the following
sections) are used to identify the combination of most
likely scenario triggering the failure and the most repre-
sentative model choice (MLC), step by step:

(1) System description and identification of possible
failure scenarios (e.g. stratigraphy and water press-
ures) with the help of the collected evidence. Prior
probabilities are assigned to all scenarios (Si), a uni-
form prior can be chosen in case no prior knowledge
is available to discern the scenarios:

P(Si) (5)

(2) Introduction of alternatives for model choices (Mj)
and parameter choices (X) into the scenarios (Si)
and building slope stability models (noted as (Si∩Mj-

)). Prior probabilities are assigned to all model
choices:

P( Mj|Si) (6)

(3) Evaluation of the limit state function using the gen-
erated slope stability models (Si∩Mj), to calculate the
likelihood, one by one:
A. The conditional probability of event F (likeli-

hood (A)):

P(F|Si > Mj) (7)

B. The conditional probability of F (likelihood
(B)) including the field observation infor-
mation when available (observed slip surface
information (h’)):

P(F > h′|Si >Mj) (8)

(4) Update of prior scenario and model choices prob-
abilities into posterior probabilities using likelihood
(A) given failure (F) and (B) slip surface information
(h’):

P(Si|F > h′) (9)

P(Mj|F > h′) (10)

(5) Identification of the combination of most likely
scenario and model choices: the scenario and
model choices resulting in the highest posterior
probabilities, given failure (F) and slip surface infor-
mation (h’), are considered the most likely to charac-
terise the failure most accurately (MLC):

max P(Si|F > h′) (11)

maxP(Mj|F > h′) (12)

(6) Identification of the most dominant parameter con-
tributing to failure: the most dominant variables are
found by assessing the influence factors of each basic
variable for the combination of most likely scenario
and most representative model choices (MLC):

maxa2
m (13)

Please, note that the prior probabilities refer to the prob-
ability that a model (M) best describes the reality, and
that a scenario (S) was present given the information.
In the next paragraphs step 1 to step 6 will be explained
in more detail.

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 301



2.3. Elaboration of the hindcasting steps

2.3.1. System description and inputs (Step 1. and
Step 2.)
A general model of slope stability analysis of a levee is
used to analyse the failure of the levee. The analysis cal-
culates the Factor of Safety (FoS) which is a function of
the resisting moment (MR) and the driving moment
(MS). Higher pore water pressures increase MS and
decrease the available shear strength of the soil and
lead to a reduction of MR. The limit state of the slope
stability model is used with the purpose to determine
the conditional failure of the levee and to incorporate
the influence of the observation information (Step 3.A.
and 3.B).

The performance of a levee depends on various typical
variables (van Deen and van Duinen 2016) (Table 1).
Collected evidence is thoroughly studied on the typical
variables influencing the performance of the levee with
the purpose of building a slope stability model. Further,
the collected evidence is used to identify scenarios which
might support conditions for triggering the levee to fail.

Generally accepted literature is used to collect possible
alternatives to typical variables supplementing the
required set of variables in building the slope stability
model.

Each discrete variable (Table 1) contributes a finite set
of possible choices of model and parameter choices. All
possible combinations of choices are used to generate
slope stability models covering the possible character-
istics of the failure.

A uniform prior can be chosen in case no prior
knowledge is available to discern the scenarios of failure
and alternatives of typical discrete variables. For
example; the evidence is used to construct four scenarios
possibly triggering the failure. Each of them is assigned a
probability of 0.25 (Equation (5)).

2.3.2. Likelihood given observed failure (Step 3.)
The generated slope stability models (step 1 and step 2)
are used in step 3A to determine the conditional prob-
ability of failure, which is taken as likelihood given fail-
ure (step 3A). The probability of slope instability is

Figure 1. Method of hindcasting of levee failures using Bayesian techniques.
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calculated using the limit state function Z(X), see
Equation (14). This is repeated for each generated
slope stability model and its corresponding random
FoS(X); with each model based on a combination failure
scenario, model and parameter choices:

Z(X) = FoS(X)− 1 (14)

Equation (15) is used to calculate the conditional prob-
ability of failure (step 3A.).

P(F|Si >Mj) = P(Z(X) , 0|Si >Mj) (15)

The collected evidence is subsequently used in step 3B. to
estimate the geometry of the observed slip surface
(Figure 2) or a zone in which the slip surface might
have occurred. The slope stability models that produce
a slip surface that correspond the observed information
(shaded area in Figure 3 and denoted with h’) are
taken into account of the analysis and expressed by
Equation (16) (step 3B.).

P(F > h′|Si >Mj) = P Z(X) 0> h′
〈 ∣∣ Si > Mj

( )
(16)

In practice, the observations of a slip surface are not
exact. Therefore h’ represents an estimated area with
an upper boundary (SR1) and lower boundary (SR2), see
Figure 2. The yellow area shows the envelope of all poss-
ible slip surfaces that is the result of step 3A. The shaded

area shows the boundaries that are introduced to incor-
porate the observations, as done in step 3B.

2.3.3. Posterior probabilities identifying the most
likely scenarioandmodel choices (Step4. andStep5.)
Posterior probabilities are used to identify the MLC for
hindcasting purposes. Equation (4) is calculated by
applying a tree diagram in which all combinations of
scenario and model choices are shown. For each combi-
nation of scenario and model choice, the likelihood is
calculated in a slope stability computation by computing
the probability that failure would have occurred. Com-
bining these likelihoods with the prior probabilities of
the scenarios finally gives the posterior distribution.
For explanatory purposes, a simplified example is
shown, in this section.

The simplified example takes only two discrete
choices (n = 2) into account per discrete variable, that
is two scenarios of failures (“S1”,“S2”,) and two model
choices (“M1”,“M2”). An overview of the resulting four
possible slope stability models (noted as (Si∩Mj)) is
shown both by an event tree (Figure 3) and an
Edwards-Venn diagram (Figure 4). The slope stability
models are used to determine P(F|Si∩Mj). Prior prob-
abilities are assumed P(S1) = P(S2) = 0.5 and P(M1) = P
(M2) = 0.5; since P(Si) is independent of P(Mj) result in
P(S1∩M1) = P(S1)P(M1) = 0.25.

The four slope stability models (Si∩Mj) are assumed
mutually exclusive, and the total probability of failure
is the union in event F (Figure 4). This total probability
indicates whether the failure was likely (could be
expected) or not (a surprise); the total probability of fail-
ure is calculated as:

P(F) = P(F|M1 > S1)P(M1|S1)P(S1)
+ P(F|M2 > S1)P(M2|S1)P(S1)
+ P(F|M1 > S2)P(M1|S2)P(S2)
+ P(F|M2 > S2)P(M2|S2)P(S2) (17)

Table 1. Overview of uncertainties and related typical variables
of influence on slope instability performance. Variables are
introduced as either a discrete or continuous variable. *chosen
to exemplify the method on the Breitenhagen case, discussed
in the next section (see Figure 6).
Uncertainties
slope instability
(Baecher and
Christian 2003)

Variables
(van Deen and

van Duinen 2016)
Variable
type

Specific variables/
choices related to
Breitenhagen levee

Site
characterisation

Geometry of the
levee

Discrete [−]*

Stratigraphy of
the soil layers
and the levee
body

[−]*

Water level
(landside and
waterside)

[−]*

Model Limit Equilibrium
Model (LEM)

Bishop
Spencer
Uplift-Van

Soil Shear
Strength Model

Drained
Undrained

Parameters Soil parameters Continuous Cohesion
Friction angle
Shear strength ratio
Strength increase
exponent

Pre-Overburden
Pressure

Hydraulic pressure
of relevant
layers

Simplified model
(steady-state flow)

Figure 2. Yellow (SEnvelop): Yellow area marks the envelope
where the critical slip surface can be found regardless whether
this corresponds to the observed information. Shaded area
marks the possible zone of the slip surface (h’).
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Bayes rule is used to update the prior model and scenario
probabilities by the information that failure occurred
(step 3A). When slip surface information is available,
the set of likelihoods given failure and observation infor-
mation (step 3B) replaces the set of likelihoods given fail-
ure (step 3A, Figure 3). The posterior probabilities of the
scenarios of failure and model choices are obtained by

alternately evaluating Equation (18) and Equation (19):

P(S2| F) =
∑n

j=1 P(F|Mj > S2)P(Mj|S2)P(S2)
P(F)

(18)

P(M2| F) =
∑n

i=1 P(F|Si >M2)P(Si|M2)P(M2)
P(F)

(19)

Figure 3. Event tree with the incorporation of the scenarios of failure (“S1”, “S2”), alternatives in model choices (“M1”, “M2”). The slope
stability models are put to purpose to determine the related likelihood given failure (“F|Si∩Mj”) and given non-failure (“F|Si∩Mj”).

Figure 4. (A.) Edwards-Venn based diagram to illustrate the relation between the scenarios of failure (S1, S2), the model choices (M1, M2)
and all the four resulting slope stability models that are built (Si∩Mj) in order to calculate the probability of failure in the next step
(noted as F and marked as the grey area). Prior probabilities of scenarios and model choices are included. (B.) Probability of failure
per slope stability model is calculated and implemented in the diagram (P(F∩Si∩Mj) marked as grey area). This illustrates intersection
of the calculated F and the slope stability models. (C.) The red shaded area is a subset of F and incorporates the observed slip surface
information (h’). The most likely scenario (S2) and model choices (M2) are identified.
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This way, the most likely scenario leading to failure and
model choice to represent the levee failure most accurate
is obtained by evaluating Equation (11) and Equation
(12).

2.3.4. Dominant influence factor (Step 6.)
The MLC is used to determine the most dominant vari-
able leading to the failure of the levee. The influence fac-
tor is a by-product from the evaluation of the limit state
function using FORM, as is done in step 3A and step 3B,
and provides a measure of the contribution of each vari-
able (Σmα

2 = 1) to failure. The most dominant variable is
identified utilising Equation (13).

3. Case study of levee failure near
Breitenhagen, Germany in 2013

3.1. The Breitenhagen case: levee failure and
input data

3.1.1. General failure information
In 2013, the levee near Breitenhagen (Germany) failed
and caused considerable economic damages to the
area, see e.g. Figure 5 (Weichel 2013). Previous analyses
of the levee failure show that the levee would be calcu-
latively stable (FoS > 1) under conditions of best esti-
mates of levee characteristics (Grubert 2013; Kool
et al. 2019). This indicates that possibly an anomaly
(e.g. old breach or conductive layer) dominated the out-
come (Grubert 2013; Kool et al. 2019). Details on the
interpretation of the collected data and the identifi-
cation of anomalies, which are introduced in the ana-
lyses as possible scenarios leading to failure, are
discussed by Kool et al. (2019). The collected data are
summarised in Table 2. The data that support the
findings of this study are available in the International
Levee Performance Database (ILPD) – a public database
with information on levee failure and performance cases
(at https://leveefailures.tudelft.nl/, failure-id 121001:
Breitenhagen, 2013).

3.1.2. Step 1: System description, identification of
possible failure scenarios
3.1.2.1. General. The collected evidence is examined to
identify possible failure scenarios, i.e. loading and subsoil
conditions that possibly explaining the failure. The Brei-
tenhagen levee has a typical cross-section of a levee on
top of an aquitard on both land- and riverside, consisting
of layers of cohesive and alluvial soil, and a high per-
meable aquifer consisting of sand and gravel (Figure 6;
based on [Grubert 2013]). At the location of the breach,
the levee was about 3.50 m high and had a crest width of
3.00 m. A possible failure scenario is caused by the trees

growing at the section between the levee and the pond
near the toe of the levee at the waterside. Furthermore,
this particular section of the levee has likely breached
in the past, resulting in a pond in front of the levee (Six-
dorf 2016).

3.1.2.2. Failure scenarios. Seepage of water from the riv-
erside causes local high water pressures inside the levee
to reduce the shear strength and possibly trigger slope
instability. The best-estimated situation is referred to as
the “Base case” (BC). Subsequently, three possible scen-
arios of water pressures are identified as shown in Figure
7. To emphasise the scenario-specific dominant water
pressures, the influence of each scenario-specific water
pressure is introduced in relative to the BC. Kool et al.
(2019) further elaborates and motivates the different
scenarios:

. Scenario “Base case” (BC): the best estimate of the
base case is based on normal levee investigation data
(borings, etc.) and best estimates of water pressures,

. Scenario “Saturated levee” (S1): higher phreatic as a
result of more permeable levee than expected, based
on evidence from photos,

. Scenario “Conductive layer” (S2): higher water press-
ures inside levee due to a conductive layer inside the
levee as a result of tree roots, based on evidence on
photos,

. Scenario “Pond connection with aquifer” (S3): higher
water pressures in the aquifer under the levee due to a
close connection of the outside water level with the
aquifer, based on evidence on photos.

3.1.2.3. Water pressures in failure scenarios. This analy-
sis adopts a pragmatic implementation of water press-
ures using simplified models of quasi-steady-state flow
to incorporate the transient flow (Figure 7; [TAW
2004]). Three aspects are considered: A. the phreatic
line (PL), B. the aquifer head (HH1) and C. the interp-
olation between A. and B. (this is done linearly and
not further discussed). Whether steady-state conditions
are reached depends on the duration of the water level
and the hydraulic conductivity of the soil. In this case,
the higher water event lasted over a month, of which
12 days the water was relatively close to the maximum
(see Kool et al. 2019). Analysis by Drews (2015) shows
that the aquifer conditions mostly reach steady con-
ditions for the various scenarios, which is incorporated
in the modelling in this study. For the phreatic line,
this is highly dependent on the hydraulic conductivity
of the levee material, see Drews (2015). For the reported
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low conductivity, steady-state conditions are not met.
However, since photos show wet soils during, the slope
failure; indicating a high phreatic line. Hence, a phreatic
line that represents (close to) steady-state conditions is
used in the base case.

It should be noted that using steady-state conditions is
usually pragmatic and conservative for design consider-
ations; for hindcasting, this may lead to the identification
of the wrong dominant scenario in case there are signifi-
cant transient effects. A sensitivity analysis shows that
using transient water pressures based on a low conduc-
tivity dike body does not influence the outcomes much
in this case since the aquifer pressures are much more
important, see “Discussion”.

3.1.2.4. Modelling water pressures. The water pressures
are modelled in each scenario using probability distri-
butions to reflect uncertainty in actually occurred press-
ures. This is shown in Figure 7 and summarised in Table
3. The red points in Figure 7 are assigned the probability
distribution, linear interpolation is used to connect this
location with waterside and landside boundaries. The
following choices are made:

. Base Case (BC): the mean of the PL (dark blue) and
aquifer (light blue) are shown in Figure 7 and are
based on quasi-steady-state conditions. For the PL,
there is a small uncertainty modelled (0.3 m; see (Roz-
ing 2015)). Also, a truncated distribution is used,
similar to the dashed line of S1, to reflect the physical
boundaries as the water level cannot exit the levee
body. The PL can be higher than steady-state con-
ditions though due to e.g. rainfall. For the aquifer,
blanket theory (USACE 2000) is used to compute
the water pressures (HH1). In this case, a semi-per-
vious top stratum to calculate the head is shown in
Figure 6. The uncertainty is 0.3 m in both x-, and z-
direction. Again a truncated distribution is used
with upper bound equal to the maximum river level
and lower bound equal to the pre-flood ground
water table.

. Scenario “Saturated levee” (S1): The only difference
with BC is the increased standard deviation of the

Figure 5. Left: overview photo of the inland while the flooding evolves, Right: overview photo of the breach at 10-jun-2013 (Grubert
2013; Weichel 2013).

Table 2. Collected data on the levee near Breitenhagen that
failed. The data that support the findings of this study are
available in the International Levee Performance Database
(ILPD) (at https://leveefailures.tudelft.nl/, failure-id 121001:
Breitenhagen, 2013).
Document Information

Design of upgrade 1846 (Sixdorf
2016)

Design drawings of the cross-
sections. The design was not
realised.

Photo report 2003 (Sixdorf 2016) Photos of the installation of sheet
piles to prevent seepage near the
pumping station

Photo report 2004 (Sixdorf 2016) Photos of the construction of the
road on top of the crest

Video footage, 2013 (Weichel 2013) Video footage during the breach by
a drone flight

Saaledeich bei Breitenhagen,
geotechniscche untersuchungen
der Bruchstelle Empfehlungen zut
Sanierung, (Grubert 2013)

Photo report (during and after the
breach)

Hindcasting based on calculations
Location overview
Levee profile (measurements)
Levee profile km 0 + 590 (incl.
borings)

Data based on laboratory test of
local samples: water content w[%],
yield point wL [%], Roll-out limit
wP [%], Plasticity number IP [%],
Consistency number IC [−]

Moist sample [gr], dry sample [gr],
pore water [gr], water content [%]

Sieve curves
Geotechnical stability calculations a
variety of scenarios

Underground hydraulic analysis
(stationary and transient
pressures)

Uplift assessment
Photo report and paper clippings of
the repair 2013 (Sixdorf 2016)

Photo footage of the repairing of the
levee

Clippings of the plans in the area
Photo footage right after the repair
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PL (of 1.1 m) to reflect the higher potential for full
saturation.

. Scenario “Conductive layer” (S2): The only difference
with BC is the introduction of an extra piezometric
head (HH2) at NHN + 51.2 m with increased head.
There is a linear interpolation between HH2 and
both the PL and HH1 which have the same properties
as the BC (but are not shown in the figure for clarity)

. Scenario “Pond connection with aquifer” (S3): The
only difference with BC is the increased mean of the
aquifer head (HH3) due to the pond connection,
resulting in a lower L1 in the blanket equations, see
Figure 6.

3.1.3. Step 2: Alternatives for model choices and
parameter choices
The possible model choice and parameter choices are
derived that, together with the failure scenarios of step
1, will characterise the levee failure most accurately.
The different scenarios are implemented with alterna-
tives of Limit Equilibrium Methods (LEM), soil reaction
behaviour and properties of soil parameters, to generate
a set of slope stability models that include all possible
characterisations of the failure (Table 1).

The LEM of Bishop (MBishop), Uplift Van (MUplift)
and Spencer (MSpencer) are applied as possible analytical
slope stability methods (Bishop 1955; Spencer 1967;
CIRIA 2013). LEMs are chosen over more complicated
methods such as Finite Elements because of their
short running time and sufficient accuracy for the
not-complex slip surface as observed in this failure.
The different LEM mainly differ in the various shapes
of slip surfaces that they take into account. Moreover,
the LEM of Bishop is considered less accurate than
the LEM of Uplift Van and Spencer but is incorporated
as a control method. The uncertain typical variables

Table 3. Uncertainties in water pressures. The hydraulic head
distribution is modelled in the red nodes (Figure 7) and
modelled as a truncated normal distribution. The coordinates
correspond with Z and X in Figure 7. *S1, S2, and S3 have the
same distribution for PL and HH as the base case, except for
what is shown in the “water pressure” column.

Scenario of
failure Line Axis

μ
[m]

σ
[m]

Truncating
Bounds [m] –

[m]

BC: “Base Case” Phreatic line in
levee (PL)

Z 54 0.3 51–54.7

BC: “Base Case” Phreatic line in
levee (PL)

X 36.5 0.3 35–38

BC: “Base Case” Hydraulic head in
aquifer (HH1)

Z 52.8 0.3 49–54.7

S1 “Saturated
levee”*

Phreatic line in
levee (PL)

Z 54 1.1 51–54.7

S1 “Saturated
levee”*

Phreatic line in
levee (PL)

X 36.5 1.1 35–54.7

S2: “Conductive
layer”

Extra hydraulic
head rooted
conductive layer
(HH2)

Z 52.8 1.11 51.5–54.7

S3: “Pond
connection
with aquifer”*

Hydraulic head in
aquifer (HH3)

Z 54 1.11 49–54.7

Figure 6. Simplified soil layering of the failed levee near Breitenhagen, including dimensions (Grubert 2013; Drews 2017). Coordinates
are expressed in a vertical datum: Normalhöhennull (NHN), which is roughly sea level. The observed high water level NHN + 54.7 m,
measured groundwater of NHN + 50.3 m. Aquitard extends up to L3 = 220 m on the land side and up to L1river = 240 m on the riverside.
Furthermore, kbl, kbr and kf indicate the hydraulic conductivity of respectively the landside blanket, waterside blanket and aquifer; while
Zbl and Zbr indicate the landside and waterside blanket thickness.
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(step 1) are the subject of this study as presented in
Table 1. Therefore, the overall imperfection of the
simulation is accepted and compensatory measures,
such as an overall model uncertainty factor, are left
out of the assessment.

How soils react to loading depends on the rate of the
loading and the conductivity of the soil. Often, the shear
strength of the soil is modelled as drained or undrained,
while in reality the soil likely reacts as partially drained.
Initially, drained (SBdr) and undrained (SBund)
(Schofield and Wroth 1968; Ladd 1991) are used in
this paper as these are most commonly used. Partially
drained behaviours should be considered in case this is
expected to have a large influence on the results; which
is not expected for this case. Undrained soil behaviour
takes the possibly generated water pressures by defor-
mations into account, in contrast to drained soil behav-
iour (van Deen and van Duinen 2016).

The undrained soil response for low permeability
materials is implemented using the SHANSEP
implementation (Ladd 1991) of the Critical State Soil
Mechanics (Schofield and Wroth 1968):

su = s′
v,iS OCR

m with OCR = s′
v,y

s′
v,i
and s′

v,y

= s′
v,i + POP (20)

Where su [kPa] is the undrained shear strength ratio, σ’v,i
[kPa] is the in-situ vertical effective stress, S[−] the
undrained shear strength ratio, OCR [−] the over-

consolidation ratio, m[−] the strength increase expo-
nent, σ’vy [kPa] the vertical yield stress and POP [kPa]
the pre-overburden pressure.

The report of Grubert (2013) describes the local soil
types and characteristics but does not report the prob-
ability distributions of the strength parameters that rep-
resent the diversity of shear strength in space (TAW
2001; Calle 2008). Based on the descriptions of the
soil characteristics by Grubert (2013) and Normcom-
missie (2011), the corresponding values of soil strength
are collected for both drained and undrained soil behav-
iour (Tables 4 and 5). The probability distributions of
the parameter input are adopted from Baker and Calle
(2006).

Conform steps 1 and 2, failure scenarios are identified,
a finite set of interchangeable alternatives of model
choices and parameter choices are systematically col-
lected, which results in 24 combinations of failure scen-
arios and model choices (Si∩Mj∩SBn). Each combination
is used to build a slope stability model (see Figure 8),
which is evaluated for the probability of failure given
the a-priori conditions. When observed slip surface
information available (see step 3 below). The observed
slip surface information is included in all 24 slope stab-
ility models by conditioning the search area of the critical
slip surface to the observed slip surface. Both the soil par-
ameters and hydraulic pressures of relevant soil layers
are implemented as continuous probabilistic distri-
butions (Tables 3–5). An overview of all

Figure 7. Modelling of the four scenarios of water pressure. Horizontal coordinates are project-specific, vertical coordinate relative to
NHN. The dashed lines are (high and low) boundaries of the piezometric lines. The red node is the point of manipulation in the X-axis
and Z-axis to incorporate the uncertainty in the phreatic line (Table 3).
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combinations is presented using an event tree in
Figure 8 Appendix A, which is enclosed in the sup-
plemental material of this paper, presents an elaborate
overview of all combinations and calculations results,
and a calculation example that demonstrates how the
posterior probability of S3 is calculated.

3.1.4. Step 3: Likelihood given failure and field
observational information
The assembled 24 slope stability models are used to
evaluate the accompanied limit state functions with
FORM. This results in the conditional probability of fail-
ure of each slope stability model, which is adopted as
likelihood in this analysis. The likelihood is determined
for two situations:

A. Field observation information is not available and
the search area of the critical slip surface is not
defined in the slope stability models, resulting in P
(F|Si∩Mj∩SBm) (step 3A.),

B. Field observation information is available and the
search area of critical slip surface is conditioned to
the observed slip surface information in the slope
stability models, resulting in P(F∩h’|Si∩Mj∩SBm)
(step 3B.).

Figure 9 shows the field observation information that
is available. The slope stability models are conditioned
(h’) according to the observed shape of the initial slip

surface as part of step 3B. (Equation (8)). The exact geo-
metry of the slip surface is difficult to estimate, and
therefore estimated by an upper and lower boundary
that are 2 m apart, as suggested in Figure 2.

3.1.5. Step 4, 5, and 6: Systematic analysis of
uncertainties
Both sets of the 24 likelihoods (step 3A. and 3B.) and the
prior probabilities (step 1 and 2) are implemented alter-
nately in Bayes rule and used to determine the posterior
probabilities for each scenario of failure and model
choice (step 4). The resulting posterior probabilities sub-
stantiate the identification of the MLC (step 5) which is
used to identify the parameters that contributed to the
failure the most.

Evaluating the limit state with FORM enables to esti-
mate the conditional probability of failure, but also
determines the contribution of the individual par-
ameters to failure (Sa2

i = 1). Because FORM might
introduce approximation errors on the probability of
failure, the results have been verified with Monte
Carlo which gave very similar results for the considered
cases.

3.2. Results

3.2.1. Updated scenario probabilities
The two sets of the 24 likelihoods (step 3A. and 3B.) are
used to update the prior probabilities of earlier identified

Table 4. The probability distribution of soil properties (parameters of drained soil behaviour), soil weight (γ), wet soil weight (γwet), soil
friction angle (w), cohesion (c’). *Grubert (2013) used local soil investigations to identify the soil types, **Normcommissie 2011 provides
typical mean values of strength parameters which are common in the Netherlands with similar soil description, ***Baker and Calle
(2006) provide default typical values of variation coefficients with similar soil description. The probability distributions are log-
normal with a mean (μ) and a standard deviation (σ) (Schweckendiek et al. 2017).

Soil type *
Description of a soil layer

**

μγ [kN/
m3]
**

σγ [kN/m
3]

v = 0.05
***

μγ,wet [kN/
m3]
**

σγ,wet [kN/
m3]

v = 0.05
***

μw
[deg]**

σw
[deg]
v =
0.2
***

μc’ [kPa]
**

σc’ [kPa]
v = 0.5
***

Nr. 1. Organic mat Humus Clay, clean and moderately
stiff

17 0.85 17 0.85 21.25 4.25 7.5 3.75

Nr.2. Cohesive mat. Clay, little bit of sand, stiff 18 0.90 18 0.90 25 5 7.5 3.75
Nr. 3. Alluvial Clay, little bit of sand, stiff 18 0.90 18 0.90 25 5 7.5 3.75
Nr.4. Sand and gravel Gravel, bit silty, clean 18,5 0.93 20.5 1.03 36.25 7.25 0 0

Table 5. Probability distributions of soil properties (undrained soil behaviour), shear strength ratio (S), strength increase exponent (m),
Pre-overburden Pressure (POP). *Grubert (2013) used local soil investigations to identify the soil types, **Helpdeskwater 2016 provides
typical values of strength parameters which are common in the Netherlands with similar soil description. The probability distributions
are log-normal with a mean (μ) and a standard deviation (σ) (Schweckendiek et al. 2017).

Soil type * Description of soil layer **
μS [−]
**

σS [−]
**

μm [−]
**

σm [−]
**

μPOP [kPa]
**

σPOP [kPa]
**

Nr. 1. Organic mat Humus Sandy and Silty Clay 0.30 0.03 0.9 0.03 22 6.6
Nr.2. Cohesive mat. Levee material 0.31 0.06 0.9 0.03 30 9
Nr. 3. Alluvial Levee material 0.31 0.06 0.9 0.03 30 9
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scenarios that possibly trigger a failure (step 1). The prior
and the resulting posterior probabilities are shown in
Figure 10, step by step.

Updating the prior probabilities of the scenario BC,
S1, S2, and S3, based on the information of the actual
failure (step 3A) emphasises S3 as the most likely

scenario (P(S3) = 0.25 to P(S3|F) = 0.72). When the
observed slip surface information is included in the
update (step 3B), the posterior probability of S3
reduces slightly (from P(S3|F) = 0.72 to P(S3|h’∩F) =
0.64). The results identify S3 as the most likely scen-
ario of failure.

Figure 8. Presents an overview of the different combinations of scenarios and model choices. Level 1: Water pressure from failure
scenarios (i.e. SBc:“Base case”, S1:“Saturated levee”, S2:“Conductive layer”, and S3:“Pond connection with aquifer”). Level 2: LEM (i.e.
MBishop, MSpencer and MUplift). Level 3: Soil reaction behaviour (i.e. SBdr: drained, and SBund: undrained). Level 4: Likelihood given failure
(F) and non-failure (F). Red branch contains MLC, as an example.

Figure 9. Geometric analysis of the failed levee. Longitudinal guides to the levee (in Orange, Red), guides across to the levee (Blue). (A.)
First distortions are apparent, (B.) Larger distortions are apparent and used to estimate the geometry of the slip surface (Red dotted).
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3.2.2. Systematic analysis of uncertainties and most
dominant parameters
Additionally, the set of the 24 likelihoods (step 3A.
and 3B.) is used to update the prior probabilities of
alternatives in the model choices (step 2), in the
process of identifying the MLC. Both the prior and
the resulting posterior probabilities are shown in
Figures 11 and 12. Then, the MLC is deployed to

determine the most dominant contributor to the fail-
ure (step 6).

Figure 11 shows that updating of the prior probabil-
ities on the information that the actual failure happened
(step 3A), emphasises the LEM of Uplift Van as the most
likely choice of LEM (P(MUplift) = 0.33 to P(MUplift|F) =
0.43). However, when the observed slip surface infor-
mation is included in the update (step 3B), the resulting

Figure 10. Prior probability per scenario BC, S1, S2, and S3 (equally distributed probabilities (green)), the posterior probabilities per
scenario given failure (red) and observed geometry of slip surface (blue).

Figure 11. Prior probability per choice of LEM Uplift Van, Spencer, and Bishop and equally distributed probabilities (green), the pos-
terior probabilities per choice of LEM given failure (red) and observed geometry of slip surface (blue).
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posterior probability emphasises the LEM of Spencer as a
more likely choice than the LEM of Uplift Van, i.e. P
(MSpencer|F) = 0.33 to P(MSpencer|h’∩F) = 0.59. The pos-
terior probabilities identify the LEM of Spencer to
characterise the failure most likely most accurately.
Figure 12 shows the most likely resulting slip circle (in
the design point) when S3: Pond and undrained soil
behaviour is assessed using LEM of Uplift Van, Spencer
and Bishop without observational information (step 3A,
upper row) and with observational information (step 3B,
lower row) included.

Figure 13 shows that updating prior probabilities of
soil response behaviour on the information that the
levee failed (step 3A.) emphasises the posterior prob-
abilities of the undrained soil response behaviour as
the most likely soil behaviour, i.e. P(SBundr) = 0.50 to
P(SBundr|F) = 0.65. Including the observed slip surface
information in the update (step 3B.) has little effect

on the posterior probabilities. The posterior probabil-
ities identify the undrained soil response behaviour to
characterise the failure most likely most accurately;
however, the differences are small and no firm con-
clusion can be drawn.

The slope stability model implemented with the com-
bination of scenario pond connection with the aquifer
(S3), method of Spencer (MSpencer) and undrained
response soil behaviour (Sudr) characterises the failure
most likely most accurately. This slope stability model
is used to evaluate the limit state and to estimate the con-
tribution of the individual variables to the failure. Figure
14 shows that overall the shear strength ratio and the
hydraulic head in the aquifer are considered the most
dominant parameters contributing to the failure. The
influence of the Pre-overburden pressure seems to
decrease as a result of the incorporation of the observed
slip surface information.

Figure 12. Slip circle in the design point of the most likely scenario (S3: Pond) and soil behaviour (undrained soil behaviour) LEM Uplift
Van (left), Spencer (middle), and Bishop (right). Upper figures: search area of the critical slip surface is not defined in the slope stability
models (step 3A). Lower figures: search area of critical slip surface is conditioned to the observed slip surface information in the slope
stability models (Step 3B).

Figure 13. Prior probability per choice of soil behaviour both drained (SBdr) and undrained (SBundr) and equally distributed probabilities
(green), the posterior probabilities per choice of soil behaviour given failure (red) and observed geometry of slip surface (blue).
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4. Discussion

4.1. Framework for probabilistic hindcasting of
levee failures

The six steps of hindcasting are based on a framework
which explicitly and transparently accounts for signifi-
cant uncertainties and model choices by quantitative
means that reflect on the likelihood of occurrence.
Although, consideration of all possible combinations of
scenarios of failure and model choices is time-consum-
ing; it does provide a thorough analysis of the failure
possibilities.

Even more, the suggested Bayes technique based
approach enables the implementation of observational
information in the hindcasting. The approach provides
insights on how each piece of evidence influences the
scenario and model choice related posterior probabil-
ities, building up to the identification of the slope stab-
ility model best representing the failure, piece by piece.
The proposed slope stability model facilitates the
identification of the most dominant parameter contri-
buting to failure. The information that the event of fail-
ure actually happened is decisive for the identification of
the most likely failure scenario. The information on the
shape of the slip surface is decisive for the identification
of the most representative model choices and the most
dominant parameter contributing to failure.

The First Order Reliability Method (FORM) is used in
this paper to estimate the probability of failure for every
generated slope stability model. However, FORM gives
an approximation of the probability of failure meaning

that the exact value of the probability of failure is
unknown. FORM has the benefit of providing a quick
answer and insight into the influence factors. It also
has (potential) drawbacks. For instance, the found local
design point might correspond to a non-representative
failure probability. In such cases, the calculated influence
factors are non-representative as well. Also, the iterative
process might not converge to one answer due to
numerical problems. However, the software that was
used (Probabilistic Toolkit of [Brinkman 2015]) provides
the option of detecting numerical problems and this was
not an issue for this assessment. Also, several results of
FORM calculations have been verified with parallel
Monte Carlo simulation, providing very similar results.

Scenarios of failure and alternatives of model choices
are assumed equally probable as a first estimate, despite
that some of the scenarios and the model choices are
considered less likely, such as the introduction of
Bishop’s method. Experts consider Bishops’ method to
be less accurate than both Spencer’s and Uplift Van
method. Moreover, slope stability computations are the
bases of the likelihoods and result in posterior probabil-
ities to determine the most likely causes. Field obser-
vations can be implemented into the analyses by
including these in the slope stability computations,
such as the geometry of the slip surface or the actual
slope failure. Absence of clear evidence impedes the esti-
mation of prior probabilities, but appears less important
for results.

Furthermore, by including the likelihood of occur-
rence in the hindcasting, the outcome is considered to

Figure 14. Set of influence factors as a result of utilising the MLC. Comparing the influence factors of the individual parameters without
(red) or with (blue) incorporation of observational information (Σα2 = 1).
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reflect the actual situation more objectively than a hind-
casting based on a deterministic sensitivity analysis.
With a deterministic sensitivity analysis, the results are
highly determined by the chosen input parameter
bounds. Also, despite the equally assigned prior prob-
abilities over the discrete choices as a first estimate,
which is considered as a very rough estimate, experts
in the field might be able to suggest more appropriate
prior probabilities. Altogether, it is still possible that
the actual cause was not identified as part of the con-
sidered scenarios.

4.2. Application of probabilistic hindcasting to the
Breitenhagen case

The six steps of hindcasting are applied to the levee fail-
ure near Breitenhagen. Several elements in the analysis
are based on local data such as the scenarios of water
pressure and part of the soil parameters. Other elements
rely on generic inputs such as some shear strength par-
ameters; see Tables 4 and 5. The more local data are
available, the more accurate the hindcast. In this case,
it was not feasible to collect more local data and we
believe there was sufficient data available to draw con-
clusions. But more local data might yield in even more
conclusive conclusions.

The connection between the river and the aquifer, as
presented in “Pond connection with aquifer” Scenario
(S3), results in high water pressures building up under-
neath and in the toe area of the levee. High water press-
ures in these areas reduce the local shear strength. These
conditions influence the toe area (passive area) of the
levee the most, resulting in a non-linear and stretched
slip surface when slope instability occurs. Observations,
illustrated in Figure 9, confirm that the passive area of
the slip surface stretches up to the electrical pole at the
toe of the levee and tilts the pole. Thus, the observed
stretched passive part of the slip surface indicates high
pore pressures underneath the levee. Other scenarios of
water pressures concentrate on the active area of the
slip surface, leaving the passive area relatively intact
and result in a slip surface which is less stretched. Even
though the other scenarios are not very probable, they
cannot completely be excluded. Also, the method of
Spencer is most robust and accurate when calculating
critical slip surfaces that are not typically circular shaped.
This explains why the posterior probability favours the
method of Spencer when incorporating the observed
slip surface information (h’) (Figure 11).

Whether the soil is best characterised by drained or
undrained behaviour is, in reality, less binary than the
models suggest. The soil behaviour is probably best
characterised as partially drained which explains the

relatively small difference between the resulting posterior
probabilities (Figure 13).

The forensic analysis of Kool et al. (2019) using a
deterministic sensitivity analysis-based hindcasting,
reports a collection of identified dominant parameters
contributing to failure: that deviating low shear strength
associated with low values of POP or cohesion justify the
failure. This is in contrast to the findings of the current
analysis, which identifies the low shear strength associ-
ated with low values of Shear strength ratio. The differ-
ence is explained by: (1) Undrained soil behaviour is
identified as the most likely model choice in the analysis
and, therefore, automatically excludes the cohesion as
the most dominant parameter, (2) The applied range
of the values of POP (by Kool, 2019) covers situations
that are less relevant for this specific situation and results
in FoS << 1. This low value of FoS explains why the POP
is identified as a dominant contribution to failure when a
deterministic sensitivity analysis of hindcasting is used.
However, when parameter values are related to their like-
lihood of occurrence, the Shear strength ratio values
resulting in failure are more probable to occur, which
explains the high influence factor.

In this study, the water pressures are mostly based on
steady-state assumptions for the phreatic line and
hydraulic head in the aquifer. While a pragmatic and
conservative choice for engineering purposes, this
assumption can lead to the wrong conclusions for hind-
casting. In general, transient effects should be incorpor-
ated in a hindcast. In this study, steady-state conditions
were likely reached for uplift due to the long duration of
the high water and the high conductivity of the aquifer.
For the phreatic line, steady-state may be more question-
able because of the low conductivity of the levee material
(though the pictures do show a mostly saturated levee).
A sensitivity analysis with a lower phreatic line (reflect-
ing transient effects) does not yield a different con-
clusion. This is because the stability is mainly
determined by the aquifer head. For cases where the
levee body is of more importance for the stability, tran-
sient effects also become more important.

LEM’s are used in this paper to model slope stability,
where a Finite Element Model (FEM) would be better in
capturing complex geometries and soil behaviour. How-
ever, in this case, a sensitivity analysis shows that the
scenarios of water pressures are more important for fail-
ure than the soil behaviour. Furthermore, the observed
slip surface does not follow a complex shape. Therefore,
in combination with its computational efficiency, we
chose a LEM as this is deemed sufficiently accurate.
FEM might, however, be more appropriate in case of
more complex geometries and soil behaviour, and in
case water pressure scenarios are less dominant. In
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order to use the benefits of FEM, more local information
would be needed as well (hindcasting this is difficult to
collect more data as this mostly vanished), especially if
spatial variability is to be incorporated.

The findings of the forensic engineering report by
Grubert (2013) identified a collection of causes: unex-
pected saturation of the levee, steep slope of the levee
and, foremost, the influence of the tree roots. However,
this present study shows that a pond in front of the
levee is the most likely cause of failure. The findings of
Grubert (2013) are possible as well, as the computed
scenario probabilities are not negligible. Both visual
and historical data indicate that the pond in front of
the levee is likely to be leftover from a former breach
(Sixdorf 2016). Due to the reparations of this breach,
the conditions of the soil might deviate from other
stretches of the levee. The most likely scenario of a
local high hydraulic head in the aquifer and the most
dominant parameter identified by the present study
can directly be connected to the former breach and the
reparations, which would explain the actual location of
the breach in 2013.

5. Conclusions and recommendations

5.1. Conclusions

This paper demonstrates the application of probabilistic
Bayesian techniques to the hindcasting of levee failures
due to slope instability in six steps. The method provides
insights into the most relevant uncertainties of hindcast-
ing by evaluating all possible scenarios of failure and
model choices on the likelihood of occurrence. This
results in the identification of the most likely scenario
and most dominant parameters triggering a failure.
The suggested steps of analysis provide a thorough,
workable and transparent method of analysis. Further-
more, this method is an improvement of existing deter-
ministic hindcasting methods (Kool et al. 2019) in the
sense that it provides a better insight in the relative like-
lihoods of the various possible causes to failure.

The developed approach of hindcasting is applied to
the levee failure near Breitenhagen, with the identified
most likely scenario of failure, the most representative
model choices characterising the failure, and the most
dominant parameters triggering the failure as a result,
despite the scarcity of evidence. The levee failure near
Breitenhagen in Germany in 2013 is most likely triggered
by locally weak soil conditions and unexpected high water
pressures due to a connection between a pond on the riv-
erside of the levee and the aquifer underneath the levee.
The slope stability model that characterises this failure
most accurately is implemented with LEM of Spencer

and undrained shear strength soil behaviour. Within
this combination of a failure scenario and model choices,
the shear strength ratio is identified as the most dominant
contributor to the failure. The contribution of the high
hydraulic head due to the pond connection is identified
to be the second dominant. Based on the available evi-
dence, an old levee breach explains both the presence of
a pond and the locally weak soil (Sixdorf 2016) and
would thus explain the specific location of the breach.

5.2. Recommendations

Even though the probabilistic method of hindcasting is
successfully applied to the levee failure near Breitenha-
gen as part of the forensic analysis, the method can be
improved by analysing more levee failures. Historical
cases such as New Orleans (2005), would make an inter-
esting object of study, and the method can also be further
developed for other failure mechanisms, such as piping.
Overall, it is expected that the developed approach can
support a more systematic analysis of other levee failures.

In this paper, we have used FORM for probabilistic
calculations. In some cases, this method could lead to
inaccurate estimates of the design point and probability
of failure. In future assessments, it is recommended to
investigate the (parallel) use of other methods, such as
Monte Carlo, especially in case on non-linear limit
state functions and complex failures.

This method shows that including observational infor-
mation in the hindcasting is vital to the identification of
the most dominant contributing variable. Therefore, it is
recommended to explore whether it is possible to include
more evidence in the hindcasting with the help of Baye-
sian techniques, e.g. past performance information.

In order to characterise failure, LEMs are used in this
paper as the slope stability is mainly determined by water
pressure scenarios and the slip surface relatively simple.
Finite Elements Method (FEM) analyses can lead to a
more accurate characterisation of slope instability, and
should especially be considered for complex geometries
and soil behaviour (see e.g. Varkey, Hicks, and Vardon
2017). However, this comes at the cost of a compu-
tational burden.
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