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Abstract

In this work we consider the coupled problem of Darcy’s flow in a frac-
ture and the surrounding porous medium. The fracture is represented as
a (d − 1)-dimensional interface and it is non-matching with the compu-
tational grid thanks to a suitable XFEM enrichment of the mixed finite
element spaces. In the existing literature well posedness has been proven
for the discrete problem in the hypothesis of given solution in the fracture.
This works provides theoretical results on the stability and convergence of
the discrete, fully coupled problem, yielding sharp conditions on the frac-
ture geometry and on the computational grid to ensure that the inf-sup
conditions is satisfied by the enriched spaces, as confirmed by numerical
experiments.
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1 Introduction

The simulation of flow in fractured porous media has become, in the last decade,
a fundamental tool for many energy-related engineering applications such as the
exploitation of oil reservoirs and geothermal fields, or the safe long term storage
of CO2 and nuclear waste. In all the aforementioned applications an accurate
and reliable numerical simulation can support decision making and risk assess-
ment. One of the main difficulties for this type of problems is the intrinsic
inhomogeneity of the porous medium, particularly in the presence of fractures.
Traditional approaches to account for the presence of fractures consist in modi-
fications of the permeability tensor, or in semi-empirical transfer functions to be
applied in the dual-porosity framework [8]. These approaches, however, are not
sufficient in the case of disconnected, non-homogeneous and anisotropic fracture
distributions. For this reason the direct simulation of fractures immersed in a
porous matrix has become more and more popular. Very often fractures are rep-
resented as (d − 1)-dimensional interfaces immersed in a d-dimensional matrix,
due to their spatial scale. Indeed, their typical width is, at all scales, very small
compared to the length and to the typical size of the domain of interest and the
use of a geometrically reduced model avoids the need for extremely refined or
anisotropic grids inside the fractures. In this work we adopt a reduced model
for flow in fractures based on the work by Alboin et al., [2] for single-phase flow,
together with suitable coupling conditions between fracture and bulk flow. The
formulation, originally derived in [2] only for permeable fractures, was then ex-
tended in [20] and [3] to more general coupling conditions (for low-permeability
fractures) and geometric configurations (for “immersed” fractures, i.e. fractures
that do not cut the entire domain). We also point out that this approach can
be extended to two-phase flow as shown in [18]. All the aforementioned works
rely on the hypothesis of conformal or quasi-conformal grids, i.e. the edges of
the grids must be aligned with the fractures. In realistic cases geometric con-
formity can represent a constraint that may possibly affect the quality of the
resulting grid, even in two-dimensional cases if the number of fractures is large,
or if we have intersections with small angles, or nearly coincident fractures. For
most numerical methods a poor quality of the grid reflects on the accuracy of
the solution. Different approaches have been proposed to tackle this difficulty.
On one hand, one could take advantage of the fact that the actual position of
the fractures is always affected by uncertainty, and modify the fracture network
to avoid such problems [19]. Another possibility is to use methods that are
robust even in the presence of highly distorted grids, such as Mimetic Finite
Differences and the Virtual Element Method, [5, 1, 4]. Finally, the approach
adopted in this work consists in avoiding geometric conformity in the first place,
using eXtended Finite Elements (XFEM): thanks to suitable enrichments of the
FEM spaces we allow fractures to cut the elements of the grid. In particular,
we employ the method originally proposed in [7], which is based on the enrich-
ment technique described in [17]. Even if the method has been successfully used
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in simple configurations and extended to the two-phase case [12] and networks
[11, 14] some theoretical aspects still needed to be investigated. In particular, in
this paper we provide a proof of the well-posedness of the discrete, fully coupled,
matrix-fracture problem. Indeed, in [7] the well-posedness is proven with in the
assumption that the solution in the fracture is given. We point out that, since
we are using non-matching grids, the inf-sup condition for the coupled problem
is only conditionally satisfied even if the unbroken FEM spaces are individually
inf-sup stable. We also prove by numerical experiments that the method exhibits
the theoretical convergence rate.

The paper is organized as follows. In Section 2 we briefly recall the math-
ematical model for single-phase Darcy flow in the fracture-matrix system. In
Section 3 we describe the numerical discretization by means of the XFEM. Sec-
tion 4 is dedicated to the proof of the well posedness of the discrete problem. In
Section 5 we present some numerical experiments, and finally, in Section 6 we
discuss conclusions and further developments.

2 The mathematical model

In this section we present the mathematical framework for Darcy’s flow in frac-
tured porous media. In Subsection 2.1 we consider the standard physical problem
of a single-phase flowing in a porous medium. Then, in Subsection 2.2 we intro-
duce the reduced model on the (d− 1)-domain to handle in an effective way the
fracture flow problem.

2.1 Physical problem

We consider a computational domain Ω, representation of the physical porous
medium, connected and open subset of Rd. The boundary of Ω, supposed regular
enough, is indicated by Γ := ∂Ω and divided in Dirichlet and Neumann disjoint
parts: ΓD and ΓN , respectively, such that Γ = ΓD ∪ ΓN . We assume that Ω
contains a proper subset Ωf representing the fracture such that Ω \ Ωf is made
of two disjoint, connected and open subset of Ω. These set are indicated by Ωi

and represent the surrounding porous media of the fracture. Throughout this
work we indicate with a subscript (normally i, j or f) the restriction of unknown
functions and data to the corresponding part of Ω. Following [20, 7] we suppose
that the fracture can be written as

Ωf =
{
x ∈ Rd : x = s+ rnγ̂ , s ∈ γ̂, |r| < lγ̂/2

}
,

where lγ̂ > 0 is the thickness of the fracture in the normal direction, which can be
function of s, γ̂ ⊂ Rd−1 is the non-intersecting one co-dimensional centre of the
fracture and nγ̂ is the continuous unit normal vector field on γ̂ pointing outward
from Ω1 toward Ω2. We suppose that the thickness lγ̂ is much smaller than the
other sizes of the fracture, the typical dimension of the domain Ω and the grid
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size introduced in the forthcoming section. We indicate by γ̂i the boundary of
Ωf in contact with Ωi and by nγ̂j the continuous unit normal field on γ̂i pointing
outward from Ωf toward Ωi. See Figure 1a for an example of fractured domain.
Our objective is to compute the pressure field p and the Darcy velocity field u

γ2

nγ̂2

γ1

γ̂

Ω1 Ω2

Ωf

nγ̂1

(a) Original domain.

γ̂

Ω1 Ω2

nγ̂

(b) Reduced domain.

Figure 1: Representation of each sub-domain.

solution of the transmission problem for i = 1, 2, f and j = 1, 2{
∇ · ui = fi

ui = −Λi (∇pi − f i)
in Ωi

{
pj = pf

uj · nγ̂j = uf · nγ̂j
on γ̂j (1a)

with boundary conditions {
pi = p0i on ΓNi

ui · nΓ = u0i on ΓDi
, (1b)

where Λi ∈ [L∞(Ωi)]
d×d is the elliptic permeability tensor, fi ∈ L2(Ωi) a scalar

source/sink term, f i ∈ [L2(Ωi)]
d a vector forcing term, pi0 ∈ H

1
2 (ΓNi) the

Neumann boundary data and ui0 ∈ L2(ΓNi) the Dirichlet boundary data. The
weak formulation of problem (1) is well posed, see for example [6, 21, 9, 22].

2.2 Reduced model

To ease the presentation we consider bidimensional domains d = 2. Following
[10, 20, 7, 13] we employ a model reduction strategy to introduce a new set of
equations which can handle the fracture as object of codimension one. In this
procedure we will substitute the fracture Ωf by its centre axis γ̂ with boundary
∂γ̂. We suppose that the latter is divided into a Dirichlet part ∂Dγ̂, approxi-
mation of ΓDf , and a Neumann part ∂N γ̂, approximation of ΓNf . We indicate
by τγ̂ the continuous unit normal tangential vector of the fracture γ̂. See Fig-
ure 1b for an example. We suppose that the permeability can be written as
Λf = λf,nN +λf,τT in the fracture and Λi = η−1

i I in each i-th part of the sur-
rounding porous media, where N := nγ̂⊗nγ̂ and T := I−N are the projection
matrices on the normal and tangential space of the fracture γ̂, respectively. We

4



will make use of the normal and tangential divergence and gradient operators
∇n· := N : ∇, ∇τ · := T : ∇, ∇n := N∇ and ∇τ := T∇. We indicate by (·, ·)A
the scalar product in L2(A). The data and unknowns defined on γ̂ are called
“reduced” and indicated with the hat notation ·̂. We introduce the reduced
pressure p̂, reduced Darcy velocity û and the inverse of the effective normal and
tangential reduced permeability as

p̂(s) :=
1

lγ̂
(p, 1)ω û(s) := (Tuf , 1)ω η̂(s) :=

1

lγ̂λf,τ
ηγ̂(s) :=

lγ̂
λf,n

,

with s ∈ γ̂ and ω(s) =
(
− lγ̂(s)

2 ,
lγ̂(s)

2

)
, the vector and scalar data of (1) are

reduced in the same way as û and p̂, respectively. The system of equations for
single phase flow in the two subdomains Ωj , j = 1, 2, and on the reduced domain
γ̂ is the following

∇ · uj = fj

ηjuj +∇pj = fj
in Ωj

pj = p0 on ΓNj

uj · n = u0j on ΓDj


∇τ · û = lγ̂ f̂ + Ju · nγ̂K
η̂û+∇τ p̂ = f̂

in γ̂

p̂ = p̂0 on ∂N γ̂

û · τγ̂ = û0 on ∂Dγ̂

(2a)

with the coupling conditions [20]ηγ̂ {{u · nγ̂}} = JpK + lγ̂ {{f · nγ̂}}

ξ0ηγ̂Ju · nγ̂K +
lγ̂
4

Jf · nγ̂K = {{p}} − p̂
on γ̂. (2b)

In the previous system we have indicated with JaK := a1|γ̂ − a2|γ̂ the jump
operator and with {{a}} := 1

2(a1|γ̂ + a2|γ̂) the mean operator across γ̂. With an
abuse of notation for the vector field we have Ja ·nγ̂K := a1 ·nγ̂ |γ̂−a2 ·nγ̂ |γ̂ and
{{a · nγ̂}} := 1

2(a1 · nγ̂ |γ̂ + a2 · nγ̂ |γ̂). Finally ξ0 is a model closure parameter,
see the aforementioned references for a detailed description.

3 Numerical discretization

Let assume that Ω is a convex polygon, and consider a family of triangulations
Th, i.e. collections of triangles, being h the maximal diameter of the elements
of Th. We also introduce a family of triangulations T̂h of γ̂, i.e. collections
of lines, being ĥ the maximal length of the elements of T̂h. We consider the
situation where the two triangulations are irrespective of each other, i.e. T̂h can
cut the elements of Th. The idea is to enrich the elements cut by an embedded
interface with discontinuous functions using XFEM: the finite element spaces
for velocity and pressure are constructed replicating the degrees of freedom in
the cut elements and restricting the corresponding basis functions to each of the
subdomains Ωi [17]. This method was originally developed for the computational
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analysis of the evolution of cracks in solid mechanics. Here, as in [7] we follow a
similar approach considering Raviart-Thomas finite elements and for the coupled
fracture/bulk problems.

Hypothesis 1 Following [17], we require that the forthcoming hypotheses are
satisfied:

H1. the triangulation Th is shape-regular, i.e. ρK . hK . ρK ∀K ∈ Th, with
hK the diameter of K and ρK the diameter of the largest ball contained in
K;

H2. if γ̂ ∩K 6= ∅, K ∈ Th, then γ̂ intersects ∂K exactly twice, and each (open)
edge at most once.

Where the notation a . b means that there is a constant C > 0, independent
of h and of the physical parameters η, η̂, ηγ̂ , such that a ≤ Cb; we will use a & b
similarly. We define Ki = K ∩ Ωi for any element K ∈ Th, and Gh := {K ∈
Th : γ̂ ∩ K 6= ∅} the collection of elements that are cut by the fracture. For
any K ∈ Th, let RT0(Ki) := {vh|Ki : vh ∈ RT0(K)} be the linear space of the
restrictions to Ki of the standard RT0 local functions. We define analogously
P0(Ki) as the set of functions that are constant on each Ki. Similarly, for any
K̂ ∈ T̂h, we consider RT0(K̂) and P0(K̂). We consider discrete velocities vh and
pressures qh in the following spaces,

Vh := V1,h ×V2,h × V̂h, Qh := Q1,h ×Q2,h × Q̂h, Wh := Vh ×Qh

where we have defined

Vi,h := {vh ∈Hdiv(Ωi) : vh|Ki
∈ RT0(Ki) ∀K ∈ Th},

V̂h := {v̂h ∈Hdiv(γ̂) : v̂h|K̂ ∈ RT0(K̂) ∀K̂ ∈ T̂h},

Qi,h := {qh ∈ L2(Ωi) : qh|Ki
∈ P0(Ki) ∀K ∈ Th},

Q̂h := {q̂h ∈ L2(γ̂) : q̂h|K̂ ∈ P0(K̂) ∀K̂ ∈ T̂h}.

The discrete vector (vh, v̂h) = (v1,h,v2,h, v̂h) and scalar (qh, q̂h) = (q1,h, q2,h, q̂h)
fields are thus made of three components, associated to the domains Ωi, i = 1, 2
and to γ̂. The discrete variables are discontinuous on γ̂, being defined on each
part Ki of a cut element K ∈ Gh by independent (RT0,P0) local functions.
The finite element basis for the spaces Vi,h and Qi,h are obtained, following the
approach proposed in [17], from the standard RT0 and P0 basis on the mesh
replacing each standard basis function living on an element that intersects the
interface by its restrictions to Ωi. The numerical scheme can be easily modified
to account for variable, tensor valued coefficients. Let us introduce the following
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Figure 2: The left part represents the domain Ω and the fracture γ̂. The boundary ∂Ω =
ΓD ∪ ΓN is split in a Dirichlet boundary and a Neumann boundary. Standard P0 degrees
of freedom of the pressure associated to internal nodes (marked with white triangles) are
duplicated (black triangles) on elements K ∈ Gh crossed by γ̂ (shaded), to provide constant
pressure on each sub-element K1, K2. Analogously, the RT0 degrees of freedom of the velocity,
associated to the edges midpoints (white squares) are duplicated (black squares) on elements
K ∈ Gh, leading to independent RT0 functions on K1 and K2, as outlined in the right part.

bilinear and linear forms:

a(uh, ûh,vh, v̂h) := (ηuh,vh)Ω + ξ0 (ηγ̂Juh · nγ̂K, Jvh · nγ̂K)γ̂
+ (ηγ̂ {{uh · nγ̂}} , {{vh · nγ̂}})γ̂ +

(
νh−1uh · n,vh · n

)
ΓD

+ (η̂ûh, v̂h)γ̂ +
(
ν̂ĥ−1ûh · τγ̂ , v̂h · τγ̂

)
∂D γ̂

,

(3)

b(ph, p̂h,vh, v̂h) :=− (ph,∇ · vh)Ω + (ph,vh · n)ΓD
+ (p̂h, Jvh · nγ̂K)γ̂

− (p̂h,∇τ · v̂h)γ̂ + (p̂h, v̂h · τγ̂)∂D γ̂ ,
(4)

F(vh, v̂h, qh, q̂h) := (f ,vh)Ω − (p0,vh · n)ΓN
+
(
νh−1u0,vh · n

)
ΓD

+ (f, qh)Ω − (u0, qh)ΓD
+
(
f̂ , v̂h

)
γ̂
− (p̂0, v̂h · τγ̂)∂N γ̂

+
(
ν̂ĥ−1û0, v̂h · τγ̂

)
∂D γ̂

+
(
lγ̂ f̃ , q̂h

)
γ̂
− (q̂h, û0)∂D γ̂

+ (lγ̂ {{f · nγ̂}} , {{vh · nγ̂}})γ̂ −
(
lγ̂
4

Jf · nγ̂K, Jvh · nγ̂K
)
γ̂

.

(5)

where ν and ν̂ are a positive penalization coefficient that we use to impose
Dirichlet boundary conditions and where we denote (with a little abuse of no-
tation) with h and ĥ two piecewise constant functions defined respectively on
all edges E ⊂ ∂K, K ∈ Th and on all edges Ê ⊂ ∂K̂, K̂ ∈ T̂h, and such that
h|E := diam(E), ĥ|Ê := diam(Ê). Note that in order to ensure the strict posi-
tivity of the associated interface term, the assumption ξ0 > 0 is indeed required
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[20, 7]. Our finite element method reads as follows: given the boundary data u0,
û0, p0, p̂0, find (uh, ûh, ph, p̂h) ∈Wh such that

C ((uh, ûh, ph, p̂h), (vh, v̂h, qh, q̂h)) = F(vh, v̂h, qh, q̂h) ∀(vh, v̂h, qh, q̂h) ∈Wh,
(6)

where the bilinear form C is defined as

C ((uh, ûh, ph, p̂h), (vh, v̂h, qh, q̂h)) := a(uh, ûh,vh, v̂h) + b(ph, p̂h,vh, v̂h)

− b(qh, q̂h,uh, ûh).

4 Well posedness of the discrete problem

Here we demonstrate consistency, stability and convergence for the discrete prob-
lem. To prove stability and convergence we need boundedness of C and F , pos-
itivity of C and inf-sup condition. The proofs of boundedness and positivity
are analogous to the results shown in [7], while the inf-sup condition requires
different arguments since in this work we are dealing with the fully coupled case
where the reduced variables are unknown.

4.1 Consistency

We introduce the following spaces:

V :=
{
v = (v1,v2, v̂) : vi ∈Hdiv(Ωi), vi · nγ̂ ∈ L2(γ̂), i = 1, 2, v̂ ∈Hdiv(γ̂)

}
,

Q :=
{
q = (q1, q2, q̂) : qi ∈ H1(Ωi), q̂ ∈ H1(γ̂)

}
⊂ L2(Ω× γ̂), W := V ×Q.

Note that the normal component v ·nγ̂ of a function v ∈ V is discontinuous on
γ̂.

Lemma 1 (Consistency) We consider (u, û, p, p̂) solution of problem (2) and
(uh, ûh, ph, p̂h) ∈Wh solution of problem (6). If (u, û, p, p̂) ∈W, we have

C((u− uh, û− ûh, p− ph, p̂− p̂h), (vh, v̂h, qh, q̂h))=0 ∀(vh, v̂h, qh, q̂h)∈Wh.
(7)

Proof. Let us show that

C((u, û, p, p̂), (vh, v̂h, qh, q̂h)) = F(vh, v̂h, qh, q̂h) ∀(vh, v̂h, qh, q̂h) ∈Wh.

Using Green’s theorem in both subdomains Ωi, i = 1, 2 and in γ̂, we have

b(p, p̂,vh, v̂h) = (vh,∇p)Ω − (p,vh · n)ΓN
− (Jpvh · nγ̂K, 1)γ̂

+ (v̂h,∇τ p̂)γ̂ − (p̂, v̂h · τγ̂)∂N γ̂ + (p̂, Jvh · nγ̂K)γ̂ .
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Hence, replacing ηu+∇p = f , ∇·u = f , η̂û+∇τ p̂ = f̂ , ∇τ · û = lγ̂ f̃ + (u1−u2) ·nγ̂ ,
and using the boundary conditions, we have

C((u, û, p, p̂), (vh, v̂h, qh, q̂h)) = (f · vh)Ω + (ηγ̂ {{u · nγ̂}} , {{vh · nγ̂}})γ̂
+ξ0 (ηγ̂Ju · nγ̂K, Jvh · nγ̂K)γ̂ +

(
νh−1u0,vh · n

)
ΓD

+
(
f̂ , v̂h

)
γ̂

+
(
ν̂ĥ−1û0, v̂h · τγ̂

)
∂D γ̂
− (p0,vh · n)ΓN

− (Jpvh · nγ̂K, 1)γ̂ − (p̂0, v̂h · τγ̂)∂N γ̂

+ (p̂, Jvh · nγ̂K)γ̂ + (f, qh)Ω − (qh, u0)ΓD
− (q̂h, Ju · nγ̂K)γ̂ +

(
f̂ , q̂h

)
γ̂

− (q̂h, û0)∂D γ̂ + (lγ̂ {{f · nγ̂}} , {{vh · nγ̂}})γ̂ −
(
lγ̂
4

Jf · nγ̂K, Jvh · nγ̂K
)
γ̂

.

Thanks to the algebraic identity JabK = JaK {{b}}+{{a}} JbK and to the interface conditions
(2b) we can write

(Jpvh · nγ̂K, 1)γ̂ = (JpK, {{vh · nγ̂}})γ̂ + ({{p}} , Jvh · nγ̂K)γ̂ = I + II

where

I = (ηγ̂ {{u · nγ̂}} , {{vh · nγ̂}})γ̂ , II = ξ0 (ηγ̂Ju · nγ̂K, Jvh · nγ̂K)γ̂ + (p̂, Jvh · nγ̂K)γ̂ ,

so that

C((u, û, p, p̂), (vh, v̂h, qh, q̂h)) = (f ,vh)Ω +
(
νh−1u0,vh · n

)
ΓD

+
(
f̂ , v̂h

)
γ̂

+
(
ν̂ĥ−1û0, v̂h · τγ̂

)
∂D γ̂
− (p0,vh · n)ΓN

− (p̂0, v̂h · τγ̂)∂N γ̂ + (f, qh)Ω − (qh, u0)ΓD

+
(
f̂ − Ju · nγ̂K, q̂h

)
γ̂
− (q̂h, û0)∂D γ̂ + (lγ̂ {{f · nγ̂}} , {{vh · nγ̂}})γ̂

−
(
lγ̂
4

Jf · nγ̂K, Jvh · nγ̂K
)
γ̂

= F(vh, qh).

2

4.2 Boundedness and positivity

We consider the following discrete norms:

|||(vh, v̂h)|||2 := ‖η
1
2vh‖2L2(Ω) + ‖h−

1
2vh · n‖2L2(ΓD)

+ ‖ηγ̂ {{vh · nγ̂}} ‖2L2(γ̂) + ξ0‖ηγ̂Jvh · nγ̂K‖2L2(γ̂)

+ ‖η̂
1
2 v̂h‖2L2(γ̂) + ‖ĥ−

1
2 v̂h · n‖2L2(∂D γ̂),

‖(vh, v̂h)‖2Vh
:= |||(vh, v̂h)|||2 + ‖η

1
2∇ · vh‖2L2(Ω) + ‖η̂

1
2∇τ · v̂h‖2L2(γ̂),

‖(qh, q̂h)‖2Qh := ‖η−
1
2 qh‖2L2(Ω) + ‖η̂−

1
2 q̂h‖2L2(γ̂),

(8)

and we define the global norm as

‖(vh, v̂h, qh, q̂h)‖2Wh
:= ‖(vh, v̂h)‖2Vh

+ ‖(qh, q̂h)‖2Qh . (9)

We will also make use of the h-dependent norms ‖u‖2
h,± 1

2
,Σ

:=
(
h∓1, u2

)
Σ

.
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Lemma 2 (F-Boundedness) If ξ0 > 0, there exists a constant Ch, depending
on h and on all the problem data such that

F(vh, v̂h, qh, q̂h) ≤ Ch‖(vh, v̂h, qh, q̂h)‖Wh
∀(vh, v̂h, qh, q̂h) ∈Wh.

Proof. The proof is analogous to the proof of F-Boundedness in [7]. 2

Similarly, the following properties are immediately verified, the interested
reader may find the proofs in [7].

Lemma 3 (Boundedness) The bilinear form C is bounded, i.e.

C((uh, ûh, ph, p̂h), (vh, v̂h, qh, q̂h)) ≤ ‖(uh, û, ph, p̂h)‖Wh
‖(vh, v̂h, qh, q̂h)‖Wh

∀(uh, ûh, ph, p̂h), (vh, v̂h, qh, q̂h) ∈Wh.

(10)

Lemma 4 (Positivity) Provided that γ & 1,

C((vh, v̂h, qh, q̂h), (vh, v̂h, qh, q̂h)) ≥ |||(vh, v̂h)|||2 ∀(vh, v̂h, qh, q̂h) ∈Wh.
(11)

Proof. We have

C((vh, v̂h, qh, q̂h), (vh, v̂h, qh, q̂h)) = a(vh, v̂h,vh, v̂h) = |||(vh, v̂h)|||2

so that the lemma follows immediately. 2

4.3 Inf-sup condition

Here we prove that using the extended (RT0,P0) pair we can obtain an inf-sup
condition under some additional assumptions on the interface γ̂. Indeed, even if
the standard (RT0,P0) pair is inf-sup stable for the Darcy problem, this is not
guaranteed in the extended “cut” case. Moreover, since we are here considering
the coupled case the proof requires techniques that differ from those used in [7].
First of all, we split the domain Ω into five subregions. One is the strip of (cut)
elements in Gh, while for i = 1, 2 we define Si,h as the collections of elements
of Th fully included in each Ωi that have at least a vertex in common with Gh.
Finally we define Ti,h the collections of the elements fully included in each Ωi

such that they have no vertexes in common with Gh. For an example, see Figure
3. Thus, Th = T1,h ∪ SGSh ∪ T2,h is a disjoint union. We denote by γ̂G,i,h the
interface between Si,h and Gh and by γ̂S,i,h the interface between Ti,h and Si,h.

Hypothesis 2 We call NG,h the maximum number of adjacent elements of Gh
that have one edge in common with Si,h for the same index i, and NS,h the
maximum number of adjacent elements of S1,h or S2,h that have one edge in
common with T1,h or T2,h respectively. We assume that there is a number M0

independent from h such that NG,h ≤M0, NS,h ≤M0. We define M = M0(M0+
1).
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Figure 3: An example of the division of Ω in subregions.

We notice that a consequence of property H1 of the triangulation is that
there is a constant Cρ ≥ 1 independent from h such that, calling respectively
lKmax and lKmin the maximum and the minimum length of the edges of an element
K ∈ Ω, we have

lKmax/l
K
min < Cρ. (12)

For each K ∈ Gh, let EK be the only edge of K that is not cut by γ̂. For a
given index i = 1, 2, thanks to Hypothesis 3, there are only two cases: either
EK ∩Ωi = ∅, or EK ⊂ γ̂G,i,h. In the first case, the sub-element Ki is a triangle:
we say that Ki is of type T and write Ki ∼ T . In the other case, the sub-element
Ki is a quadrangle: we say that Ki is of type Q and write Ki ∼ Q, see Figure
4.

Figure 4: Two elements Kj ∈ Gh, j = 1, 2, cut by an interface γ̂ = ABC. Up:
K1 ∼ T (K1,1 is a triangle, EK1 is outside Ω1), K2 ∼ Q (K2,1 is a quadrangle,
EK2 is on γ̂1,h ⊂ Ω1). Down: K1,K2 ∼ Q (Kj,1 is a quadrangle, EKj is on
γ̂1,h ⊂ Ωi, j = 1, 2).
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Hypothesis 3 For every K1, K2 adjacent elements in Th, if the edge between
K1 and K2 is not cut by γ̂, then either K1 6∈ Gh or K2 6∈ Gh.

For a fixed γ̂, it can be verified that it is always possible to build a mesh
that satisfy Hypothesis 3.

Hypothesis 4 Let K1, K2 be two adjacent elements in Gh (i.e. sharing an edge
E). There exist two constants c, C > 0, dependent on γ̂ only, such that

|K1,i| ≤ C|K2,i| if K1,i ∼ T and K2,i ∼ Q; (13)

c|K1,i| ≤ |K2,i| ≤ C|K1,i| if K1,j ,K2,j ∼ Q. (14)

Lemma 4.1 Hypothesis 4 is satisfied if the ratio between the curvature radius
ρ of γ̂ and the mesh size h is large enough, i.e. ρ ≥ Cγ̂h with Cγ̂ a positive
constant. Hence, it holds for a sufficiently refined mesh.

Proof. See [7]. 2

Let K be an elements in Gh. We call φr the rth basis function of RT0(K) for
r = 1, 2, 3. We indicate with φ3 the function corresponding to the d.o.f. relative
to the edge not cut by γ̂. Also, we define cr = φr · nγ̂ and we recall that cr is
a constant because φr ∈ RT0(K). Thanks to Property H2 we have that cr 6= 0
for every r. Considering that φr, along an edge Es with r 6= s, is parallel to
the edge (because φr ·nEs = 0) and that its versus is directed towards the edge
Er, we obtain that c1c3 < 0 and c2c3 < 0, see Figure 5, and hence c1 − c3 6= 0,

c2 − c3 6= 0 and
|cj |
|cj−c3| ≤ 1 for every K ∈ Gh and j = 1, 2.

Figure 5: Considering that cr = φr · nγ̂ is constant along γ̂ for r = 1, 2, 3,
from the intersection between E1 and γ̂ we obtain that c2c3 < 0, and form the
intersection between E2 and γ̂ that c1c3 < 0.

Hypothesis 5 There exists a constant dφ not depending on h such that

dφ ≥ max
Kj∈Gh

|ci − c3|
|cj − c3|

and dφ ≥ max
Kj∈Gh

|ci − cj |
|cj − c3|

, (15)

for both (i, j) = (1, 2) and (i, j) = (2, 1).
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We notice that |ci−c3||cj−c3| → ∞ and
|ci−cj |
|cj−c3| → ∞ if and only if ci → 1 and

cj , c3 → 0, that is if and only if the angle between γ̂ and Ei tends to 0. Thus
Hypothesis 5 is equivalent to ask that there is a minimum angle α > 0, such that
γ̂ intersects EK,1 and EK,2 with angle greater than α for every K ∈ Gh. This
condition does not represent a constraint for practical cases. We will also need
the following auxiliary lemma about the surjectivity of the divergence operator
onto L2.

Lemma 5 Let Ω be a Lipschitz domain, and let γ̂ ⊂ ∂Ω, γ̂ 6= ∂Ω, be a Lipschitz
subset of its boundary. For any q ∈ L2(Ω), there exists v ∈ H1(Ω) such that

∇ · v = q, v|γ̂ = 0, ‖v‖H1(Ω) . ‖q‖L2(Ω).

Proof. We proceed as in [7]. If q ∈ L2
0(Ω) = {f ∈ L2(Ω) : (f, 1)Ω = 0} and

γ̂ = ∂Ω, this is a well known result [15]. To deal with the general case in which γ̂ is
only part of the boundary, consider any lifting h ∈ H1(Ω) of a smooth boundary datum
satisfying h|γ̂ = 0, (h · n, 1)∂Ω 6= 0. By normalization, we can require (∇ · h, 1)Ω = 1.
Let q̄ = (q, 1)Ω ∈ R, and consider q0 = q − q̄(∇ · h). We have q0 ∈ L2

0(Ω). Then, there
exists v0 ∈ H1(Ω) such that

∇ · v0 = q0, v0|∂Ω = 0, ‖v0‖H1(Ω) . ‖q0‖L2(Ω).

Let v = v0 + q̄h. Since ∇ · v = q0 + q̄(∇ · h) = q, and ‖v‖H1(Ω) ≤ ‖v0‖H1(Ω) +

|q̄|‖h‖H1(Ω) . ‖q0‖L2(Ω) + |q̄| . ‖q‖L2(Ω) the proof is concluded. 2

We are now in the position to prove the inf-sup condition for the coupled
problem.

Theorem 4.1 (inf-sup condition) For any (ph, p̂h) ∈ Qh, there exist (vp,h, v̂p,h) ∈
Vh and Mγ̂ > 0 independent on h, such that vp,h ·nΓD = 0, v̂p,h ·n∂D γ̂ = 0 and

b(ph, p̂h,vp,h, v̂p,h) & ‖η−
1
2 ph‖2L2(Ω) + ‖η̂−

1
2 p̂h‖2L2(γ̂), (16)

‖(vp,h, v̂p,h)‖Vh
≤Mγ̂‖η−

1
2 ph‖2L2(Ω) +Mγ̂‖η̂−

1
2 p̂h‖2L2(γ̂). (17)

Proof. To build the desired velocity we consider the subdomains T1,h, T2,h, S1,h ∪
Gh ∪S2,h separately, and the fracture γ̂. Thanks to the bilinearity of b, it is sufficient to
show the inf-sup inequalities are verified locally into those subdomains. We indicate by
SGSh = S1,h ∪ Gh ∪ S2,h. We divide the proof in three parts: the first for the fracture
γ̂, the second for T1,h and T2,h, and the third for SGSh.
Part 1 - Fracture γ̂. We choose a piecewise constant functions ĝh ∈ L2(γ̂) such that
ĝh|K̂i

= η̂−1
i p̂h|K̂i

on each K̂, and we consider ∂N γ̂ ∩ T̂i,h 6= ∅. Then thanks to Lemma

5, there exists ¯̂v ∈ H1(γ̂) such that ¯̂v = 0 on ∂Dγ̂, ∇τ · ¯̂v = −ĝh, ‖¯̂v‖H1(γ̂) . ‖ĝh‖L2(γ̂).

We have ‖η̂
1
2
i

¯̂vh‖H1(T̂h) . ‖η̂
− 1

2
i p̂h‖L2(T̂h),

¯̂vh · n = 0 on ∂T̂h ∩ ∂Dγ̂, and

b(ph, p̂h,0, ¯̂vh) = −
(
p̂h,∇τ · ¯̂vh

)
γ̂

= −
(
p̂h,∇τ · ¯̂v

)
γ̂

= ‖η̂− 1
2 p̂h‖2L2(γ̂).

Part 2 - Subdomains T1,h, T2,h. Thanks to Part 1, now it is sufficient to prove that
for any (ph, p̂h) ∈ Qh, there exists (vp,h, 0) ∈ Vh such that vp,h · nΓD

= 0 and

b(ph, p̂h,vp,h,0) & ‖η− 1
2 ph‖2L2(Ω), ‖(vp,h,0)‖Vh

. ‖η− 1
2 ph‖2L2(Ω).
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We need the piecewise constant functions gi,h ∈ L2(Ωi) such that gi,h|Ki
= η−1

i pi,h|Ki

on each K. For the sake of simplicity, we will consider the case in which ΓN ∩ Ti,h 6=
∅. Thanks to Lemma 5, there exists v̄i ∈ H1(Ωi) such that v̄i = 0 on ∂Ti,h\ΓN ,
∇ · v̄i = −gi,h, ‖v̄i‖H1(Ti,h) . ‖gi,h‖L2(Ti,h). Note that v̄i = 0 on γ̂S,i,h ⊂ ∂Ti,h and

‖η
1
2
i v̄i‖H1(Ti,h) . ‖η

− 1
2

i pi,h‖L2(Ti,h), ηi being constant on Ti,h. Thanks to the continuous
Hdiv(Ti,h)-conformal RT0 interpolant Ii,h such that ((I − Ii,h)v̄i,nE)E = 0 on all
edges E of all elements K ∈ Ti,h, let us define v̄i,h, such that (v̄i,h, 0) ∈ Vh, as the

extension of Ii,hv̄i by zero on Ω\Ti,h. We have ‖η
1
2
i v̄i,h‖H1(Ti,h) . ‖η−

1
2

i pi,h‖L2(Ti,h),
v̄i,h · n = 0 on ∂Ti,h ∩ ΓD, and

b(ph, p̂h, v̄i,h,0) = − (pi,h,∇ · v̄i,h)Ti,h + (p̂h, Jṽi,K,h · nγ̂K)γ̂∩Ti,h
= − (pi,h,∇ · v̄i)Ti,h = ‖η− 1

2 ph‖2L2(Ti,h)

considering that γ̂ ∩ Ti,h = ∅.
Part 3 - Subdomain S1,h∪Gh∪S2,h. Thanks to the results obtained in Part 1 and Part
2, now it is sufficient to find ṽh ∈ Vh such that supp(ṽh) ⊂ SGSh, with ṽh · nΓD

= 0,
and that satisfies the two inequalities:

b(ph, ṽh) & ‖η− 1
2 ph‖2L2(SGSh), ‖η

1
2
i ṽh‖Vh

. ‖η−
1
2

i pi,h‖L2(SGSh). (18)

We now give a special construction for such ṽh on Gh and on Si,h, i = 1, 2. In
particular we build ṽh ∈ H1(Ω), and by the trace inequality, for this ṽh we have

‖ηγ̂ {{ṽh · nγ̂}} ‖2L2(γ̂) + ξ0‖ηγ̂Jṽh ·nγ̂K‖2L2(γ̂) . ‖η
1
2
i ṽh‖H1(Gh), and therefore, by recalling

(8), the inequalities (18) are satisfied if:

b(ph, ṽh) & ‖η− 1
2 ph‖2L2(SGSh), ‖η

1
2
i ṽh‖H1(SGSh) . ‖η

− 1
2

i pi,h‖L2(SGSh). (19)

Part 3a - Subdomain Gh. We consider Gh first. We indicate with NGh the number
of elements of Gh. We enumerate the elements of Gh from 0 to NGh − 1 such that K0 is
one of the elements in Gh that has an edge in common with ∂Ω, and Kj has an edge in
common with Kj−1. We call ṽKj ,h the restriction of ṽh on an element Kj . Moreover,
we call Kj,i the part of element Kj contained in Ωi.

Every element Kj ∈ Gh, it is divided by γ̂ in two elements Kj,1 ∈ Ω1 and Kj,2 ∈ Ω2.
We want to build ṽKj ,h such that ṽKj ,h|Kj,i

= ṽKj,i,h|Kj,i
, where ṽKj,i,h for i = 1, 2 are

two different functions belonging to RT0(Kj), and such that

b(ph, p̂h, ṽKj ,h,0) & ‖η− 1
2 ph‖2L2(Kj), ‖η 1

2 ṽKj ,h‖2H1(Kj) . ‖η
− 1

2 ph‖2L2(SGSh). (20)

We start considering the first inequality. If we find a ṽKj ,h such that −∇·ṽKj ,h & η−1ph,
JṽKj ,h · nγ̂K = 0 on Kj , we obtain

b(ph, p̂h, ṽKj ,h,0) = −
(
ph,∇ · ṽKj ,h

)
Kj

+
(
p̂h, JṽKj ,h · nγ̂K

)
γ̂Kj

&
(
η−1ph, ph

)
Kj

= ‖η− 1
2 ph‖2L2(Kj)

(21)

and the desired condition is satisfied. For i = 1, 2 we consider ṽKj,i,h = mj,i,1φj,1 +
mj,i,2φj,2 + mj,i,3φj,3 where φj,r is the basis function corresponding to the degrees of
freedom mj,i,r of Kj : in this way, finding ṽKj,i,h is equivalent to finding the values

of mj,i,r for r = 1, 2, 3. To obtain −∇ · ṽKj ,h & η−
1
2 ph on Kj it is sufficient to have
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−∇i · ṽKj,i,h & η−1
i pi,h on Kj,i. We can use the divergence theorem on Kj and obtain

that the previous condition is equivalent to

η−1
i pi,h ≤ −∇ · ṽKj,i,h = − 1

|Kj |
(
∇ · ṽKj,i,h, 1

)
Kj

= − 1

|Kj |
(
ṽKj,i,h · n∂Kj

, 1
)
∂Kj

that is
(
ṽKj,i,h · n∂Kj

, 1
)
∂Kj
≥ |Kj |η−1

i pi,h. We call Ej,r the edge of Kj corresponding

to the degree of freedom mj,i,r, and lj,r its length. Thanks to Hypothesis 3, every Kj has
one and only one edge in common with ∂S1,h or ∂S2,h, and we enumerate the edges of
every Kj so that this edge is Ej,3. We call nEj,r

the external normal on Ej,r; moreover
we recall that φj,r · l is constant along any line l (because φj,r is a basis function of
RT0(Kj)), and that in particular φj,r · nEj,k

= δr,k for r and k = 1, 2, 3. Hence we
obtain

−
(
ṽKj,i,h · n∂Kj , 1

)
∂Kj

= −
3∑
r=1

∫
Ej,r

(mj,i,1φj,1 +mj,i,2φj,i,2 +mj,i,3φj,i,3) · nEj,r

= −mj,i,1lj,1 −mj,i,2lj,2 −mj,i,3lj,3,

with lr 6= 0 for every r. The first condition is then equivalent to

−mj,i,1lj,1 −mj,i,2lj,2 −mj,i,3lj,3 & η−1
i pi,h|Kj |.

To have JṽKj ,h · nγ̂K = 0 we set ṽKj,i,h · nγ̂ = sj , i = 1, 2, for some constant sj to be
decided later. Using again ṽKj,i,h = mj,i,1φj,1 + mj,i,2φj,2 + mj,i,3φj,3 and recalling
that cr = φr · nγ̂ , we obtain

mj,i,1cj,1 +mj,i,2cj,2 +mj,i,3cj,3 = sj i = 1, 2.

It is important to recall that with cr 6= 0 for every r, cj,1cj,3 < 0 and cj,2cj,3 < 0. Hence
we obtain the following system for i = 1, 2 and j = 0, . . . , NGh − 1{

−mj,i,1lj,1 −mj,i,2lj,2 −mj,i,3lj,3 & η−1
i pi,h|Kj |

mj,i,1cj,1 +mj,i,2cj,2 +mj,i,3cj,3 = sj
.

Now we decide how to enumerate the edges of every Kj . We have already decided that
Ej,3 is the only edge of Kj not cut by γ̂. Moreover, we have chosen K0 such that it
has an edge in common with ∂Ω, that we denote as E0,1; hence E0,2 is the other edge
of Kj that intersect γ̂. Then, we enumerate the edges Ej,1, Ej,2 for j ≥ 1 such that
Ej,i,1 = Ej−1,i,2. For i = 1, 2, we want to construct the velocity ṽKj,i,h first for j = 0,
then on j = 1, and so on for all K ∈ Gh. Setting m0,i,1 = 0 we find m0,i,2 and m0,i,3

such that

−m0,i,2l0,2 −m0,i,3l0,3 = η−1
i pj,i,h|K0|, m0,i,2c0,2 +m0,i,3c0,3 = s0,

that is m0,i,2 = a0,2η
−1
i pi,h0|K0|+ q0,2s0 and m0,i,3 = a0,3η

−1
i pi,h0|K0|+ q0,3s0, where

a0,2 =
c0,3

l0,3c0,2 − l0,2c0,3
, a0,3 =

−c0,2
l0,3c0,2 − l0,2c0,3

,

q0,2 =
l0,3

l0,3c0,2 − l0,2c0,3
, q0,3 =

−l0,2
l0,3c0,2 − l0,2c0,3

.
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The system is not singular since l0,1 > 0, l0,2 > 0 and c2c3 < 0, thus l0,3c0,2 and −l0,2c0,3
are different from 0 and have the same sign, and hence l0,3c0,2 − l0,2c0,3 6= 0. For all the
other Kj , to maintain the continuity on Ej,1 = Ej−1,2, we must set mj,i,1 = −mj−1,i,2,
and hence we find mj,i,2 and mj,i,3 such that{

−mj,i,2lj,2 −mj,i,3lj,3 = η−1
i pj,i,h|Kj | −mj−1,i,2lj,1

mj,i,2cj,2 +mj,i,3cj,3 = mj−1,i,2cj,1 + sj
.

The solution of the previous system is mj,i,2 = aj,2η
−1
i pj,i,h|Kj | + b2mj−1,i,2 + qj,2sj

and mj,i,3 = aj,3η
−1
i pj,i,h|Kj |+ b3mj−1,i,2 + qj,3sj , where

aj,2 =
cj,3

lj,3cj,2 − lj,2cj,3
, aj,3 =

−cj,2
lj,3cj,2 − lj,2cj,3

, bj,2 =
lj,3cj,1 − cj,3lj,1
lj,3cj,2 − lj,2cj,3

,

bj,3 =
−lj,2cj,1 − cj,2lj,1
lj,3cj,2 − lj,2cj,3

, qj,2 =
lj,3

lj,3cj,2 − lj,2cj,3
, qj,3 =

−lj,2
lj,3cj,2 − lj,2cj,3

.

Again, the system is not singular for every Kj because, like in K0, for every j we
have lj,3cj,2 − lj,2cj,3 6= 0. Therefore, on every Kj , independently from the choice of
sj , we have built a function ṽKj ,h, with ṽKj,i,h = mj,i,1φj,1 + mj,i,2φj,2 + mj,i,3φj,3,
that satisfies the first inequality in 20. We still need to show that, if we choose sj in

an appropriate way, we have that ṽKj ,h satisfies ‖η
1
2
i ṽh‖H1(Gh) . ‖η− 1

2 ph‖L2(SGSh) for
i = 1, 2. We observe that

|aj,2| =
|cj,3|

|lj,3cj,2 − lj,2cj,3|
≤ 1

lj,min

|cj,3|
|cj,2 − cj,3|

≤ 1

lj,min

where lj,min is the length of the shorter edge of Kj (we used the fact that cj,2cj,3 < 0).
In the same way we obtain |aj,3| ≤ 1

lj,min
for r = 2, 3. We observe also that

|bj,2| =
|lj,3cj,1 − lj,1cj,3|
|lj,3cj,2 − lj,2cj,3|

≤ lj,max
lj,min

|cj,1 − cj,3|
|cj,2 − cj,3|

≤ Cρ
|cj,1 − cj,3|
|cj,2 − cj,3|

≤ Cρdφ,

by (12) and (15), and analogously |bj,3| ≤ Cρdφ, |qj,2||cj,2| ≤ Cρ, |qj,3||cj,2| ≤ Cρ.
Now, we divide the elements of Gh into groups. Starting from K0 every group Gz for

z = 1, ..., NG,h is made by the two successive elements Kj after Gz−1 and by additional
successive elements until, between the third and the last element of Gz, there is at least
one element Kj1 that has the edge Ej−1,3 in common with S1,h and one element Kj2

that has Ej−2,3 in common with S2,h. We indicate with (z, t) the index, in the global
enumeration Kj , of the tth element of the zth group, thus K(z,t) are the elements of Gz
for t = 0, ..., NGz

−1. We observe that Gz is made by the first two elements, followed by
a set of adjacent elements that have all one edge in common with Si,h for the same index
i, apart from the last element. Hence by construction we have NGz ≤ M0 + 3 ≤ M .
We observe that with this construction E(z,NGz−2),3 and E(z,NGz−1),3 are in common
with Si,h and Sj,h respectively i 6= j. We call Hi the set of all the edges E(z,NGz−2),3 or
E(z,NGz−1),3 that are in Ωi. Fixed an index i, we have Hi ∈ γ̂G,i,h and we observe that
between two edges of Hi there can be at most M0 edges that are not in Hi. See Figure
6 for an example. We chose to take s(z,0) such that |m(z,0),1,2| = 0 and s(z,1) such that
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Figure 6: An example of the subdivision of Gh in groups.

m(z,1),2,2 = 0 That is:

s(z,0) = l−1
(z,0),3

(
− c(z,0),3η

−1
i p(z,0),i,h|K(z,0)|+ c(z,0),3l(z,0),1m(z−1,Nt,z−1),1,2

− c(z,0),1l(z,0),3m(z−1,Nt,z−1),1,2

)
,

s(z,1) = l−1
(z,1),2

(
− c(z,1),2η

−1
i p(z,1),i,h|K(z,1)|+ c(z,1),2l(z,1),1m(z,0),2,2

− c(z,1),1l(z,1),2m(z,0),2,2

)
,

with the convention m(z−1,Nt,z−1),1,2 = 0 for z = 0. In this way, for every z and for
i = 1 we obtain m(z,0),1,2 = 0 and

|m(z,0),1,3| ≤ |a(z,0),3|η−1
1 |p(z,0),1,h||K(z,0)|+ |b(z,0),3||m(z−1,Nt,z−1),1,2|

+ |q(z,0),3||s(z,0)|.

Since m(z,0),1,2 = 0, we have |s(z,1)| ≤ |c(z,1),2|(l(z,1),2η1)−1|p(z,1),1,h||K(z,1)| and then

|m(z,1),1,2| ≤ |a(z,1),2|η−1
1 |p(z,1),1,h||K(z,1)|+ |q(z,1),2|

|c(z,1),2|
l(z,1),2

η−1
1 |p(z,1),1,h||K(z,1)|

≤ 2Cρ
l(z,1),min

η−1
1 |p(z,1),1,h||K(z,1)|

and

|m(z,1),1,3| ≤ |a(z,1),3|η−1
1 |p(z,1),1,h||K(z,1)|+ |q(z,1),3|

|c(z,1),2|
l(z,1),2

η−1
1 |p(z,1),1,h||K(z,1)|.

≤ 2Cρ
l(z,1),min

η−1
1 |p(z,1),1,h||K(z,1)|

Now, we take s(Gz,t) = 0 for every 1 < t < NGz
− 2, so that

|m(z,t),1,2| ≤ |a(z,t),2|η−1
1 |p(z,t),1,h||K(z,t)|+ |b(z,t),2||m(z,t−1),1,2|

≤ 1

l(z,t),min
η−1

1 |p(z,t),1,h||K(z,t)|+ Cρdφ|m(z,t−1),1,2|.
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Iterating on t, we obtain:

|m(z,t),1,2| ≤ 2Ctρd
t−1
φ η−1

1

t∑
k=1

|K(z,k)|
l(z,k),min

|p(z,k),1,h|,

for every 1 < t < NGz
− 2 and hence

|m(z,t),1,2| ≤ 2CMρ dM−1
φ η−1

1

NGz∑
k=1

|K(z,k)|
l(z,k),min

|p(z,k),1,h|, (22)

Analogously we can obtain the same estimate for |m(z,t),1,3|. It is important to notice
that inequality (22) is valid for E(z,t),1,3 6∈ H1. Then, for t = NGz − 2 and NGz − 1
we have that E(z,NGz−2),3 and E(z,NGz−1),3 belong to Hi for some i, and we will decide

the value of s(z,NGz−1), s(z,NGz−2) later, to verify some conditions on Si,h. For now it is
sufficient to know that we will choose them such that, for r = 2, 3 and k = 1, 2:

|m(z,NGz−k),1,r| ≤ 2(M + 1)C2M
ρ dM−1

φ η−1
1

∑
K∈SG1,z

|K|
lK,min

|pK,1,h|, (23)

where SG1,z is a set containing all the elements of Gz and some elements of S1,h such
that card(SG1,z) ≤ 3M . We obtain

|m(z,0),1,3| ≤ |a(z,0),3|η−1
1 |p(z,0),1,h||K(z,0)|+ |b(z,0),3||m(z−1,Nt,z−1),1,2|

+ |q(z,0),3||s(z,0)| ≤ 8(M + 1)C2M+2
ρ dMφ η

−1
1

∑
K∈SG1,z

|K|
lK,min

|pK,1,h|

where we exploited the fact that |q(z,0),3||c(z,0),3l(z,0),1 − c(z,0),1l(z,0),3|l−1
(z,0),3 ≤ Cρ

2dφ
thanks to (12) and (15). Hence, for 0 ≤ t ≤ NGz

− 1 and r = 1, 2, 3 we have:

|m(z,t),1,r| ≤ 8(M + 1)C2M+2
ρ dMφ η

−1
1

∑
K∈SG1,z

|K|
lK,min

|pK,1,h|.

Using analogous arguments we can prove the same for |m(z,t),2,r|, and setting C =
8(M + 1)C2M+2

ρ dMφ , for every 0 ≤ t ≤ NGz
− 1, i = 1, 2, r = 1, 2, 3, we obtain:

|m(z,t),i,r| ≤ Cη−1
i

∑
K∈SGi,z

|K|
lK,min

|pK,i,h|.

It is important to notice that C does not depend on h. If we had not use the subdivision
of Gh into groups, i.e. considering Gh as a single group, we would have obtained a
constant C not depending on M but on NGz , which clearly grows when h → 0, and
thus our constant C would increase indefinitely when h → 0. The subdivision in the
subgroups has allowed us to keep C independent from h.
We are now in the position to write that for every j

‖η
1
2
i ṽKj,i,h‖H1(Kj,i) .

3∑
r=1

η
1
2
i |mj,i,r|‖φj,i,r‖H1(Kj,i)

. η
1
2
i

Cη−1
i

∑
K∈SGi,z

|K|
lK,min

|pK,i,h|

( 3∑
r=1

‖φr‖H1(Kj,i)

)
.

(24)
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Thanks to inverse inequalities, we have ‖φr‖H1(Kj,i) . h−1|Kj,i|
1
2 and, thanks to shape

regularity, |K|l−1
K,min . h for every k. Hence,

‖η
1
2
i ṽKj,i,h‖H1(Kj,i) . Cη

− 1
2

i |Kj,i|
1
2

∑
K∈SGi,z

|pK,i,h|

and finally by, setting ṽGh =
∑
K∈Gh ṽKj,i,h, we have

‖η
1
2
i ṽGh‖H1(Gh) .

NGh−1∑
j=0

‖η
1
2
i ṽKj,i,h‖H1(Kj,i) . Cη

− 1
2

i

NGh−1∑
j=0

|Kj,i|
1
2

∑
K∈Gh,Si,h

|pK,i,h|

. Cη
− 1

2
i

∑
K∈Gh,Si,h

|K| 12 |pK,i,h| . C‖η− 1
2 ph‖L2(Gh∪Si,h) . C‖η− 1

2 ph‖L2(SGSh).

(25)

Part 3b - Subdomains S1,h, S2,h. Now we consider Si,h. We indicate with NSi,h the
number of elements of Si,h, and we enumerate them from 0 to NSi,h − 1 in this way: we
choose Q0,i such that it has an edge in common with ∂Ω, and a vertex in common with
K0 ∈ Gh, then we choose every Qj,i such that it has an edge in common with Qj−1,i.
Given an element Qj,i ∈ Si,h, we build ṽQj,i,h ∈ RT0(Qj,i) such that

b(ph, p̂h, ṽQj,i,h,0) & ‖η− 1
2 ph‖2L2(Qj,i)

As we did for Gh, if we find a ṽQj,i,h ∈ RT0(Qj,i) such that −∇ · ṽQj,i,h & η−1
i pj,i,h on

Qj,i, with pj,i,h = ph|Qj,i , we have

b(ph, p̂h, ṽQj,i,h,0) = −
(
ph,∇ · ṽQj,i,h

)
Qj,i

& ‖η−1ph‖2L2(Qj,i)
(26)

and the first inequality of the inf-sup condition is satisfied. To this purpose we enumerate
the edges of the element Qj,i ∈ Si,h, calling them Ej,i,r for r = 1, 2, 3. We observe that
every element Qj,i ∈ Si,h has one and only one edge that is either in common with ∂Gh
or in common with ∂Ti,h, and we call it Ej,i,3. For Q0,i we call E0,i,1 the edge in common
with ∂Ω, and obviously E0,i,2 the other one. Then, we enumerate the edges Ej,i,1, Ej,i,2
for j ≥ 1 so that Ej,i,1 = Ej−1,i,2. Finally, we call mj,i,r the d.o.f. corresponding to
edge Ej,i,r. Writing ṽQj,i,h = mj,i,1φj,1 + mj,i,2φj,2 + mj,i,3φj,3 and proceeding as for

Gh we obtain that −∇ · ṽQj,i,h = η−1
i pj,i,h is equivalent to

−mj,i,1lj,i,1 −mj,i,2lj,i,2 − lj,i,3mj,i,3 = η−1
i pj,i,h|Qj,i|.

If E0,i,3 is in common with ∂Gh, m0,i,3 is determined by the value of the d.o.f. on the
same edge. On the contrary, if E0,i,3 is in common with ∂Ti,h we must set m0,i,3 = 0.
To verify the desired the first condition in (20), we set m0,i,1 = 0 and

m0,i,2 = a0,iη
−1
i p0,i,h|Q0,i|+ b0,im0,i,3,

where a0,i = −l−1
0,i,2, b0,i = −l0,i,3l−1

0,i,2. For j ≥ 1, since Ej,i,1 = Ej−1,i,2, for continuity
we must have mj,i,1 = −mj−1,i,2, and so we need to take

mj,i,2 = aj,iη
−1
i pj,i,h|Qj,i|+ bj,imj,i,3 + cj,imj−1,i,2,
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where aj,i = −l−1
j,i,2, bj,i = −lj,i,3l−1

j,i,2, qj,i = lj,i,1l
−1
j,i,2. Hence for every Qj,i we have

built a function ṽQj,i,h = mj,i,1φj,1 + mj,i,2φj,2 + mj,i,3φj,3, that satisfies the first
inequality. It remains to show that ṽQj,i,h satisfies also the second inequality in (20)

for every Qj , that is ‖η
1
2
i ṽh‖H1(Si,h) . ‖η−

1
2 ph‖L2(Ω) for i = 1, 2. For every j, we have

|aj,i| = | − l−1
j,i,2| ≤ l

−1
j,i,min, |bj,i| = | − lj,i,3l−1

j,i,2| ≤ Cρ, |cj,i| = |lj,i,1l
−1
j,i,2| ≤ Cρ.

Now, we divide the elements of Si,h into groups. Starting from Q0,i every group
Si,z for z = 1, . . . , NSi,z

is made by a first element that has one edge belonging to Hi

and by all the successive elements up to the next element that has an element belonging
to Hi (this element will be the first element of the successive group). If Q0,i does not
have an element belonging to Hi, then we consider as first group Si,0 the set of elements
up to the first that has one edge belonging to Hi, and in order not to consider this
group in a special way we introduce for this group a “virtual” first element Q∗ that has
mQ∗i,1 = mQ∗,i,2 = mQ∗,i,3 = 0, so that all the inequalities that we will show for all the
other groups are true also for this first group. We indicate with (z, t) the index, in the
global enumeration Qj , of the tth element of the zth group, thus Q(z,t),i are the elements
of Si,z for t = 0, . . . , NSi,z − 1. We recall that in γ̂G,i,h between edges of Hi there can
be at most M0 edges not belonging to Hi. Then every Si,z has at most M0 elements of
Si,h that have an edge in common with Gh, and between two elements with an edge in
common with Gh there are at most NS,h(≤M0) elements that have one edge in common
with Ti,h. Consequently by construction we have NSi,z

≤M0(M0 + 1) = M . See Figure
7 for an example. By construction element Q(z,0),i is such that E(z,0),i,3 ∈ Hi and hence

Figure 7: An example of the subdivision of S2,h in groups

we can choose the value of m(z,0),1,3. We take it such that m(z,0),1,2 = 0, that is

m(z,0),1,3 =
(
− a(z,0),1η

−1
1 p(z,0),1,h|Q(z,0),1| − c(z,0),1m(z−1,NSz−1

−1),1,2

)
b−1
(z,0),1.

By construction, for every element Q(z,t),1 of S1,z, for t = {1, 2, ...} we have that E(z,t),1,3

is either in common with Gh (with E(z,t),1,3 6∈ H1), or with T1,h. In the former case,
recalling (22), we have

|m(z,t),1,3| ≤ 2CMρ dM−1
φ η−1

1

∑
K∈G1,z,t

|K|
lK,min

|pK,1,h|,
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where G1,z,t is the group of elements in Gh element having an edge in common with
Q(z,t),1. In the latter, case we have |m(z,t),1,3| = 0. We observe that for each Q(z,t),1 we
have at most two distinct G1,z,t, and we call G1,z the union of these two groups, thus
card(G1,z) ≤ 2M . Hence, for t = 1 we obtain

|m(z,1),1,2| ≤
|Q(z,1),1|
l(z,1),1,min

η−1
1 |p(z,1),1,h|+ 2CMρ dM−1

φ η−1
1

∑
K∈G1,z,1

|K|
lK,min

|pK,1,h|,

and for t = 2

|m(z,2),1,2| ≤
|Q(z,2),1|
l(z,2),1,min

η−1
1 |p(z,2),1,h|+ Cρ

|Q(z,1),1|
l(z,1),1,min

η−1
1 |p(z,1),1,h

+ 4CM+1
ρ dM−1

φ η−1
1

∑
K∈G1,z,2

|K|
lK,min

|pK,1,h|

≤ Cρη−1
1

( |Q(z,2),1|
l(z,2),1,min

η−1
1 |p(z,2),1,h|+

|Q(z,1),1|
l(z,1),1,min

η−1
1 |p(z,1),1,h|

)
+ 4CM+1

ρ dM−1
φ η−1

1

∑
K∈G1,z

|K|
lK,min

|pK,1,h|,

where we used the fact that Cρ ≥ 1. For t > 2 we obtain:

|m(z,t),1,2| ≤ Ct−1
ρ η−1

1

t∑
k=1

|Q(z,k),1|
l(z,k),1,min

η−1
1 |p(z,k),1,h|

+ 2tCM+t−1
ρ dM−1

φ η−1
1

∑
K∈G1,z

|K|
lK,min

|pK,1,h|.

Hence we have, for every j:

|m(z,t),1,2| ≤ 2MC2M−1
ρ dM−1

φ η−1
1

∑
Q∈(S1,z\{Q(z,0),1})∪G1,z

|Q|
lQ,min

|pQ,1,h|. (27)

Thanks to (27) we can write:

|m(z,0),1,3| ≤ Cρη−1
1 |p(z,0),1,h||Q(z,0),1|+ Cρ|m(z−1,NSz−1

−1),1,2|

≤ 2(M + 1)C2M
ρ dM−1

φ η−1
1

∑
Q∈S1,z∪G1,z

|Q|
lQ,min

|pQ,1,h|,

with card(Q(z,1),1 ∪ G1,z) ≤ 3M : this is exactly what we supposed for mQ,1,3 =
m(z,NGz−k),1,r in (23) for any Q that has an edge in H1. More generally, we obtain
that for every t, r, z:

|m(z,t),1,r| ≤ 2(M + 1)C2M
ρ dM−1

φ η−1
1

∑
Q∈S1,z∪G1,z

|Q|
lQ,min

|pQ,1,h|.

Using analogous arguments we can prove the same for |m(z,t),2,r|. For simplicity we set

C = 2(M + 1)C2M
ρ dM−1

φ and we set SGi,z = Si,z ∪Gi,z, so that

|mj,i,r| ≤ Cη−1
i

∑
Q∈SGi,z

|Q|
lQ,min

|pQ,i,h|.
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With the same arguments used in (24), (25), we obtain

‖η
1
2
i ṽSi,h‖H1(Si,h) . C‖η− 1

2 ph‖L2(SGSh). (28)

To conclude, we set ṽh = ṽGh + ṽS1,h + ṽS2,h , and we have that

b(ph, ṽh) & ‖η− 1
2 ph‖2L2(SGSh) ‖η

1
2
i ṽh‖H1(SGSh) . ‖η

− 1
2

i pi,h‖L2(SGSh).

where we used (21), (25), (26), (28). Therefore (19) is satisfied ad this concludes the

proof. 2

4.4 Stability

The inf-sup condition implies a stability result.

Theorem 1 (Stability) Let (uh, ûh, ph, p̂h) ∈Wh, and let Mγ̂ be the constant
of Theorem 4.1. Then,

‖(uh, ûh, ph, p̂h)‖Wh
.Mγ̂ sup

Wh

C((uh, ûh, ph, p̂h), (vh, v̂h, qh, q̂h))

‖(vh, v̂h, qh, q̂h)‖Wh

. (29)

Proof. The proof is analogous to the proof of stability in [7]. In particular, in the

proof we used congruence (7), boundedness (10), inf-sup condition (16). 2

4.5 Convergence

Thanks to the previous stability result, we can state the convergence of our
numerical scheme in a standard way.

Theorem 2 (Convergence) Let (u, û, p, p̂) ∈ W be the solution of problem
(2). There exists a unique solution (uh, ûh, ph, p̂h) ∈Wh of problem (6), and

‖(uh − u, ûh − û, ph − p, p̂h − p̂)‖Wh
.Mγ̂ inf

Wh

‖(vh − u, v̂h − û, qh − p, q̂h − p̂)‖Wh
.

Proof. The proof is analogous to the proof of convergence in [7]. In particular, in

the proof boundedness (10), positivity (11) and stability (29) are used. 2

We notice that, since Mγ̂ is not dependent on h, the estimate is asymptoti-
cally robust as h→ 0.

5 Numerical examples

In this section we assess the theoretical results proven in Section 4 considering
a test case where the fracture exhibits a sharp bend in a relatively coarse grid.
Then, we validate the numerical method studying the error and the related order
of convergence.

22



5.1 Stability analyses

Let us consider a domain Ω = (0, 1)2 cut by a fracture γ̂ described by the
following equation

γ̂ =

(x, y) ∈ R2 : y =


mx+

m− 1

2
if x <

1

2

−mx+
m+ 1

2
if x ≥ 1

2

 .

with the same permeability as the bulk medium (set to 1 for simplicity) and
aperture lγ̂ = 0.01. We consider two different slopes, m = m1 = 1.3 and
m = m2 = 1.5, corresponding to the angles θ1 = 75.13◦ and θ2 = 67.38◦ at
the corner (x = 0.5) respectively. In both cases we consider a coarse bulk grid
with h ' 0.08 that satisfies Assumptions H1 and H2. We impose homogeneous
Neumann boundary conditions and a constant source term f = 4. Despite the
small difference between the two configurations the solutions, shown in Figure
8, are completely different. In the first case we obtain the correct solution,
while in the second we can observe oscillations in some cut elements close to
the angle vertex (more visible in the zoom in Figure 10). Indeed, in this second
configuration the inf-sup condition is not satisfied. Let us consider the two cut
regions shown in Figure 9: with m2 = 1.5 and the given grid we have some non-
cut edges that are shared by two triangles of the cut region, and this violates
Hypothesis 3.

(a) Solution for m1 (b) Solution for m2

Figure 8: Pressure in the bulk and the fracture in the case with slope m1 and
m2.

5.2 Convergence

To test the converge of the method we consider the test case reported in [16].
For this purpose we consider a domain Ω = (−1, 1)2 and we take Λj = I for
the porous media Ω1 and Ω2. The domain is cut by an horizontal fracture γ̂ of
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(a) Cut region for m1 (b) Cut region for m2

Figure 9: Cut region and fracture configuration for m1 and m2.

(a) Solution for m1 (b) Cut region for m1 (c) Solution for m2 (d) Cut region for m2

Figure 10: Zoom of the solutions and corresponding cut regions for m1 and m2.

thickness lγ̂ in x = 0. The fracture is isotropic, and so the permeability tensor
is Λf = λfI with λf ∈ R+. The problem is the one described by equations (2)
and the exact solution we have considered is

pex(x, y) =

λf cos(x) cosh(y) + (1− λf ) cosh

(
lγ̂
2

)
cos(x) on Ω \ γ̂

cos(x) cosh(y) on γ̂

,

obtained by imposing f = 0 and f(x, y) = (1 − λf ) cosh
(
lγ̂
2

)
cos(x) on Ω \ γ̂,

0 otherwise. We assume homogeneous Neumann boundary conditions both on
∂Ω\∂γ̂ and on ∂γ̂. In the simulations we use a constant thickness of the fracture
equal to lγ̂ = 10−3, and we change the fracture permeability: λf = 10−3, λf = 1
and λf = 103. For every different λf we consider five different values of h. The
errors are calculated for the pressure p in the domain Ω \ γ̂ as:

err =
|||pex − ph|||
|||pex|||

=

√√√√∑K∈Th
1
|K|
∫
K(pex − ph)2∑

K∈Th
1
|K|
∫
K p

2
ex

In Figure 11 the variation of err as function of h with constant λf is shown, and
we observe that the order of convergence of the pressure is approximately linear.
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0.10000
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err

h

Convergence rate

O(h)

O(h2)
errλf=1

errλf=103

errλf=10−3

Figure 11: Computed errors in function of h for different values of λf .

6 Conclusion

In this work we considered a suitable XFEM-type enrichment for the mixed
finite element approximation of a Darcy problem in fractured porous media. The
fracture is considered as an object of co-dimension one, see [2, 20, 3], and its
geometrical representation is irrespective of the grid of the porous medium, see
[17, 7]. The well posedness proof in [7] considers the case of known pressure and
Darcy velocity in the fracture, however the authors showed numerical evidences
that it is indeed satisfied in the general case. For this reason we focused this
paper on the well posedness of the discrete coupled problem, i.e. where pressure
and Darcy velocity are both considered as unknowns in the fracture and in
the porous media. This result requires more advanced techniques than in [7].
The numerical results confirm that the hypotheses on the grid and fracture
configuration for the inf-sup condition, presented in Subsection 4.3, are rather
sharp. However we remark that given a fracture geometry it is easy to find a
mesh with suitable grid size that fulfils the necessary hypotheses. Finally we
assessed the order of convergence against an exact solution.
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