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Abstract—One-dimensional intervals incremental inverted index (Di4) is a multi-resolution, single-dimension indexing framework for efficient, 
scalable, and extensible computation of genomic interval expressions. The framework has a tri-layer architecture: the semantic layer provides 
orthogonal and generic means (including the support of user-defined function) of sense-making and higher-lever reasoning from region-based 
datasets; the logical layer provides building blocks for region calculus and topological relations between intervals; the physical layer abstracts 
from persistence technology and makes the model adaptable to variety of persistence technologies, spanning from small-scale (e.g., B+tree) to 
large-scale (e.g., LevelDB). The extensibility of Di4 to application scenarios is shown with an example of comparative evaluation of ChIP-seq 
and DNase-Seq replicates. Performance of Di4 is benchmarked for small and large scale scenarios under common bioinformatics application 
scenarios. Di4 is freely available from https://genometric.github.io/Di4.
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1 INTRODUCTION

THE third paradigm shift in genome sequencing tech-
nologies—real-time, single-molecule—is emerging,

upending the field after electrophoretic (first) and massively
parallel or next generation sequencing (NGS, second) para-
digm shifts. These technological improvements diminish
genome sequencing cost (from $100 M per genome in 2001 to
$1 K in 2015, with expected further drop to $100 soon) and
expedite sequencing time (e.g., Oxford Nanopore yield data
within 30 min of sample application), thereby enabling
“universal monitoring” of nucleic acids [1]. Due to these
technological advances, we are approaching the milestone
where genome of 0.1 percent of living humans are sequenced
to some extent [1]. This emphasizes the explosive growth in
genomic data production and application [2], which may
soon become the biggest andmost important big data problem
of humanity [3]. In this paper we discuss a holistic informa-
tion retrieval frameworkwhich provides building blocks for a
scalable and transparent sense-making fromgenomic datasets.

1.1 A Genomics Primer
The procedure of a genome sequence analysis can be defined
in three steps; primary, secondary, and tertiary analysis [4].
Primary analysis is concerned with genome sequencing,
producing short reads of four nucleotides (i.e., Adenine (A),
Guanine (G), Cytosine (C) and Thymine (T) in DNA, or
Uracil (U) in RNA). Secondary analysis is concerned with
assembling or aligning the sequenced DNA/RNA fragments
and building a whole genome representation, which is

then analyzed for feature extraction (e.g., determination of
variations). Tertiary analysis is concerned with making sense
from the extracted features, e.g., discovering how heteroge-
neous regions (i.e., regions of independent experiments
identifying genomic characteristics with different markers)
interact with each other; it is attracting increasing interest, as
huge datasets produced by secondary analysis are made
available by large international consortia (such as ENCODE
(encodeproject.org), TCGA (cancergenome.nih.gov), and
1000Genomes Project (internationalgenome.org)).

1.2 The Challenge

While genomic data is generally abstracted as sequences
of nucleotides at primary and secondary analysis, tertiary
analysis commonly describes genomic data in the form of
regions of DNA, because these contiguous stretches of
nucleotides have known biological functions, such as cod-
ing for proteins or serving as binding sites for proteins.
Region-based, genome-wide datasets include variations
(e.g., modifications, insertions, or deletions at given DNA
positions), signals (e.g., measures of transcriptional activ-
ity), peaks (e.g., regions with higher DNA read density with
respect to the background signal), or structural properties
of the DNA (e.g., break points where the DNA is damaged,
or junctions where DNA creates loops).

The challenges of information retrieval from genomics
interval-based data can be studied from three facets; first,
while each dataset describes a single biological experiment,
it is the comparative assessment of datasets that enable
studies such as precision medicine, or drug response pre-
diction. However, comparative assessment of large datasets
(e.g., UK Biobank with 500,000 participants, the largest
human genetic dataset) is a massive operation that requires
novel approaches for genomic interval operations. Second,
a problem-driven explorative approach for making sense of
data during tertiary analysis commonly leads dry-lab scien-
tists to roll proprietary and ad-hoc solutions, typically
by integrating existing “building blocks”. This highlights
the need for a generic, comprehensive, extensible, and
orthogonal region calculus for genomic intervals. Third,
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the penalty of sequential accesses. For instance, the query
“given a region, find overlapping regions across all the files”
can be answered by linearly scanning all the files indepen-
dently and in parallel. However, queries such as “find regions
where at least 80 percent of the files have an overlap” (similar
to querying Fenwick trees [8]) requires scanning all the files
together. There has been efforts to provide random access to
NGS interval-based files, e.g., BITS [11] returns a “count” of
intersection, similar to the cardinality of the output of query-
ing an interval tree [5], however, returning only the count of
intersection is insufficient to execute typical bioinformatics
functions on interval-based genomic data.

The bioinformatics community offers some tools for par-
ticular querying purposes, such as GEMINI [12] which lev-
erages SQLite to provide retrievals on genetic variations. It
is mainly designed to explore mutational burden in path-
ways and interacting proteins. Additionally, GEMINI lever-
ages basic SQLite functions to execute queries such as “how
many heterozygote are observed for a given variation” (sim-
ilar to TileDB and BITS queries). However, such systems are
tailored for particular querying purpose, and cannot be
extended to support the wider querying demands of NGS
data sense-making challenges.

The bioinformatics community attempted to define region
calculus building blocks, and offers tools such as BED-
Tools [13] and BEDOPS [14]. These tools are widely accepted
by the community and are used in both systemic solutions
(e.g., Galaxy [15]) and ad-hoc pipelines. However, the func-
tions implemented in such tools are mainly designed for ad-
hoc solutions, and do not scale efficiently w.r.t. the large-scale
and growing genomic datasets.Accordingly,Di3 [4], an index-
ing framework with building blocks for querying big geno-
mics data, and Giggle [16], a large scale similarity search tool,
are developed. A detailed discussion is presented in Section 3.

1.4 Our Contribution
The most important contribution of Di4 is its extendable,
orthogonal, and comprehensive region calculus. In spite of
focusing on the genomic domain, Di4 is designed for any
domain that provides a comparer for the chronological
order of its elements and an operator for absolute distance
between any two elements.

Di4 design is coherent with three major design decisions.
First, the framework is defined at data access layer,
independently from business logic and data layer, and adapt-
able to any underlying key-value pair persistence technology
(spanning classical data structures such as B+ tree, or a cloud-
based B+ tree [17], to LevelDB (github.com/google/leveldb)
andMonkey [18], according to the architecture in Fig. 1). Such
separation makes Di4 adaptable to a variety of application
scenarios from small scale ad-hoc solutions (using B+ tree), to
large scale systemic solutions (using cloud-based key-value
pair persistence technologies, e.g., LevelDB or Monkey [18]).
Second, the framework is extensible, as it has a modular defi-
nition of functions, where each of them accepts user-defined
functions (UDF) through behavioral design patterns, such as
the strategy pattern (see Fig. 1, and Section 2.2 for deeper dis-
cussion). Third, it adopts a multi-resolution design to opti-
mize querying data with sargable and non-sargable criteria.
Its primary resolution indexes NGS intervals by coordinate
attributes, and its secondary resolutions use PDF-optimized
scalar quantization to heuristically optimize non-sargable
queries (deeper discussion postponed to Section 2.3.4).

the runtime of tertiary analysis is marginal to that of pri-
mary and secondary analysis, however, the primary and 
secondary analysis operations are commonly run only once 
on a given data, while tertiary analysis operations are exe-
cuted frequently for exploration and sense-making, which 
highlights the need for an agile query execution framework.

While many solutions for efficient data management of 
“sequence reads” have been developed, this manuscript con-
centrates on efficient data management for genomic inter-
vals. We present 1D intervals incremental inverted index 
(Di4), a multi-resolution single-dimension indexing frame-
work over interval-based NGS data. Di4 aggregates concepts 
from spatio-temporal databases, H264 video encoding, and 
signal processing to deliver a high-end indexing framework 
for genomics, with the objective of facilitating efficient sense-
making.

1.3 State of Art
We organize the state of the art by first illustrating the foun-
dations and limitations of methods for region-based compu-
tation, then common practices in bioinformatics and related 
studies in temporal databases.

Classical search trees such as interval trees [5], segment 
trees [6], range trees [7], or Fenwick trees [8] are optimal solu-
tions each for particular interval-based retrieval, and some 
are used in common bioinformatics tools as underlying data 
structure (e.g., UCSC Genome Browser uses R-Trees [9]). 
However, such data structures do not natively provide a 
comprehensive solution for tertiary analysis challenges. For 
instance, the query “find all the intervals intersecting a given
interval” can be solved in Oðlog n þ mÞ (where n is the num-
ber of intervals in the tree, and m is the number of intervals
returned at a query execution) using an interval tree, but the 
query “find nth closest intervals” requires defining a new 
method for traversing the interval-tree. As another example, 
R-tree partitions intervals into hierarchical bins, hence non-
uniformly distributed intervals (which are common in 
genomic datasets such as ChIP-seq, RNA-seq, and exome 
sequencing) unbalance bin loads; consequently, some bins 
take considerably longer time to be processed than others.

Some array storage technologies are adapted to store/
query genomic data. Among them, the tool TileDB [10] per-
sists NGS data, and queries them through its wrapper called 
GenomicsDB. Despite of promising performance in persist-
ing and querying data, array-based approaches fail to sup-
port general purpose NGS data querying needs due to the 
choice of specific array dimensions. For instance, TileDB 
stores single-nucleotide polymorphisms (SNPs) in either 
column or row storage formats, chosen at initialization time. 
If the former is chosen, queries can efficiently compute the 
intersection of SNPs, but queries for regions with a particular 
number of SNPs require a linear scan. If latter is chosen, 
queries for SNPs belonging to a sample are efficiently sup-
ported, but querying for the intersection of SNPs requires a 
linear scan on the whole array. However, random access to 
array columns/rows is an incomplete region calculus, which 
is limited in computing other typical bioinformatics func-
tions, e.g., calculating the Jaccard index of datasets.

NGS machines produce files each referring to a biological 
experiment, and bioinformatic pipelines apply to input files 
yielding output files; therefore many bioinformatics tools and 
environments operate on data stored in plain text format on 
file systems. A drawback of leveraging on such file systems is
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Di4 improves over Di3 [4], which stores all the intervals
overlapping the left or right-end of an interval on the
genome; conversely, Di4 recursively infers this information
from neighbor regions. Additionally, Di4 benefits from sig-
nal scalar quantization methods to efficiently load-balanced
parallelization and implements an effective heuristic for
decreasing the number of elements to be processed when
executing a query. As a consequence, Di4 is faster than Di3
in retrieving from the index (deeper discussion is post-
poned to Section 3.3), and also faster than BEDTools, BED-
OPS, and Giggle (benchmarked in Section 3).

In the following, first the interval-based abstraction of
genomic regions is explained, then the Di4’s approach for
modeling these intervals is discussed. Querying genomic
intervals leveraging Di4’s model is subsequently explained in
three layers of abstractions. The method of organizing inter-
vals inDi4’smodel is discussed in Sections 2.3 and 2.4. Finally,
Di4 is benchmarked against state-of-the-art in Section 3.

2 METHOD

The genome consists of nucleic acid sequence—a succession
of four nucleotides: A, C, G, and T/U—and it is commonly
modeled as a linear (unbranched) and one-dimensional suc-
cession of A, C, G, and T/U letters.

A position on genome is commonly referenced with three
methods; first, the nucleotide sequence of the position (see
panel C on Fig. 2). Second, represent three consecutive
nucleotides (codon) by a letter (i.e., amino acid code) associ-
ated with the corresponding proteinogenic amino acid (see
panel D on Fig. 2). A third approach is to use the coordinates
of a position on a genome; commonly referenced as chromo-
some, start and stop positions (see panel E on Fig. 2), which is
commonly associated with a set of metadata for the position
(e.g., a p-value of a DNA-protein binding significance).

Each of these reference types is used in various genome
data analysis [4]. The data indexing framework discussed in
this manuscript (Di4) is defined over the interval represen-
tation. Accordingly, in this section we provide a conceptual
description of the Di4 data model, including its data struc-
tures and operations.

2.1 Di4 Data Model
Consider a continuous domain with an order relation, i.e.,
an arbitrary element eA proceeds/succeeds element eB. Let
us represent a durative event on the domain with three
attributes (i) start, a single point-in-domain where the action
begins, (ii) stop, a single point-in-domain where the action is
accomplished, (iii) middle, an infinite sequence of points-in-
domain where the action is being executed; such that, a
durative event is happening between an inclusive start and
exclusive stop. Events are commonly modeled as intervals
on a domain, with start and stop of the event being respec-
tively the left and right-end of the interval. Additionally,
an interval describes an events using its metadata (e.g., the
p-value of a ChIP-seq peak, or reference and alternative
alleles of a variation).

Di4 leverages the research in the field of temporal data-
bases and multi-dimensional data structures (surveyed
in [19], [20]), and augments the snapshot index [21], [22]
and the organization of time index on a tree data struc-
ture [23], [24], to model genomic intervals using snapshots.
A snapshot is a key-value pair object Bb which bookmarks a
position on a domain by capturing coordinate characteris-
tics, overlapping intervals, and their relative behavior (see
Section 2.3). Snapshots bookmark intervals leveraging the
instantaneous model assumption according to which any
intervals on a continuous domain can be explicitly repre-
sented using just its start and stop attributes, and the middle
attribute of durative events is represented implicitly. Let us
consider, for instance, the two “Flight” events of Fig. 3 mod-
eled using four snapshots as follows:

B1 8:00 AM. Explicit: Flight-A departs (causal event).
B2 8:30 AM: Explicit; Flight-B departs (causal event).

Implicit: Flight-A is flying, and was flying between
8:00 AM and 8:30 AM.

B3 9:00 AM: Explicit; Flight-A lands (causal event).
Implicit: both flights were flying between 8:30 AM
and 9:00 AM.

B4 9:30 AM: Explicit; Flight-B lands (causal event).
Implicit: Flight-B was flying between 9:00 AM and
9:30 AM.

In general, a snapshot on the domain has at least one
causal event, and any number of non-causal events. The causal-
event and non-causal-events of a snapshot, are respectively
the events whose start/stop, or middle attribute is book-
marked by the snapshot. For instance, the causal even of
snapshot B2 is the “depart of Flight-B”, and its non-causal
event is “Flight-A is flying“. Snapshots bookmark causal
events explicitly by pointers to the events. For instance, the

Fig. 1. Di4 architecture and functional components.

Fig. 2. A synthetic example of various genomic data representation meth-
ods. Genome is represented linearly by chromosomes; a chromosome is a
DNA molecule (B) that has functional units (A), which are commonly refer-
enced using nucleic acid sequence (C), protein sequence (D), or intervals
referring to the first and last base-pair of a regions-of-interest (E). These
methods (C, D, and E) are commonly used to represent various genomic
activities such asDNA-protein interaction or variations.



snapshot B2 has a pointer to the “Flight-B” in its posting list
(see Fig. 3; discussed in details in Section 2.3); a pointer
could be, for instance, the ID of a flight in a database con-
taining all the related information such as the passenger list.

To bookmark events with a snapshot, a pointer to a
causal event is required, while pointers to non-causal events
can be inferred from neighbor snapshots; hence storing
those is normally suboptimal and redundant. Di4 adopts
an incremental inverted index paradigm where the pointers
to non-causal events are not stored. Snapshots represent

non-causal events implicitly by keeping track of their count
only (using the m component of a snapshot; discussed in
details in Section 2.3); for instance, in the example of Fig. 3,
the snapshot at 8:30 AM reports “Flight-B departs and one
other flight is flying” (m2 ¼ 1), without knowing that the
other flight is “Flight A” (i.e., no pointer to the “Flight A” is
present in the posting list of the snapshot).

2.2 Di4 Information Retrieval and Inference
Di4 retrieval functions are defined at three levels, physical,
logical, and semantic, as described in Fig. 1. The functions of
each layer are defined leveraging the functions of the layers
beneath it (and physical layer leverages data layer applica-
tion programing interface (API)).

The semantics of the Di4 retrieval functions has been
divided between internal and external semantics. The inter-
nal semantic is a function-specific logic, and the external
semantic is an application-specific logic provided to the func-
tion as a procedural parameter (aka user-defined function).
The internal and external semantics are integrated, which
allows manipulation of intermediate steps of the function by
the external semantics. Such design keeps Di4 retrieval func-
tions at an abstract level, while still applicable to any applica-
tion specific scenarios. MuSERA, a tool for reproducibility
assessment across ChIP-seq replicates which is based on the
Di3 index [25], uses these retrieval functions as building
blocks to identify consensus peaks across ChIP-seq repli-
cates [26], to assess the correlation of replicates, to find the
distance distribution of nearest neighbors on functional
genome positions, and to implement a genome browser.

Table 1 presents sample application scenarios which can
be implemented by augmenting Di4 retrieval functions with
UDFs, which the present section explains Di4 retrieval func-
tions (building blocks) and their integration with UDFs.

2.2.1 Low-Level (Physical Level)

Physical level functions bridge the Di4 data model to the
data layer. The operations provided by the physical level,

Fig. 3. Di4 notation and data structure. Posting lists denote causal inter-
vals, for instance, I11 at �1. m is the number of overlapping non-causal
events, for instance m2 ¼ 1 because I11 is a non-causal event for B2. v is
the number of causal and stopping events, for instance, v4 ¼ 1 because I21
stops at e4.

TABLE 1
Sample Application Scenarios for a Subset of Di4 Retrieval Functions

Function Description Application Example

INTERSECT Find index intervals co-occurring with a given
interval.

How many COSMIC variants appear in c-Myc
transcription factor binding regions?

COVER Find regions on domain where a particular number of
intervals are co-occurring.

Find those sites related to H3k4me3 modification
where a significant (p-value < 1E-8) DNA-protein
binding is observed in at least 10 samples, and their
combined significance at each site, using Fisher’s
method, is more stringent than IE-10.

ACCHIS Computer histogram of accumulation on entire
domain or selected areas.

Intersect and create histogram of all cancer variants
in COSMIC vs. ENCODE annotations. The goal
would be to understand if some transcription factor
binding sites are subject to mutation more often than
others are.

NEAREST
NEIGHBOR

Find indexed intervals at a given proximity to a given
reference interval.

Determine a distance distribution between indexed
enriched regions and a given set of peaks, which
could indicate how close the determined binding
sites are to known genomic features.

CORRELATION
ASSESSMENT

Find Jaccard index between reference and indexed
intervals, computed as a ratio between the number of
overlapping genomic bases and the total number of
bases.

Find how similar (in terms of Jaccard index) the
determined enriched regions are to c-Myc transcrip-
tion factor binding sites.



are low-level operations spanning Create, Read, Update,
Delete (CRUD), Enumerate, and Reconstruct (see Fig. 1)
leveraging API of the actual data layer technology. These
operations create and manipulate the snapshots and orga-
nize them in a key-value pair storage, by translating input
intervals into snapshots, and retrieving and reconstructing
intervals from snapshots (see Section 2.3.3). They are inter-
nal to Di4 and, accordingly, do not incorporate UDFs.

2.2.2 Mid-Level (Logical Level)

Logical level functions leverage physical level operations,
and they yield the essential elements for region calculus
using snapshots.

These functions stem from the co-occurrence of intervals,
such that they either (a) find indexed intervals co-occurring
a given interval, (b) find co-occurring indexed intervals
which satisfy a criterion, or (c) retrieve an (aggregated) attri-
bute of co-occurring indexed intervals.

Two events are called co-occurring if they are co-localized
on the domain (i.e., the distance between them is constrained,
but not necessarily set to zero). We adopt a definition that
keeps into account the following aspects. First, the location of
events in some applications could be approximated; for
instance, in genomics, the location of a peak on ChIP-seq data
could be considered with �10base-pair approximation. Sec-
ond, co-occurrence could be studied on coarse granularity;
for instance, in genomics, two intervals, one on an enhancer,
and another on a related gene transcription start site, might
be considered co-occurring when they are at a given distance
from each other (e.g., at 340kbase-pair [27]).

The first function is INTERSECT, which is based on the
co-occurrence of intervals and covers classical region calcu-
lus (see Algorithm 1). For instance, “given a point/interval
on the domain, find all intervals overlapping with it”, simi-
lar to the queries on interval trees [5] and segment trees [6].
Note that the INTERSECT function considers two intervals
overlapping if they are d distance apart.

Algorithm 1. INTERSECT Function; it Finds Intervals Over-
lapping or at d Distance of Reference Intervals fIrg, and
Passes them to a UDF (U)

1: procedure INTERSECT(fIrg; d; U)
2: for each Ir do
3: block find a block whose left-end is closest on the

right of Ir � d
4: Bb find a snapshot whose coordinate is closest on

the right of Ir � d
5: i 0
6: do
7: OPEN(Bbþi, block) " see Algorithm 4
8: i iþ 1
9: while ebþi < �Ir þ d do
10: INRECONSTRUCT(Bbþi) " see Algorithm 4
11: i iþ 1
12: while false = canClose EXRECONSTRUCT

(Bbþi; U; hIr; di) do
13: i iþ 1
14: ifBbþi overlaps Irþ1 with d distance proximity then
15: r rþ 1
16: break
17: while canClose = false

A common inference on spatial, temporal, and spatio-
temporal data, is the check for events compliance with a
particular property or function f ; this is commonly known
as coverage on f . This analysis has application-specific defi-
nition and criteria. For instance, “find positions on genome
where a test statistic calculated by combining p-values of
co-occurring intervals using Fisher’s method, is more strin-
gent than 1e�8”. Accordingly, Di4 defines a COVERAGE

function which finds a proportion of the domain which
contains snapshots all evaluated as true value of interest
defined by function f . The semantic of COVERAGE is par-
tially determined by function f , which is a UDF. The Di4
can analyze for coverage on f both on the entire domain and
specific positions with d distance proximity. Note that, the
criteria of function f could be defined on indexed or non-
indexed attribute of intervals (sargable or non-sargable).
Accordingly, Di4 leverages its secondary resolutions to heuris-
tically improve executing coverage on f for non-sargable
attributes (e.g., see Algorithm 2 and Section 2.3.4).

Algorithm 2. COVER Function; it Finds Regions on
Domain where at Least amin and at Most amax Intervals
Overlap, and Passes them to a UDF (U)

1: procedure COVER(amin; amax; U)
2: for each block in secondary resolution do
3: if amax < gminorgmax < amin then
4: continue
5: atag  �1; btag  �1; i 1
6: Bb first snapshot encapsulated by the block
7: if amin � accumulation at ebþi � amax then
8: atag  accumulation at eb; btag  b
9: OPEN(Bb, block) " see Algorithm 4
10: do
11: i iþ 1
12: if atag ¼ �1& amin � accumulation at ebþi � amax then
13: atag  accumulation at ebþi; btag  b
14: OPEN(Bb, next block) " see Algorithm 4
15: else if atag 6¼ �1 then
16: if accumulation at ebþi not in range ½amin; amax� then
17: atag  �1
18: while false = canClose EXRECONSTRUCT

(Btag; U; hbtag; bþ ii) do
19: i iþ 1
20: if amin � accumulation at ebþi � amax then
21: break
22: else
23: INRECONSTRUCT(Bbþi) " see Algorithm 4
24: while canClose = false

Genomics is commonly interested in “coverage of
accumulation” (i.e., f :¼ accumulation). Accumulation is the
number of intervals overlapping a certain point on the
domain. For example, as more intervals are found to include
a particular variant, the higher the confidence that the
variant is real and not a sequencing artifact. Accordingly,
the coverage of accumulation function, COVER, yields a set
of consecutive snapshots whose referenced intervals are of
a specific accumulation (see Algorithm 2). The function lev-
erages two aggregated attributes of snapshots encapsulated
by secondary resolution blocks (see Section 2.3.4) to mini-
mize the number of snapshots to be traversed; the attributes
are gmin and gmax, which are the minimum and maximum



(a) find promoter regions which are covered by at least 3 overlap-
ping intervals within a 1kbp proximity, (b) where the p-value of
each interval ismore stringent than 1e�4 , (c) and their combined
p-value using Fisher’s method is more stringent than 1e�8.
The section (a) of this query defines portions on the genome

where aCOVER function should search for the accumulation of
at least 3 intervals (internal logic). The section (b) defines a cri-
teria for counting the accumulation (internal logic and UDF).
The section (c) manipulates the output of the COVER function
and returns the promoter region if the combined p-value of
the overlapping intervals is more stringent than 1e�8, which
is a logic defined by a UDF. This query defines a comparative
enrichment assessment of genomic intervals—a daily-based
analysis in genomics pipelines, and it is partially an applica-
tion-specific query; however, still it can be implemented using
Di4 without altering the functions due to the internal and
external logic (UDF) integration of the functions.

Di4 also defines functions for statistical summary of data;
the functions are based on the COVERAGE function, and
summarize accumulation as histogram (ACCHIS) and fre-
quency (ACCDIS) distribution.

2.2.3 High-Level (Semantic Level)

Upon physical level operations and logical level functions,
Di4 builds semantic level functions. The goal of these func-
tions is to facilitate high-level reasoning on data. These
functions are based on coordinate attributes, provide first
subjective impression on the data, and, through UDF, allow
further application-specific processing. In the following we
briefly discuss some of these functions.

Co-Occurrence Patterns. A co-occurrence pattern repre-
sents a subset of samples whose intervals are frequently
co-localized on the domain. Genomics is interested in both
co-occurrence (only coordinate attribute) and mixed-feature
(coordinate and additional attributes) patterns. The later is
well-studied as mixed-drove co-occurrence pattern mining,
where patterns are commonly identified in multiple steps,
that is by identifying mixed-drove candidate patterns on
one attribute based on contributing or non-contributing
(false-candidates) intervals, and pruning-out the candidates
by patters of other attributes. Di4 adapts to mixed-drove
co-occurrence pattern mining by identifying quantity-based
co-occurrence patterns on coordinate attributes, and incor-
porating user-defined application-specific pattern finding
method on additional attributes via UDF.

Nearest Neighbor. Genome is commonly modeled as a
single dimension domain (chromosome, start, stop), and it dif-
ferentiates between up-stream (preceding) and down-stream
(succeeding) neighbors of a given reference interval. Di4
determines nearest neighbors based on two distance metrics:
chronological order (nth closest neighbor), and absolute dis-
tance (neighbor at maximum d distance). To find neighbors,
Di4 first finds the pivot snapshot (reference point), and pro-
cesses its up- and down-stream neighbor snapshots based on
the distance metric, to return the intervals bookmarked by
the determined snapshots (see Algorithm 3). For instance, it
can execute queries such as “find nearest position on domain
to a given e point, where the position is a promoter region
with at least 3 overlapping intervals each with p-value
< 1e�8”. It requiresOðlog b nÞ (when a B+ tree is used as per-
sistence technology, for a blocking factor b and n number of
snapshots) to find a pivot snapshot, and Oð1Þ to access each
of its neighbors (regardless of the distance metric); therefore,
the asymptotic performance of Di4 for this operation is
Oðlog b nÞ. The pseudocode of nearest neighbor function is
given in Algorithm 3.

Correlation Assessment. Similar to co-occurrence pat-
terns, correlation is also an attribute-dependent function.
Therefore, Di4 takes a similar approach to co-occurrence
patterns by defining correlation based on coordinate attri-
bute, and enabling a UDF to process additional attributes.
Di4 uses Jaccard index to determine a coordinate-based cor-
relation coefficient; it finds the regions of intersection and
union using the functions SUMMIT and MERGE respectively.

2.3 Di4 Data Indexing
Di4 adopts a multi-resolution approach for interval indexing.
At the first resolution Di4 takes snapshots of events and stores
minimal essential information for data integrity, accuracy,
and consistency. Data in the first resolution are then aggre-
gated into the second resolution layer which aggregates the
information of first resolution to heuristically prune the num-
ber of snapshots to be scanned for specific queries and speed
up search and retrieval. In the following we describe the
details of first and second resolution indexing.

Algorithm 3. Nearest Neighbor Function; it Finds Near-
est Neighbors to the Given Point e on Domain which Sat-
isfies a User-Defined Criteria, U , and Returns the 
Nearest Neighbors or their Distance Depending on the d 
Argument

1: procedureNEAREST_NEIGHBOR(e; d; U)
2: find Bb where eb�1 < e � eb
3: i 0
4: do
5: i iþ 1
6: d �1
7: if U fintervals bookmarked by Bb�igð Þ ¼ true then
8: d eb � eb�i
9: if U fintervals bookmarked by Bbþigð Þ ¼ true then
10: d minðd; ebþi � ebÞ
11: while d 6¼ �1
12: if t ¼ true then
13: return d
14: else
15: return intervals bookmarked by Bd

accumulation at snapshots encapsulated by secondary reso-
lution blocks. Note that, blocks can store any user-defined 
aggregated attribute(s) of intervals/snapshots; accordingly, 
gmin and gmax are an example of aggregated attributes used 
for coverage on accumulation (i.e., COVER) function.

In the simplest setup of the COVER function, Di4 imple-
ments MERGE and COMPLEMENT functions which are respec-
tively the coverage of at “least one” and “zero” accumulation. 
Additionally, Di4 defines SUMMIT and BASE functions, which 
respectively maximize and minimize the COVER function. In 
other words, they find regions on the domain with local maxi-
mum or minimum accumulation within a given range.

Note that the logical level functions incorporate a UDF 
and can be applied on the entire domain or the specific 
positions with d distance proximity. This design makes the 
functions extremely extensible. For instance, consider the 
following query:



2.3.1 First Resolution Data Structure

Let S denote the domain (i.e., the universe of all elements
constituting intervals) and e 2 S any element of such
domain. I ¼ ½I; �IÞ, I < �I denotes an interval with I 2 S and
�I 2 S stating respectively the start (left-end) and stop (right-
end) of interval I. An interval I is then a left-closed and
right-open interval of ascending ordered pair of e elements.

Intervals referring to a common phenomenon are
organized in sets, or samples (e.g., all regions produced
by a given experimental condition), denoted as S :¼
fS1; . . .Sj; . . .SJg where Sj :¼ fIj1; . . . Iji ; . . . IjjSjjg.

The superimposition of intervals given by input samples
(S) induces a new set of non-overlapping intervals on the
domain, denoted by S0 (see Fig. 3). The intervals of S0 dichoto-
mize the domain, and form the basis of the first resolution
index. Let I 0 denote an interval of a new set S0 :¼
fI 01 . . . I 0i . . . I 0jS0 jg, where the coordinates of I 0i are defined by

the input intervals. For instance, referring to Fig. 3, the left
and right ends of I 01 is defined respectively by the left ends of

intervals I11 and I21 .

The first resolution of Di4 implements the essential
aspects of the model through an incremental inverted index
where each unique point on the domain (ei) defined by the
left or right ends of I 0i, induces a snapshot Bi (see Fig. 3). In
general, let D denote the first resolution of Di4; D :¼
fB1; . . .Bb; . . .BjDjg is the set of snapshots B on S, as in Fig. 3.
By definition, the mapping D) S is injective and non-
surjective.

Di4 models a snapshot as a key-value pair element. The
key, eb 2 S, is the coordinate of snapshot Bb which refers to a
location on the domain where a causal event has occurred; it
is the unique identifier of Bb. The value is a tuple as hm;v; �i
(see Fig. 3), where each component is defined as follows.

� The m 2 N0 component is the count of non-causal
events at the snapshot; e.g., see m2 on Fig. 3.

� The � component is the posting list of the snapshot,
and it is a list of h’;@Ii tuples. Each tuple corre-
sponds to a causal event, it references the event
(using @I), and it informs whether the left (’ :¼ L)
or right (’ :¼ R) end of the interval overlaps the
snapshot key (e.g., see �2 and �3 on Fig. 3). The ’

component has a retrieval optimization purpose:
without it, Di4 should lookup a database by using
the explicit reference to retrieve the interval coordi-
nates and then compare these coordinates with the
snapshot coordinate to determine overlaps; by using
’, the database lookup is avoided.

� The v component is the number of causal intervals
which overlap the snapshot with their right-end. In
other words, the v component is the count of posting
list tuples with ’ ¼ R. This component also serves an
optimization purpose. Using v, Di4 determines the
number of intervals overlapping the snapshot with
left and right ends in Oð1Þ, respectively calculated as
j�j � v and v. Otherwise, Di4 should linearly scan all
tuples in the posting list. The number of intervals over-
lapping a snapshot with their left or right-end is used
to calculate interval accumulation at a snapshot; this is
a frequently used property in retrieval functions, and
load-balanced partitioning for parallel processing.

2.3.2 Indexing Algorithms

Di4 indexes intervals through a batch indexing procedure. In
general, the procedure of indexing an interval requires two
steps. First, it creates, or updates (if they already exist),
two snapshots to bookmark the left and right ends of an
interval, respectively Ba and Bg . Second, it increments the
mb;a < b < g component of Bb snapshots.

A single-pass and a double-pass indexing algorithms
have been defined. Single-pass indexing algorithm ensures
consistency by correctly initializing Ba, Bg and the mb

components and maintains their value (see Algorithm 6 in
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2018.2871031). Double-pass indexing neither
fully initializes nor maintains Ba, Bg and mb components
at the first-pass (see Algorithm 7 in appendix, available in
the online supplemental material), it rather ensures consis-
tency only at the second-pass (see Algorithm 8 in appendix,
available in the online supplemental material). The algo-
rithms are explained using an example in appendix Section
B, available in the online supplemental material.

The superiority of one algorithmover the other for indexing
a sample S depends on jSj (number of intervals in the sample)
and jDj (current number of snapshots in the first resolution).
The single-pass indexing is optimal for updating Di4 data
structure (i.e., when jSj � jDj), while double-pass indexing is
superior for initializing it (i.e., when jSj � jDj, see appendix
Section B, available in the online supplementalmaterial).

2.3.3 Interval Reconstruction

Di4 has an incremental structure, such that each snapshot
has pointers to causal intervals only, and pointers to non-
causal intervals are implied by neighbor snapshots (each
snapshot is structured analogous to P-frame in video encod-
ing). Pointers to the intervals are required to access meta-
data and execute UDFs; therefore, Di4 reconstructs the
intervals bookmarked by the snapshots to execute a query.

In general, given a snapshot, the reconstruct algorithm
traverses its succeeding neighbor snapshots for the pointers
to its non-causal intervals. The number of neighbor snap-
shots to be traversed, depends on the number of snapshots
between the given snapshot, and the snapshot that book-
marks the right-most end of the non-causal events of the
given snapshot. Therefore, given a snapshot, the number of
neighbor snapshots to be traversed to reconstruct the book-
marked intervals, cannot be determined; it could be as small
as 1, or as big as the size of whole first resolution. Therefore,
the reconstruction process is potentially very expensive.
However, Di4 significantly minimizes this number by a
heuristic approach defined using �	 of secondary resolu-
tion; a process similar to the reconstruction of P-frames from
an I-frame in video decoding (see Section 2.3.4). The pseudo-
code of reconstruction algorithm is given in Algorithm 4,
and it is explained with an example in appendix Section C,
available in the online supplemental material.

2.3.4 Di4 Secondary Resolution

Di4 secondary resolutions are defined upon the first resolu-
tion indexing; they group snapshots and aggregate some
attributes of the snapshots and/or bookmarked intervals.
Different secondary resolutions can exist, being application-
specific and independent from each other.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2871031
http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2871031


Algorithm 4. The Reconstruct Algorithm Consists of Four
Procedures as Explained Here. The Parameters n, �, and
�tmp (Initialized as �tmp  ;) are Scoped to all the Proce-
dures of this Algorithm

1: procedure OPEN(Bb, block)
2: cache the block
3: n mb � j�tmpj " the number of snapshots to be

reconstructed
4: � �tmp " the set of reconstructed intervals
5: �tmp ;
6: INRECONSTRUCT(Bb)
7: for each interval in the last cached �whose right-end is

not determined do
8: add the interval to �
9: n n� 1
1: procedure INRECONSTRUCT(Bb) " Inclusive Reconstruct
2: for each interval I bookmarked by Bb do
3: if the interval’s left-end overlaps Bb then
4: add the interval to �
5: else
6: UPDATELAMBDAS(I)
7: if the cached block’s left-end overlaps Bb then
8: for each interval in �	 which is not in � do
9: add the interval to � and all the cached �s
10: n n� 1
1: procedure EXRECONSTRUCT(Bb; U; Args) " Exclusive

Reconstruct
2: for each interval I bookmarked by Bb do
3: if the interval’s left-end overlaps Bb then
4: add the interval to �tmp

5: else if the interval I is in �tmp then
6: remove the interval from �tmp

7: else
8: UPDATELAMBDAS(I)
9: if n ¼ 0 then
10: for each hArgs; �i do " including cached Args and �s
11: U(Args, �)
12: return true
13: else
14: return false
1: procedure UPDATELAMBDAS(I)
2: if the interval I is not in the last cached � then
3: add the interval I to all the �s
4: n n� 1
5: else
6: set its ’ ¼ R in all the �s " i.e., the interval’s right-end

is determined

The value has two parts; the first part is a user-defined
tuple of aggregated attributes of encapsulated snapshots
and/or intervals. The second part (�	) is a list of pointers to
the non-causal intervals overlapping the left-most encap-
sulated snapshot; such that all intervals overlapping this

snapshot are reconstructed independent from neighbor
snapshots (this property makes the snapshot analogous to
I-frame in video encoding).

The motivations of secondary resolutions are threefold;
first, a heuristic approach for pruning the number of snap-
shots to be processed for executing a query without altering
the design of the underlying data structure, thereby opti-
mizing the performance of specific queries. For instance, let
us consider a computational biology application where Di4
is commonly queried with coordinate (indexed attribute) and
statistical significance (p-value, an application specific non-
indexed attribute) criteria. Without a secondary resolution,
Di4 finds all the candidate intervals that comply coordinate
criteria, and then passes them to a UDF to be filtered by
p-value, and possibly further processed. However, with a
secondary resolution which groups consecutive snapshots
by p-value, Di4 can search candidate intervals that comply
coordinate criteria only in the groups that comply the p-value
criterion, which minimizes the number of candidates to be
passed to a UDF for possible further processing.

Second, secondary resolutions are used to optimize par-
allel execution. In an application with Di4 being used in a
Cloud environment over Big data, where it is essential to
optimally distribute workloads across multiple computing
resources, secondary resolution can efficiently split data
into load-balanced partitions (bins), and then allocating parti-
tions evenly across all nodes. This is a load-balancing policy
which minimizes the idle time of computing resources.

Third, secondary resolution is finally used to optimize the
reconstruction of bookmarked intervals. Indeed, Di4 lever-
ages �	 of the closest block to reconstruct the intervals book-
marked by a snapshot. With a balanced secondary resolution
(see Section 2.3.5, this significantly reduces the number of
snapshots to be traversed in a reconstruction process, hence
increasing the reconstruction speed, and accordingly, the
query execution time.

Algorithm 5. Indexing Second Resolution. Q is a Second-
ary Resolution Partitioning Function, it Could use any of
the Default Functions (see Section 2.3.5) or a User-Defined
Function. The UDF (U) Aggregates Attributes of Book-
marked Intervals or Snapshots asValue of Secondary Reso-
lution Blocks

1: procedure SECONDARYRESOLUTION(Q; U)
2: a 0
3: t fg
4: �	  fg
5: initialize Qwith accumulation at B0, and �0

6: for each snapshot Bb do
7: if Qðaccumulation at Bb; �bÞ ¼ true then
8: insert a new block to secondary resolution initialized

as:
key: ½ea; eb�, value: h�	; UðtÞi

9: a b
10: t �	

11: insert all intervals starting at Bb to t
12: else
13: insert all intervals in �b to t
14: insert all intervals starting at Bb to �	

15: remove all intervals stopping at Bb from �	

A secondary resolution is not equivalent to a secondary
index [28], [29]. A secondary resolution index is commonly

A secondary resolution is a set of blocks (see Fig. 3), a block 
encapsulates a set of consecutive snapshots such that blocks 
do not have any snapshot in common. A block is a key-value 
pair element where the key is the first and last point on the 
domain that are bookmarked by the encapsulated snapshots. 
The key is defined using a user-defined grouping function; its 
application is described in Algorithm 5. Di4 has three built-
in grouping functions defined in Section 2.3.5.



defined on the same attribute as the primary resolution, while
primary and secondary indexes are commonly defined ondif-
ferent attributes. For instance, while a primary resolution of
Di4 indexes coordinates of intervals, its secondary resolution
can index groups of snapshots bookmarking position on
the domain overlapping various functional portions of the
genome (e.g., gene body, or transcription factor binding site).

2.3.5 Default Secondary Resolutions

Di4 implements 3 default methods to create a secondary-
resolution, listed below in increasing order of complexity:
(1) Zero thresholding, (2) Uniform scalar quantization (SQ)
and (3) probability density function (PDF) optimized scalar
quantization (where (2) and (3) are two variants of scalar
quantization). In the following, we describe each of these
methods:

1) Zero thresholding, it defines a block as a set of contigu-
ous snapshots all bookmarking at least one interval
(see Fig. 4).

2) Uniform scalar quantization. The goal of quantization is
to approximate a distribution of given points with 2n

points, where n is the number of quantization levels. A
scalar quantization is a function that maps its input to
distinct regions (quantization regions), and represents
each region by a point (reconstruction point). Here
the scalar quantization method is defined over accu-
mulation of intervals; and it defines a block as a set of
contiguous snapshots all belonging to the same recon-
struction point, i.e., it breaks a block at a snapshot with
different reconstruction points with respect to its prior
snapshot. In uniform quantization, the quantization
regions are equally spaced, and the reconstruction lev-
els are at themidpoint of each interval.

3) PDF-optimized scalar quantization. In this modified
quantization scheme, the quantization regions are
shortened or lengthened according to the probability
of each region. We adopted the well-known Lloyd-
Max quantization for our purpose [30]. In this
method, the quantization reconstruction levels are
the centroid, or center of mass, of the signal PDF in
the related quantization regions.

We provide an example of creating blocks using the
three built-in secondary resolution methods as illustrated
in Fig. 4. The upper part of the figure shows synthetic
input intervals, where for each position on the domain a

snapshot is created; however, for readability of the figure,
the snapshots are not displayed. The lower part of the figure
shows how consecutive snapshots are organized in blocks
using the three built-in methods, where each level of lines
represent a secondary resolution method, and line breaks at
each level represent different blocks. The quantization
regions are shown on the left-most to the input, vertical
lines above U and P . As it can be seen, the quantization
regions have equal distances in uniform quantization and
variable/unequal distances in PDF-optimized approach.

By looking at the figure one can note how differently con-
secutive snapshots are organized in blocks using three
methods, quantitatively (i.e., zero-thresholding versus scalar
quantization methods) or qualitatively (i.e., uniform versus
PDF-optimized scalar quantization).

2.4 Di4 Data Serialization
The Di4 serialization process (de)serializes a Di4 snapshot
into an array of bits, then the persistence technology organ-
izes the array in its internal structure. The Di4 design is
agnostic to a key-value pair persistence technology (see
Fig. 1), hence Di4 does not implement how a serialized
snapshot is organized and persisted on disk. This design
allows us to focus on an optimal (de)serialization of a snap-
shot independent from its organization on disk. Di4 lever-
ages serialization methods used in protocol buffers [31], and
serializes a snapshot into an “arranged” binary representa-
tion, which uses fewer bits than common serialization meth-
ods (e.g., JavaScript Object Notation) to serialize an object.
Additionally, Di4 uses the variable-length quantity method to
encode an unsigned integer in a compact representation,
commonly referred-to as 7-bit encoded int or varint [31], [32].
Accordingly, Di4 concisely serializes a snapshot. For insta-
nce, it serializes the B2 snapshot in the Fig. 3 using 48 bits,
which would require at least 136 bits otherwise. Detailed
discussion is available in Section E of appendix, available in
the online supplemental material.

3 EXPERIMENTAL EVALUATION

The present section provides a benchmark of Di4, and a
comparison with the state of the art.

3.1 Experimental and Environment Setup
Di4 is customized for genomics with Di4B (Di4 for Bioinfor-
matics) at business logic layer, and Di4BCLI (Di4B Command

Fig. 4. Illustration of an example of creating blocks using the three built-in secondary resolution methods. U: Uniform quantization boundaries.
P: PDF-optimized quantization boundaries.



Line Interface) at presentation layer. Di4B defines a genomics-
specific environment setup (e.g., define the domain), and initi-
alizes several independent Di4 instances, one for each DNA
chromosome and strand. Di4BCLI is a command-line inter-
face which provides user interaction through a set of com-
mandswhich has been used in the experiments (see Fig. 1).

The performance of Di4 is evaluated using samples
downloaded from ENCODE which is a public repository of
NGS data. The downloaded data are grouped in 9 datasets
as described in Table 3, the A4 dataset is the current biggest
publicly available dataset from this public repository. See
appendix Section D, available in the online supplemental
material, for details on the datasets.

Performance is assessed on a current modern machine
with specifications summarized on Table 2. Theoretical
peak performance of the machine’s processor is given in
Giga Floating Point Operations Per Second (GFLOPS).
The machine has a Solid-State Drive (SSD) storage device,
which is assessed for sequential read/write (i.e., the time it
takes to read and write a 1 GB file), and random read/write
of 4K blocks.

Di4 runs at a user-defined degree-of-parallelism (dp),
defined as Di4B-level dp × Di4-level dp, that is respectively
the number of independent instances of Di4 (i.e., chromo-
somes and strands) being executed concurrently, and the
number of threads read/write each Di4 instance. The
experiments have been performed using 4
 2 ¼ 8 threads.
The tools used later in this section to benchmark Di4, are
run in their native degree of parallelism (i.e., we do not
implement a parallelization method if they run single-
threaded, or modify their parallelization capabilities). The
scripts and data used for running benchmarks presented
in this section are available at genometric.github.io/Di4/
benchmark.

Note that Di4 is defined at data access layer, and it does
not implement a persistence technology (see Fig. 1). There-
fore, its performance can vary depending on the technology
utilized at persistence level; to minimize the bias on persis-
tence technology, we benchmark using a B+tree implementa-
tion (github.com/csharptest/CSharpTest.Net.Collections).

3.2 Di4 Operations Benchmark
The INTERSECT and COVERAGE functions are funda-
mental to Di4 operations; accordingly, their performance
is in direct relation with the performance of the majority
of Di4 operations. Therefore, these functions are primar-
ily benchmarked.

INTERSECT. “How long it takes Di4 to find all intervals
overlapping a reference interval?”. This operation includes
finding a pivot snapshot (i.e., the snapshot that overlaps or
is the closest down-stream to the left-end of a reference
interval), traversing snapshots, and reconstructing the book-
marked intervals (see Algorithm 1). This operation is bench-
marked using datasets A1-A4, and the results are plotted on
panel A of Fig. 6. The results are based on 10 executions of
INTERSECT function on 196,180 reference intervals (i.e.,
1,961,800 runs of INTERSECT function). The query process-
ing time does not include data indexing time.

COVERAGE. “How long it takes Di4 to assess the compli-
ance of all snapshots with a given coverage function?”. This
operation includes traversing the snapshots, reconstructing
the bookmarked intervals, and check for the compliance
with the given coverage function. Here we benchmark Di4
for coverage of accumulation (i.e., COVER function), with and
without the utilization of a secondary resolution (created
using PDF-optimized scalar quantization) using datasets
A1-A4. We benchmarked using 20 accumulation ranges
(same query ranges as in appendix Section A, available in
the online supplemental material) and executed each range
for 10 times (i.e., 200 executions of COVER function). The
results are plotted on panels B and C of Fig. 6 as snapshot
bulk processing speed (i.e., snapshot per second). The query
processing time does not include data indexing time.

3.3 Inverted versus Incremental Inverted Index
A previous indexing framework for genomic intervals,
which we have taken inspiration from, is called Di3 [4].
Di3 and Di4 have a common goal of providing the geno-
mics data processing with a holistic and extensible infor-
mation retrieval framework, but they have fundamental
differences in the model, and Di4 benefits from a signifi-
cantly more effective secondary resolution methods. As a
result, Di4 executes indexing and retrieval functions signi-
ficantly faster than Di3, while having a considerably
smaller index size. The differences are discussed in details
in the following.

The fundamental design decision making the difference
between Di4 and Di3 is at model level; while Di3 leverages
the inverted index paradigm, Di4 has an incremental
inverted index structure, yielding to different first resolution
indexes. In general, for each position on the domain, Di3
bookmarks causal and non-causal intervals, while Di4 book-
marks only causal intervals (see Section 2.1). This design
makes � component (posting list) of Di4 snapshots signifi-
cantly smaller than the � component of Di3 snapshots; our
test using the A4 dataset shows 4
 smaller components

TABLE 3
The Datasets Used for Benchmarks, Which Are

Downloaded from ENCODE

Dataset Label File Count Interval Count

C1 12 89,623
C2 22 258,406
C3 45 456,385
B1 90 1,407,493
B2 180 4,649,767
A1 500 28,392,674
A2 1,000 59,980,303
A3 1,500 94,997,460
A4 2,000 143,563,549

TABLE 2
The Specifications of the Machine Used for Benchmarking

Machine type Laptop

Processor

Physical Processor Intel® Core™ i7-7920HQ
# of Cores 4

# of Threads 8
Clock speed (GHz) 3.1

IPC 8
GFLOPS 99.2

RAM (GB) 16

SSD (MB/s)
Seq (R/W) 2186.22 / 1206.01
4K (R/W) 11.15 / 15.11

4K 64-Thread (R/W) 1501.97 / 527.98

genometric.github.io/Di4/benchmark
genometric.github.io/Di4/benchmark
github.com/csharptest/CSharpTest.Net.Collections


(see panel A on Fig. 5), an immediate effect of which is the
(approximately) 5
 smaller index file size (see panel B on
Fig. 5), without penalizing indexing operation (see panel C
on Fig. 5). A smaller snapshot is faster to deserialize and pro-
cess, hence making Di4 operations significantly faster than
Di3 operations; for instance, testing COVERAGE function
shows 2–12
 expedited runtime (see panel E on Fig. 5). Note
that COVERAGE is the base function of most Di4 operations,
hence similar expedited runtime is expected from all the
functionswhich stem from COVERAGE.

However, the expedited runtime is only partially due
to the smaller snapshots, and its partially due to the heuris-
tically more efficient secondary resolution blocks (see
Section 2.3.4), which (a) heuristically decreases the number
of snapshots to be processed when executing a query, and
(b) optimally load-balances parallelization. Our test using

the A4 dataset shows that Di4 executes the same query as
Di3 traversing 10–60 percent (20 percent on average) of the
snapshots traversed by Di3 (see panel D on Fig. 5).

Having bookmarked all intervals overlapping a position
on domain in a Di3 snapshot, Di3 can “find all intervals
overlapping a point on domain” (queries similar to segment
trees) leveraging a single snapshot; while executing such
queries on Di4 would require traversing at least one snapshot
to reconstruct all the intervals overlapping the given point.
However, our tests for “find all intervals from the A4 data-
set overlapping 196,180 reference intervals” (where the
length of each reference interval is 1) using both Di3
and Di4, shows that Di4 runs faster than Di3 (12.75 and
137.17 sec for Di4 and Di3 respectively as the average of
10 executions). This observation emphasizes that traversing
Di3’s bigger index (w.r.t. Di4) and deserializing a single

Fig. 5. Panel A compares the � size of Di3 and Di4 when indexing the A4 dataset; it shows that Di4 has significantly smaller � component which
results into a considerably smaller index file size, shown in panel B. Panel C shows Di4 indexing speed is comparable to Di3 (both running a double-
pass indexing method). The secondary resolutions of Di4 heuristically minimize the number of snapshots to be traversed when executing a query.
Panel D plots this improvement w.r.t. Di3. As a result of smaller snapshots (panel A), smaller index size (panel B), and heuristically improved query
execution (panel D). Di4 runs significantly faster than Di3 (panel E).

Fig. 6. Benchmarking Di4 operations. Panels A, B, and C plot the performance of Di4 base operations. Panels D, E, and F plots the performance of 
Di4 against Di3, BEDTools, and BEDOPS (each runtime is the average of 10 executions).



indexed intervals overlapping a given set of query intervals,
and ranks the results using the product of �log 10ðp-valueÞ
and log 2ðoddsratioÞ. Di4 and Giggle can be compared from
two facets; first, unlike Giggle that is defined for a particular
application scenario, Di4 is a framework implementing
“building blocks” for a wide-variety of application scenar-
ios. Accordingly, while Giggle mainly targets an end-user,
Di4 is designed for developers who can augment it for their
particular application.

Second, the performance of Di4’s most similar function-
ality to Giggle. Accordingly, Di4 is benchmarked against
Giggle (version 0.6.3) for querying from small and large
datasets, respectively, Roadmap Epigenomics dataset (used
in [16] for benchmarking Giggle) containing 1,905 samples
and 55,558,166 intervals, and A4. The datasets are queried
using 5 samples downloaded from ENCODE (see appendix
Table 4, available in the online supplemental material) with
a varying number of intervals in each, spanning from 29,972
to 442,035. Each query sample is queried 10 times using Di4
and Giggle, and their average runtime is plotted in Fig. 7.
As plotted in Fig. 7, Di4 runs up to 6
 faster than Giggle.

3.6 Evaluation of Second Resolution
One of the main goals of secondary resolutions is to opti-
mize querying non-sargable attributes. Without utilizing a
secondary resolution, executing such queries would require
linearly scanning the entire first resolution. Therefore, in
this section we benchmark the default secondary resolu-
tions on how much they expedite executing such queries.

As explained in Section 2.2, Coverage on f is one of the
most common queries on non-indexed attributes in geno-
mic research. Accordingly, we define a base query, which
is the execution time of the COVER function without a
secondary resolution (i.e., linearly scanning the entire
first resolution).

We evaluated the performance of the different secondary
resolution indexing methods using A4 dataset (see Table 3).
The query execution time is used to assess the performance
of the various methods and the results were normalized
w.r.t. the base query execution time to show the improve-
ment with respect to the latter. The base query time was
measured as tbase ¼ 177:89 sec, which is the average of 10
executions. A normalized query time of smaller than 1
shows improvement in querying execution time.

The panels A and B on Fig. 8 show the query times for
the range and point queries with respect to the defined

Fig. 7. The runtime plotted here is the average of 10 executions of each
query. The results show that Di4 runs up to 3
 faster than Giggle on a
large dataset (panel A), and up to 6
 faster on a small dataset (panel B).

snapshot, is slower than traversing Di4’s smaller index and 
deserializing at least one smaller snapshot (w.r.t. Di3).

3.4 Comparison with BEDTools and BEDOPS
In this section, the performance of Di4 has been benchmarked 
against Di3 [4] and current latest versions of two commonly 
used tools in bioinformatics, BEDTools [13] (version 2.27.1) 
and BEDOPS [14] (version 2.4.32). Given that BEDTools and 
BEDOPS run on two input samples, scripts for their batch exe-
cution have been prepared (available at genometric.github. 
io/Di4/benchmark). Di4 INTERSECT has been benchmarked 
against bedtools intersect, bedops intersect, and  
MAP from Di3. The performance is evaluated in three scenar-
ios, covering typical dry-lab experiments, discussed as follows.

On-the-Fly Processing. The daily-based data processing 
activity of a bioinformatician is running a NGS data proc-
essing pipeline, obtaining a relatively small dataset, and 
evaluating comparatively this dataset with related small 
datasets. Based on the results, the outcome should either be 
archived for further processing, or discarded. Di4 is bench-
marked against Di3, BEDTools and BEDOPS for this sce-
nario on the INTERSECT operation using a reference 
sample from “ENCODE narrow peak” repository which 
contains 196,180 intervals, and the C1, C2, and C3 target 
dataset (see Table 3). Additionally, since BEDTools and 
BEDOPS run in memory, Di3 and Di4 are also executed in 
memory. This on-the-fly processing scenario consists of 
processing and pre-processing; therefore, the query runtime 
incorporates pre-processing, which is sorting data for BED-
Tools and BEDOPS, and indexing for Di4 and Di3. The 
results, which are the average of 10 executions, are plotted 
on panel D of Fig. 6 as total query runtime.

Personal Repository. This is also a common scenario for bio-
informaticians, where a personal repository of in-house data is 
comparatively evaluated or cross-referenced for further 
assessments. Di4 is benchmarked against Di3, BEDTools and 
BEDOPS for this scenario on INTERSECT operation using B1, 
and B2 datasets (see Table 3) and a reference sample from 
“ENCODE narrow peak” repository which contains 196,180 
intervals. Since BEDTools and BEDOPS run in-memory, Di4 
and Di3 are also executed in-memory. Given that a personal 
repository is a collection of properly organized data (i.e., 
sorted, concerning BEDTools and BEDOPS, or indexed con-
cerning Di4 and Di3), the query time excludes pre-processing 
time in all cases. The results, which are the average of 10 execu-
tions, are plotted on panel E of Fig. 6 as total query runtime.

Large-Scale Scenario. As public repositories of NGS data 
are rapidly growing, sense-making from NGS data through 
large-scale comparative evaluation is becoming ubiquitous. 
This highlights a demand for holistic and scalable frame-
work for comparative evaluation of NGS data. Di4, Di3, 
BEDTools, BEDOPS are benchmarked for this scenario 
using datasets A1-A4. Since such repositories are collection 
of properly organized and persisted data (i.e., sorted, con-
cerning BEDTools and BEDOPS, or indexed concerning Di4 
and Di3), the query time excludes pre-processing time. Di4 
and Di3 are both executed using a persisted index. These 
tools are benchmarked as average of 10 executions, and the 
results are plotted on panel F of Fig. 6.

3.5 Comparison with Giggle
Giggle [16] is a tool for querying genomic datasets, which 
leverages an index structure similar to Di3. Giggle finds

genometric.github.io/Di4/benchmark
genometric.github.io/Di4/benchmark


query ranges. As it can be seen on both panels, all the 3
curves lie below the base query time (i.e., the horizontal line
at 1). This is an important observation and highlights the
effectiveness of the proposed secondary resolution methods
in improving the retrieval performance.

Our results also indicate that the PDF-optimized scalar
quantization method provides the best performance com-
pared with the other two secondary resolution schemes
where the amount of improvement is approximately
80 percent on average. We carried out 1-way ANOVA to
investigate whether there is a significant difference between
the means of three secondary resolution methods [33] (i.e.,
the means of the curves shown on Fig. 7). The statistical test
reveals that the PDF-optimized quantization methods out-
performs other approaches with statistically significant dif-
ference (p < 0:05 i.e., with confidence level of 95 percent)
while the other two approaches do not show a significant
difference with respect to each other. This is an interesting
outcome and can highlight the promising results that can be
achieved if the proposed quantization scheme is utilized to
create the secondary resolutions. Indeed:

� base query linearly scans the entire first resolution,
which, utilizing a secondary resolution, linear scan is
limited to particular sets of consecutive snapshots
(i.e., the snapshots encapsulated by a block whose
aggregated attribute overlaps the query criteria).

� the reconstruction time of intervals bookmarked by
snapshots is expedited using the �	 component of
blocks which allows reconstruction of intervals inde-
pendent from neighbor snapshots (similar to key-
frames in video encoding/decoding).

� an optimal parallelization would require indepen-
dent regions for each thread/node; however, split-
ting first resolution to independent regions without
scanning it, would be a challenge. Each block of sec-
ondary resolution defines a set of snapshots which
can be processed independently and in parallel with
other snapshots. Zero-thresholding defines the sim-
plest splitting, and PDF-optimized defines load-
balanced regions.

4 CONCLUSION AND FUTURE WORK

Di4 is an instrument for fast indexing of large repositories
for tertiary data analysis, supporting very fast interval-
based operations over region-based heterogeneous genomic

datasets; in comparison with other interval-based data man-
agement systems, it supports abstractions that make it the
most suitable tool for making sense of genomic data. We
expect this application to became increasingly important, as
the availability of processed genomic datasets is growing at
an huge and unprecedented speed; genomic data integra-
tion will be key to major discoveries in biology and will
open the route to personalized medicine.

Di4 is a single-dimensional index, and we envision a
future work toward a multi-dimensional index paradigm
for two primary reasons; first, improve performance for exe-
cuting particular location-agnostic queries. For instance,
while leveraging secondary resolutions, Di4 can perform a
heuristically-optimized liner scan to “find regions where at
least any n samples overlap”, it cannot leverage the same
heuristics to “find regions where at least n of the given sam-
ples overlap”. An optimal execution of the latter query
demands an additional dimension to Di4 where intervals
are indexed based on a sample ID to which they belong.

Second, genome is commonly modeled linearly; how-
ever, recent advances unfold long-range interactions that
can be explained considering spatial organization of
DNA. To adapt with this emerging trend, new coordinate
attributes should be identified and incorporated into
Di4’s model.
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