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Abstract— On board the International Space Station 

(ISS) resistive training is essential to reduce the effects of 

musculoskeletal system deconditioning due to 

weightlessness. However, it could be equally dangerous or 

not useful if performed with inappropriate techniques. 

Thus, a system based on inertial sensors able to monitor 

astronauts has been thought. In this work, an OpenSim 

biomechanical model was used to reproduce motion of 

countermeasure target exercises and to simulate inertial 

sensors put on the model. This was done starting from 

kinematic data collected with motion capture system 

(mocap), because no inertial data were available. Then, it 

was explored a possible approach to build the classifier 

able to automatically recognize ‘correct’ and ‘wrong’ 

techniques of execution. Two machine learning algorithms 

were compared and results in terms of accuracy were 

encouraging.  

Keywords— Microgravity, biomechanics, inertial 

sensors, machine learning 

I. INTRODUCTION 

URING space missions astronauts are inserted in an 

environment that significantly differs from that on Earth. 

Weightlessness induces a series of human body changes and 

adaptations involving different systems: cardiovascular, 

respiratory, visual and, especially, musculoskeletal. The 

unloading of bones and muscles in microgravity produces 

rapid and severe mineral loss and reduction of muscle mass 

and muscle strength [1]. In current flights, recovery time is not 

critical, but space agencies are planning long-duration 

missions (LDMs) to Moon and Mars [2], so these 

physiological effects must be considered. To prevent 

deconditioning, crewmembers perform resistive exercises on 

board the International Space Station (ISS) thanks to the 

Advance Resistive Exercise Device (ARED). It simulates the 

use of weights in microgravity generating a constant load that 

can be changed from 0 to 272 kg [3]. Currently, ground teams 

communicate with crew by using a real-time audio/video 

system to ensure correct lifting technique. However, the more 

the distance from the Earth, the longer the communication 

delay. Therefore, feedback during LDMs to Moon and Mars 

will become more difficult to receive. Wrong techniques of 

execution, especially by using high loads, could decrease 

efficacy of training and may involve risk of injuries, as well 

documented in literature [4]-[6]. This study is inserted in a 

project that aims to design a biofeedback system based on a 

small set of wearable inertial sensors, suitable in microgravity, 

and machine learning algorithms to supervise crew members 

during their daily training. Currently, no inertial sensor data of 

exercises performed with ARED are available, but only 

kinematic and dynamic experimental data collected by using a 

motion capture system and force plates at NASA Johnson 

Space Center (JSC) in Houston, where the on-ground ARED 

model is installed. For this reason, it is needed to use a 

personalized biomechanical model in order to extract 

acceleration signals in different virtual body points, where real 

inertial sensors would be put. The model is inserted in a virtual 

environment where target exercises, proposed on ISS, are 

simulated in microgravity or weightlessness conditions. 

Executions in different configurations, both correct and wrong 

ones, are required and a set of biomechanical variables 

associated with a musculoskeletal risk level should be 

extracted. Thus, corrective information must be provided with 

different types of biofeedback easy to interpret.  

This work was focused on: (a) the extraction of acceleration 

signals by using a biomechanical model in OpenSim virtual 

environment. This was done starting from data collected with 

motion capture system related to correct and wrong exercise 

techniques. This point is necessary because, currently, no real 

data acquired with inertial sensors are available; (b) the 

development of a classifier able to automatically classify a 

technique between correct and wrong. This was done starting 

from simulated inertial data. At the moment, these analyses 

were completed with data collected at Luigi Divieti laboratory 

at Politecnico di Milano of two subjects performing target 

exercises, in correct and wrong forms, with barbell and 

weights. Currently, the study is going on by elaborating 

kinematic data collected at NASA JSC of six subjects 

performing target exercises in correct form.  Exercises under 

analysis are normal stance squat (NS), wide stance squat (WS) 

and normal deadlift (ND). Currently, on board the ISS it is 

installed the motion capture system ELITE S2 [7] that is going 

to be substituted because it is now obsolete. As soon as a new 

system will be available, in-flight data collection will be 

planned in order to enlarge our dataset and to improve the 

classifier.  

II. MATERIALS AND METHODS 

A. Participants 

Two voluntary athletes (one man, 170 cm, 65 kg, 30 year; 

one woman, 164 cm, 54 kg, 25 year) participated to the data 

collection at Politecnico di Milano. Six non-astronaut subjects 

(three women, 161.8±7.2cm, 60.0±7.8kg, 31.3±6.8year; three 
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men, 174±8.5cm, 70.8±13.2kg, 31.8±4.8years) were recruited 

at NASA JSC. All subjects were healthy and had experiences 

with the proposed resistance exercises. 

B. Experimental protocol 

Motion data at Politecnico di Milano were collected using 

motion capture system SMART DX 400 (BTS Bioengineering 

S.p.A, Milan, Italy), composed by 8 TV cameras with 100 Hz 

sampling frequency; Ground Reaction Forces (GRFs) were 

measured by 2 force plates (AMTI, USA). The marker-set was 

chosen according to the one previously used for data collected 

at NASA JSC. A total of 43 retro - reflective markers were 

placed on body excluding upper limbs (fig. 1) and 2 on the 

extremities of the bar.  Placement were as follow, considering 

both sides: dorsal margin of first and fifth metatarsal heads, 

lateral midfoot, most posterior aspect of calcaneus, most 

lateral and medial point of malleolus, bank of 3 markers on 

lateral thigh, lateral knee, bank of 3 markers on lateral shank, 

prominence of greater trochanter, most anterior and most 

posterior superior iliac spine (ASIS, PSIS), xiphoid process, 

supraclavicular notch, 10th thoracic vertebrae, vertebra 

prominens, 3 markers on head.  

Each subject performed one set of 4 repetitions of normal 

squat, wide stance squat and normal deadlift with correct 

execution, similarly to that collected at NASA JSC. 

Additionally, they performed one set of each kind of wrong 

technique with a number of repetitions varying from 2 to 4 

basing on the individual sensations, to avoid injuries. External 

loads were in the range of 75-80% of maximal isometric 

strength (ISO-MAX). 

The experimental data prior collected at NASA JSC with 

ARED were acquired at 250 Hz by 11 cameras SMART-D 

(BTS Bioengineering S.p.A., Milan, Italy) and GRFs were 

collected at 1000 Hz by 2 force plates incorporated in the 

ARED foot platform (Model 9261, Kistler). All subjects 

involved in the experiment performed one set of four 

repetitions of the target exercises in correct configuration, with 

an external load of 75% ISO-MAX.  

The protocol adopted, the correct and wrong techniques, 

were reviewed and approved by NASA Astronaut Strength, 

Conditioning and Rehabilitation (ASCR) specialists. 

C. Correct and wrong techniques  

The good form of normal squat requires to start from a 

standing position and to maintain the trunk straight. Moving 

down, knees are flexed to reach an angle equal or greater than 

90° and then extended to return to the starting position. Wide 

squat differs from normal squat in placement of feet that show 

a separation 1.5-2 times larger. To minimize risk of trauma and 

ensure maximal lower limb muscles activation, optimal squat 

technique requires: upright trunk to maintain spine in a neutral 

position, with a slightly lordotic lumbar spine; knees tracking 

over toes, so without bring them closer and avoiding to 

overcome the toes; heels in contact with the floor, to prevent 

forward lean of the trunk; tibiae parallel to the upright torso; 

gaze forwards or upwards [5],[8],[9]. The deviations from the 

correct techniques were: rounded back (RB), valgus knees 

(KV), knees overcoming toes (KOT), raised heels (RH) and 

shallow squat (SQ). 

As concern normal deadlift, the optimal technique requires 

to start in partial squatting, with natural width of feet and with 

arms coming down outside the legs to reach the bar. Then, hip 

and shoulders have to be lifted at the same time maintaining a 

natural position of the spine. It is necessary to respect some 

features to avoid inefficacy of training and/or injuries: hip 

joints have to be maintained higher than knees, to prevent 

forward lean of the trunk; upright trunk to maintain spine in a 

neutral position; shoulder blades adduced, slightly in front of 

bar; gaze forwards [4], [10]. Wrong executions were: rounded 

back (RB), bar over shoulders (BOS) and hyperextension of 

the back at the end of lifting (HB). 

D. Data analysis and biomechanical simulation 

OpenSim [11] is an open-source software used to build 

individual biomechanical models and to compute joint angles 

and moments. The model used for the analysis was the 

published skeletal model with 12 segments and 23 degrees of 

freedom (dof). Hip joint was modelled as a ball-and-socket 

joint with 3 dof, while knee and ankle as single dof hinge 

joints. The same model was utilized by DeWitt et al. [12] and 

Mummidivarapu et al. [13] to identify the optimal body weight 

replacement in weightlessness during squat. Fregly et. Al [14] 

combine the published extension of the same model, which 

includes also all upper-body joints [15], with three-

dimensional computer-aided design (CAD) geometry of 

ARED to simulate squat exercise in microgravity. Custom 

script using Matlab R2019a were used to pre-process data, to 

create files in compatible format with OpenSim and to 

elaborate its output. Raw data were interpolated with a cubic 

spline function to fill gaps and filtered with a 6th order 

Butterworth low pass filter with a cut-off frequency of 5 Hz. 

External loads were added by considering a constant vertical 

force applied on the shoulders of the model, on the mid-point 

of the barbell (fig. 2). 

Fig. 1: marker placement for data collection at Politecnico di Milano 
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Fig. 2: screenshot of the model during simulation of correct squat. GRFs and 

external force due to the barbell are shown in green. 

Output coming from OpenSim were elaborated in order to 

compare results between correct and wrong techniques with 

non-parametric Wilcoxon-Mann-Whitney test. For each 

exercise and each subject, joint angle and joint moment 

average and standard deviation of all repetitions were 

computed. For squat and wide squat, one cycle begins (0%) 

with hip and knee joints extended, it continues with their 

flexion and terminates (100%) returning to the initial position. 

For deadlift is the opposite: the cycle starts with knee and hip 

joints flexed, it proceeds with their extension and ends 

returning to the initial position.  

E. Inertial sensors simulation and classifier development 

The Analyses Tool of OpenSim was used to simulate inertial 

sensors, so to extract acceleration data in different body points 

related to each kind of training exercise and execution. This 

tool allows to compute trajectory, velocity and acceleration of 

body points properly specified by user. To do this, it is needed 

to specify the coordinates of the points involved, the name of 

the segment in which they are located and the reference system 

in which they are expressed. The chosen points were sternum, 

sacrum, mid-thigh and mid-shank. Despite the few simulated 

acceleration data available, it was explored a method to build 

a classifier based on machine learning algorithms. The 

classification was limited to a binary one in order to 

distinguish performance between correct and wrong, without 

differentiating the various mistakes. Two supervised learning 

methods were compared: Artificial Neural Network (ANN) 

and Support Vector Machine (SVM). Four sensors were 

simulated, each one gave three acceleration signals, one per 

axis. Accelerations related to each repetition were extracted, 

filtered with a 2nd order Butterworth low-pass filter with cut-

off frequency of 2 Hz and normalised in time. Basing on works 

in literature [16], [17], features both in time domain (e.g. mean, 

max, min, variance, standard deviation, etc.) and frequency 

domain (e.g. energy, mean, max, min, band power, etc.) were 

extracted. Principal component analysis (PCA) [18] is one of 

the most used techniques for dimensionality reduction. It was 

chosen in this work to reduce the feature set and, thus, to 

facilitate the subsequent learning and generalization steps of 

machine learning algorithms. Workflow can be seen in the 

scheme below (figure 3).  

III. RESULTS 

A. Comparison between correct and wrong techniques 

The hypothesis of not equality of joint angles and joint 

moments in the sagittal plane between correct and wrong 

techniques was statistically demonstrated with Wilcoxon-

Mann-Whitney test (p<0.05).  

B. Comparison between ARED and barbell kinematics 

Both correlation and the hypothesis of equality of joint 

 

Fig. 3: workflow from sensor simulation to binary classification. 
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angles in the sagittal plane between ARED kinematics and 

barbell kinematics were statistically demonstrated with 

Wilcoxon-Mann-Whitney test (p < 0.05). Thus, no statistical 

differences were observed between kinematics of exercises 

performed with ARED and barbell. 

C. Performance of the classifier 

From each simulated acceleration signal, a total of 304 

features per single repetition were extracted.  For example, 

considering normal squat, dataset was composed by 40 rows, 

given that two subjects performed 4 repetitions of correct and 

each type of wrong technique, and 304 columns. PCA reduced 

the original datasets, composed by 304 features, to 12 for 

normal squat, 9 for wide squat and 10 for normal deadlift. 

Then, rows were labelled as 1 for correct execution and 0 for 

wrong. Datasets were divided to create subsets needed to train, 

validate and test the machine learning algorithms, considering 

a percentage of 80%, 5% and 15% of observations 

respectively. ANN and SVM performance were compared 

computing accuracy according to the formula Eq. (1) (TP = 

true positive, TN = true negative, FP = false positive, FN = 

false negative).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

 As shown in table I, for squat and deadlift SVM was more 

accurate, instead ANN showed better results for wide squat. 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

The procedure adopted in this work to simulate inertial 

sensors, given that no acceleration data related to exercise 

preformed with ARED were available, was effective despite 

the small amount of available data. Further investigations are 

needed to enlarge datasets and to improve the performance of 

the classifier, but these preliminary results could be seen as 

encouraging to consider this approach as working solution. 

Currently, the study is going on by analyzing data collected at 

NASA JSC and it will be supported by in-flight data, once 

available.   
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TABLE I 

ACCURACY OF MACHINE LEARNING ALGORITHMS 

 SQUAT WIDESQUAT DEADLIFT 
 

ANN 83.3% 75% 60%  

SVM 88% 71.4% 85.7%  
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