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Abstract: Anaerobic co-digestion in wastewater treatment plants is looking increasingly like a
straightforward solution to many issues arising from the operation of mono-digestion. Process
modelling is relevant to predict plant behavior and its sensitivity to operational parameters, and to
assess the feasibility of simultaneously feeding a digester with different organic wastes. Still, much
work has to be completed to turn anaerobic digestion modelling into a reliable and practical tool.
Indeed, the complex biochemical processes described in the ADM1 model require the identification
of several parameters and many analytical determinations for substrate characterization. A combined
protocol including batch Biochemical Methane Potential tests and analytical determinations is pro-
posed and applied for substrate influent characterization to simulate a pilot-scale anaerobic digester
where co-digestion of waste sludge and expired yogurt was operated. An iterative procedure was
also developed to improve the fit of batch tests for kinetic parameter identification. The results are
encouraging: the iterative procedure significantly reduced the Theil’s Inequality Coefficient (TIC),
used to evaluate the goodness of fit of the model for alkalinity, total volatile fatty acids, pH, COD,
volatile solids, and ammoniacal nitrogen. Improvements in the TIC values, compared to the first
iteration, ranged between 30 and 58%.

Keywords: ADM1; anaerobic co-digestion; waste sludge; modelling; parameter estimation; input
characterization; anaerobic activity test; BMP tests

1. Introduction

It is increasingly important for wastewater treatment plants (WWTPs) to recover
as much energy and material as possible from waste sludge, thus turning WWTP into
more energy-efficient and cost-effective facilities. Stricter discharge limits on effluents
and technology improvements in wastewater treatment processes are expected to increase
the amounts of waste sludge to be treated and disposed [1]. In this context, anaerobic
co-digestion (AcoD) offers several potential advantages arising from optimized organic
waste treatment [2], and overcomes two main issues related to the anaerobic digestion of
waste sludge: the low organic load applied and the presence of spare capacity in WWTP
digesters, as much as 30% [3]. Due to its relatively low C/N ratio and high buffer capacity,
waste sludge is suitable for co-digestion with easily biodegradable and poorly buffered
substrates; moreover, dilution of micropollutants (i.e., heavy metals and pharmaceuticals)
commonly found in sludge will be attained as well [4].

AcoD modelling plays a crucial role in the selection of the effective mixing of two or
more waste streams in a digester [5]. Indeed, a modelling approach allows the assessment
of optimal operational conditions (co-substrate selection, feeding composition, applied
loads) of the AcoD process while minimizing the time and costs associated with laboratory
experiments [6,7]. Since the development of the current state-of-the-art model for describing
anaerobic digestion processes (Anaerobic Digestion Model No. 1) [8], researchers have
dealt with two key constraints for model application: (i) the wide range of variability of
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a large number of stoichiometric and kinetic parameters, requiring the estimation of the
most sensitive ones, and (ii) the lack of generally accepted guidelines for influent substrate
characterization according to model input variables [9].

Default values of parameters are available from the literature [8,10] and are recom-
mended for the digestion of municipal waste sludge, but they may not be appropriate for
a wide range of organic wastes or for co-digestion applications [11–13]. Using dynamic
data from a full-scale reactor may not be dynamic enough to cover all relevant operational
conditions that the model should represent, since the quality of the results will depend on
the variations that occur during normal operation [14]. Although it is controversial to apply
kinetic parameters estimated from lab-scale experiments to the modelling of full-scale di-
gesters [15,16], it has been widely demonstrated that using biochemical methane potential
(BMP) tests is effective in the assessment of ADM1 hydrolysis parameters [12–14,17,18].

Batch experiments have been proved to be essential for two further purposes: (i) to
quantify the degradability extent (fd) or the inert influent COD fractions (Xi, Si) [15,19]; and
(ii) to evaluate the kinetic fractionation by interpreting methane production rate trends
obtained from batch experiments [9,20,21].

A reliable analytical determination of all input state variables, as well as the full iden-
tification of all individual parameters are neither straightforward nor practical [22,23]. Sev-
eral methods have been proposed to determine ADM1 input state variables with minimal
analytical efforts. The most common way is to estimate substrate fractionation from direct
analysis of the main biochemical fractions: carbohydrates, proteins, and lipids [7,9,24–26].
An alternative approach relies on the determination of the elemental mass fractions of
carbon, hydrogen, oxygen, nitrogen, and phosphorus starting from practical chemical
measurements [23,27,28] or directly from the elemental analysis [20]; fractions for proteins,
carbohydrates, lipids, and VFAs are then calculated using stoichiometric coefficients and
an ideal molecular formula for each component.

The objective of this study is the calibration of the ADM1 for AcoD of municipal
waste sludge and expired food from dairy industries (yogurt) to be used in the operation
of a pilot-scale digester. In more detail, a protocol for state variables determination was
designed and tested, including direct analysis of the biochemical fractions on influent
substrates and output digestate, and BMP batch tests. Furthermore, an iterative procedure
for the estimation of kinetic parameters was adopted, based on modelling of batch tests
performed using target substrates and the digestate from the pilot-scale digester.

2. Materials and Methods
2.1. Pilot Plant

A pilot-scale CSTR digester (60 L working volume) was operated over a period of
7 months. The digester was provided with a temperature control (38 ◦C), feeding pump,
mechanical mixing, on line temperature, pH, and redox monitoring. The digester was fed
once a day in a semicontinuous mode, according to an average hydraulic retention time,
HRT, of 17 days. The digestate used to inoculate the reactor and the feeding substrates
(waste sludge—WS and yogurt—Y) were collected from the full-scale WWTP of Sesto
San Giovanni (Milan, Italy) where AcoD already takes place. Substrates were weekly
sampled and stored at 4 ◦C. The experimentation was split into three phases: Phase I (until
day 104, from 8 October 2020 to 20 January 2021) during which only WS was fed to the
digester (OLR = 2.0 kgCOD·m−3·d−1); Phase II (days 105 to 174, from 21 January 2021 to
31 March 2021) where AcoD of WS and Y was implemented (OLR = 2.6 kgCOD·m−3·d−1

and 22% of the COD load coming from Y); during Phase III (days 175 to 210, from
1 April 2021 to 6 May 2021) the digester was operated again in mono-digestion, adopt-
ing the same conditions as in Phase I.

2.2. Monitoring Plan

Total (TS) and volatile solids (VS), ammoniacal nitrogen (N-NH4
+), total alkalinity

(Alk), volatile fatty acids (VFAs), and pH were measured weekly on the digested sludge and
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on the feeding substrates. Biogas composition was measured weekly. Online acquisition of
the biogas production rate was made available starting from day 1 until day 83 because of
a technical issue.

Additionally, every two weeks during Phase I, and every three/four weeks during
Phases II and III, a more comprehensive monitoring plan was implemented for the compu-
tation of ADM1 state variables (Figure 1), including the measurement of: carbohydrates
(CH), proteins (PR), and lipids (LI) on the total and soluble/suspended (liquid phase
separated by centrifugation: 15 min, 4000 rpm) fractions of WS and digested sludge as
well as on the total fraction of Y. In addition, with the same regularity, BMP tests on the
raw sample (for WS and Y) and on the pellet separated through centrifugation (for WS
only) were performed in order to derive both the inert particulate and soluble/suspended
fractions of COD (Xi and Si), and an initial estimate of the disintegration/hydrolysis kinetic
constant of the process. Total and soluble/suspended COD (on WS and Y) and TKN (on
WS) were also measured to verify the appropriateness of the methods adopted for the
analysis of the biochemical fractions.
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2.3. Analytical Methods

TS, VS, TSS, and VSS were determined according to Standard Method (SM) 2540 [29].
Total COD (CODtot) and total/soluble TKN (TKNtot, TKNs) were measured according to
SM 5220 [29] and ISO 5663-1984, respectively. Total/soluble carbohydrates (CHtot, CHs)
were measured by means of the phenol-sulfuric acid method (Dubois method), using glu-
cose as standard for the calibration curve (10–180 mgGlu·L−1) [30]. The Bicinchoninic Acid
method (BCA Method) was adopted for the determination of total/soluble proteins (PRtot,
PRs) using BSA (Bovine Serum Albumine), a soluble protein, as standard for the calibration
curve (25–2000 mgBSA·L−1). Total/soluble lipids (LItot, LIs) were determined according
to SM 5520 B, 5520 E, and 5520 F [29]. Single VFAs (acetic, propionic, isobutyric, butyric,
isovaleric, and valeric) concentrations were measured through a gas chromatograph (DANI
Master GC) coupled with a flame ionization detector (SM 5560, [29]). Ammoniacal nitrogen
was measured using spectrophotometric test kits (Hach-Lange) on 0.45 µm filtered samples.
The pH was measured by means of a portable multiprobe meter (Hach-Lange, HQ40D).
Total alkalinity (TAC) was measured by automatic titration with H2SO4 up to pH 4.3 (Hach
Lange BIOGAS Titration Manager). The biogas composition (CO2, CH4, H2, O2, and N2)
was determined using a gas chromatograph (DANI Master GC Analyser equipped with
two columns HayeSep Q and Molesieve 5A).
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2.4. Batch Experiments

A volumetric device equipped with a CO2-trap was used to measure the methane
produced from batch experiments.

BMP tests were run under mesophilic conditions (38 ◦C) in 1 L reactors, 800 mL
working volume, and using the digested sludge sampled from the pilot-scale digester as
inoculum. An inoculum to substrate (I/S) ratio of 2.0 gVS/gVS was adopted for sludge.
Yogurt was tested using an I/S ratio of 3.5 gVS/gVS, while an I/S ratio of 2.5 was used
when testing co-digestion of different blends of sludge and yogurt (yogurt VS fraction of
0.45–0.50–0.65 gVSY/gVStot). BMP values were finally referred to the amount of substrate
quantified in terms of COD (NmLCH4·gCOD

−1).
Furthermore, in order to supply additional experimental data for ADM1 calibra-

tion, activity tests on the digested sludge sampled from the pilot-scale digester were per-
formed weekly. A VS concentration of 10 g·L−1 was used; acetate (3.0 gCOD·L−1), glucose
(2.5–4.0 gCOD·L−1), and bovine serum albumin (BSA, 2.9–4.0 gCOD·L−1) were selected to
test different stages of the anaerobic digestion process, from downstream to upstream: ace-
toclastic methanogenesis (Xac), acidogenesis from monosaccharides (Xsu), and acidogenesis
from amino acids (Xsu), respectively. Tests were stopped once the supplemented substrate
was fully consumed, as suggested by the change in the rate of methane production.

2.5. Input State Variables’ Determination

Of the 26 ADM1 input state variables, 17 were derived from measurements and BMP
tests, while the concentration of the 7 biomasses were assumed as negligible in the feeding
substrates; the 2 dissolved gases (Sch4 and Sh2) were taken from Rosen and Jeppsson
(2006) [10] for WS and assumed as negligible for Y. An overview of substrates fractionation
is shown in Figure 1.

An association procedure between experimental data and ADM1 state variables was
adopted, similar to that suggested in Hassam et al. (2015) [31]. Details are reported in
Appendix A (Tables 1 and 2). Based on measurements of CH (gGlu·L−1), PR (gBSA·L−1),
and LI (g·L−1) in sludge, once defined the COD conversion factors for carbohydrates
(αch,COD), proteins (αpr,COD) and lipids (αli,COD), and with the COD associated to VFAs
(CODVFA) computed according to stoichiometry, the total, soluble (excluding VFAs), and
particulate COD concentrations of the sludge were computed. The BMP value obtained for
the particulate fraction of WS was used to derive the inert particulate of sludge (Xi). Thus,
the inert soluble was calculated from the BMP value obtained for the total fraction of WS
(BMPtot). The percentage of COD used for cell growth during the BMP test was assumed
to be fY = 8% [32]. In order to derive the amount of particulate/soluble, degradable
biochemical fractions, direct measurements of each of them were resized to the degradable
particulate (CODp—Xi) or soluble (CODs—Si) COD contents.

Since the waste sludge was a mixture of primary (90% on VS base) and secondary
sludge (10% on VS base), the 10% of the VS of the secondary sludge was assumed to enter
the digester as complex particulate (Xc), while the remaining 90% as already disintegrated
variables (Xch,, Xpr, Xli, Xi). Fractionation coefficients of Xc were then derived as reported
in Table 3 (Appendix A) and were introduced in the model as time-dependent parameters.

Regarding the expired yogurt, BMP tests proved that yogurt is almost completely
degradable (Xi = Si ∼= 0). Furthermore, since measurements for yogurt were available
only for the raw sample, with no distinction between the particulate and the soluble
fractions, as first attempt the total organic matter was assumed to be particulate degradable
COD, entering the digester as already disintegrated variables (Xch,, Xpr, Xli). VFAs were
considered as the sole non-negligible soluble components. This approach was then changed
during simulations in order to improve the fit with experimental data during Phase II, as
will be further discussed in Section 3.2.2.
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2.6. Model Implementation, Calibration, and Evaluation

The ADM1 was implemented according to Rosen and Jeppsson (2006) [10] and used
for modelling both the continuous reactor and the batch experiments. The OpenModelica
platform was used as a simulation tool, selecting DASSL (Differential/Algebraic System
Solver) code for the numerical solution of the system of differential/algebraic equations.
The initial values of the stoichiometric and kinetic parameters were taken from Rosen and
Jeppsson (2006) [10] and the temperature correction coefficients for kinetic parameters from
Siegrist et al. (2002) [33].

To exploit the synergy between data from batch experiments and those collected
from the pilot-scale reactor, kinetic parameters were calibrated according to an iterative
procedure (Figure 2) in view of a simultaneous optimization of batch and continuous tests.
The modeling of the pilot-scale reactor using default initial values of ADM1 parameters
provided initial values for digested sludge characteristics. Such values were then trans-
ferred to the batch tests (BMP and biomass activity tests) for kinetic parameters estimation
and, iteratively, parameters estimates were passed back to the pilot-scale model to provide
more accurate values for digested sludge state variables.
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pilot plant and batch tests.

Sensitivity analysis was used to identify the most sensitive parameters to be evalu-
ated in the calibration procedure, testing all kinetic parameters and input state variables
(perturbation ±20%), and selecting, as response variables, the same made available for
calibration from the monitoring of the pilot plant (the methane rate QCH4, alkalinity, the
total concentration of volatile fatty acids TVFA, pH, N-NH4

+, VS, and COD). The sensitivity
index (SI), which is the ratio between perturbed and unperturbed runs, was computed to
quantify sensitivity.

In order to quantitatively describe the model performance, the Theil’s Inequality
Coefficient (TIC) [34] and the modified Mean Absolute Relative Error (MARE) [35] were
applied (Equations (1) and (2)).

TIC =

√
∑i(ys,i − ym,i))2√

∑i ys,i
2 +

√
∑i ym,i

2
(1)
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MARE =
1
n∑n

i=1
|ym,i − ys,i|

ym,i + ϕ
(2)

where ys,i represents the value of the variable measured experimentally and ym,i the value
estimated by the model. The small correction factor ϕ (0.1) was applied to avoid division by
zero. Both criteria quantified the difference between model predictions and experimental
values and normalized them according to the magnitude of each variable. TIC < 0.3
represented a good simulation result. In general, for both criteria, the closer the value to
zero, the better the model performance.

3. Results
3.1. Substrates and Digestate Characterization

Results of the the measurements of CH, PR, and LI concentration in WS, Y, and
digestate are reported in Figure 3. Two sets of data were available for PR estimation
corresponding to the BSA or the TKN method that were reported as PR_BSA and PR_TKN,
respectively. The composition of substrates is reported in Figure 3a,b. Compared to yogurt,
the high variance of sludge composition reflected the seasonal variability of this substrate
whose characteristics are dependent upon the wastewater as well as on WWTP operational
parameters. According to the BCA Method, the total COD of the WS comprised, on average,
29% carbohydrates, 42% proteins, and 24% lipids, the remainder being VFAs. As regards Y,
52% of total COD originated from carbohydrates, 24% from proteins, and 22% from lipids.
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Figure 3. Boxplots of biochemical fractionation for (a) waste sludge (n = 9), (b) yogurt (n = 3), and (c) digestate (n = 9): the
black mark is the mean, the red line is the median, and the edges of the box are the 25th and 75th percentiles. The whiskers
extend to the most extreme datapoints not to be considered as outliers.

With reference to Figure 3c, given the large difference between the protein content mea-
sured with the two methods, and in order to verify the reliability of experimental data, COD
balances were assessed by comparing the available data of CODtot with that computed
as the sum of components. For this purpose, a COD content of 1.58 gCOD·gBSA

−1 was as-
sumed for the BCA method, and conversion factors of 6.25 gPR·gN

−1 and 1.42 gCOD·gPR
−1

were used for the TKN method [30]. Relative errors (errrel) were computed and nega-
tive values identified underestimations of the sum of biochemical fractions, compared
to the Standard Method 5220 [29] for COD determination. For waste sludge, the COD
balance was accurate enough using both BCA (errrel range −9.0% to 19%, average value
of 7.7%) and TKN (errrel range −14% to 21%, average value of 7.2%) methods. Regarding
digestate, the TKN method (errrel range −49% to 14%, average value of 16%) performed
much better than the BCA method (errrel range −89% to 14%, average value of 47%), with
errors three times lower on average. As already found by other authors [36], significant
overestimations using the BCA method were observed for all digestate samples, except one.
Although the BCA method was not affected by humic acids content, simple sugars such as
glucose can respond like proteins, generating interference [37]. However, bacteria quickly
assimilate simple sugars that are commonly less abundant in bacterial aggregates [36].
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Conversely, the uncertainty related to the hypothesis of 16.5% (w/w) of nitrogen in proteins
(6.25 gPR·gN

−1), which is the basis for the conversion of the organic nitrogen into COD
associated to proteins, likely affected the results found in the present study. Based on the
amino acid composition of reference substrates, several authors showed that this ratio
varied remarkably from one substrate to another: from 5.14 to 6.26 for animal and plant
products [38], 7.5 for wastewater [39], and 8.8 for sewage sludge [30].

In view of the results of the present study, the BCA method was selected for computa-
tion of input state variables, while for digestate, the COD content of the effluent digestate
from simulations was fitted with measurements from SM 5220.

3.2. Model Calibration

The results from the sensitivity analysis suggest the importance of accurate mea-
surement of the influent concentration of particulate proteins to properly predict vari-
ables such as the inorganic nitrogen concentration (SI ∼= 19%), alkalinity (SI ∼= 12%) and
QCH4 (SI ∼= 7%). A ±20% perturbation of the hydrolytic constant of proteins altered the
output variables to a lower extent (SI < 4%). The methane rate was also impacted by
the concentration of particulate carbohydrates and lipids (SI ∼= 5%). TVFA were affected
by many parameters, of which the half-saturation constant for propionate (KS,pro) and
maximum uptake rate for propionate (km,pro) were the most influential (SI = 7%). According
to the results of this analysis, a subset of nine parameters were selected to be calibrated on
experimental data (kdis, khyd,ch, khyd,pr, khyd,li, km,su, km,aa, km,ac, KS,su, KS,aa, KS,ac, KS,pro).

A comparison of the parameters estimated at the 1st and 5th iterations is reported in
Table 1, while Table S1 (Supplementary Materials) summarizes the results of the iterative
calibration process and the values of the parameters estimated at each iteration. A total of
six iterations on nine parameters were performed in order to reach a satisfactory agreement
with the experimental data. Model performance criteria were evaluated at each step of the
iterative procedure and are reported in Table S2 (Supplementary Materials) for some of the
batch tests performed during the experimentation, and in Table S3 (Supplementary Materials)
for the pilot plant model. Likewise, Figures 4 and 5 for activity tests and BMP tests,
respectively, and Figure 6 for the pilot plant visually show the improvements achieved
during the iterative procedure. A detailed discussion of results is included in the following
subsections to elucidate the role of the most interesting steps of the calibration procedure
and to highlight insights drawn from the results obtained.

Table 1. Kinetic parameters estimated at first and last iterative step of the calibration process.

Iteration
Parameter (Unit)

kdis
(d−1)

khyd,ch
(d−1)

khyd,pr
(d−1)

khyd,li
(d−1)

km,su
(d−1)

km,aa
(d−1)

km,ac
(d−1)

KS,su
(kgCOD·m−3)

KS,aa
(kgCOD·m−3)

KS,ac
(kgCOD·m−3)

KS,pro
(kgCOD·m−3)

1st 1.2 0.75 0.6 0.3 30 50 8 0.5 0.3 0.15 0.3
5th (6th) 1.5 0.3 0.2 (0.5) 0.5 8 8 8 0.3 0.2 0.01 0.2

It is worth noting that, despite the limited dataset, the fit of the methane rate was very
good starting from iteration n.1 (grey line, Figure 6a), which was obtained by modifying
only the rate of hydrolysis and disintegration kinetic constants. However, some crucial
variables for the monitoring and the control of a digester (TVFA, VS) were not satisfactorily
predicted by the model at the 1st iteration (see the TIC and MARE values in Table S3,
Supplementary Material). Hence, for practical use of the ADM1 model at full-scale as
well as for the assessment of scenario analyses, it was essential to accurately estimate
parameters by exploiting not only the biogas production rate but also the physiochemical
properties measured on the digestate.
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3.2.1. Iteration Steps from First to Fifth

The actual iterative process stopped at the fifth iteration (green/black line in Figures 4–6).
At this point, the simulations of both the pilot plant and the batch tests gave satisfac-
tory results, as supported by the values of the TIC and MARE indicators shown in
Tables S2 and S3 (Supplementary Materials). Examples of fit of experimental batch activity
tests are reported in Figure 4 for acetate, glucose, and BSA. In these tests the maximum
uptake rates and the half saturation constants for acetate, monosaccharide, and amino acid
degrading organisms were estimated based on the fit with experimental data.

The hydrolysis constants for carbohydrate, protein, and lipid were identified from
BMP tests on sludge. The modelling of activity tests on acetate and BSA remarkably
improved as shown in Figure 4c, where the TIC and MARE coefficients decreased by 35%
and 69%, respectively.

The simulation curve of TVFA from the pilot plant, shown in Figure 6c, had a notice-
able improvement from the first to the fifth iteration. Moving from the fourth to the fifth
iteration, the half saturation constant for propionate degrading microorganisms Ks,pro was
modified from 0.3 to 0.2 gCOD·L−1 for a better fit with TVFA measurements. Despite this, in
Phase II the modelling of TVFA was less accurate (TIC > 0.3). The fit with the experimental
data of ammoniacal nitrogen (Figure 6e), volatile solids (Figure 6f), and COD (Figure 6g)
were also refined by iterations. Conversely, the slight worsening in the prediction of QCH4
was made explicit by the TIC and MARE coefficients reported in Table S3 (Supplementary
Materials) that changed from 0.070 and 0.162 to 0.112 and 0.274, respectively.

3.2.2. Iteration Step from Fifth to Sixth

Using the parameters corresponding to iteration n.5, during the co-digestion phase a
deviation was observed between the experimental and simulated values of some effluent
variables (TVFA, alkalinity, and ammoniacal nitrogen) of the pilot plant model. The
model with parameters estimated at the fifth iteration worked better for mono-digestion
than for co-digestion, as supported by the model fitting criteria reported in Table S3
(Supplementary Materials). Further, BMP tests performed with yogurt or with sludge
in co-digestion with yogurt (Figure 5) were not well simulated. Two hypotheses were
assumed in order to explain such performance:

1. Disintegration constants are different for waste sludge and yogurt, depending on the
type of substrate and not only on biomass adaptation.

2. Some soluble proteins were already available from yogurt.

In view of this, a sixth iterative step was carried out assuming that the proteins
coming from yogurt were already hydrolyzed, thus entering as Saa. This modification
led to the improvement of the fit of the alkalinity and ammoniacal nitrogen data in the
pilot-plant during Phase II. In addition, the fit of the BMP tests performed with yogurt and
in co-digestion improved significantly. A similar improvement was observed irrespective
of the type of digestate (adapted—Figure 5b,c—or not—Figure 5e,f—to the co-digestion
conditions). This evidence indicated that the kinetic constant of disintegration process
may depend more on the type of substrate than on the type of inoculum. In addition,
hydrolysis constants during mono and co-digestion may change due to synergistic effects
arising during co-digestion. In this case, since the microbial population adapted to the new
working conditions, different hydrolysis constants should be considered for co-digestion.

The fit with the effluent volatile solids remained poor during all iterations: never-
theless, it should be considered that the computation of volatile solids from ADM1 state
variables is complex as it requires assuming several COD conversion coefficients, which
may depend only on the known chemical characteristics, such as those applied to the inert
components, which was assumed to be equal to 1.3 gCOD·gVS

−1. Conversely, a good fit
with the total effluent COD was achieved.
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3.2.3. Yogurt Alkalinity

At the end of iteration n.6, it was noticeable that the ability of the model to predict
alkalinity worsened during co-digestion with yogurt (Table S3, Supplementary Material).
This is likely due to a lack of the characterization of the ionic components of yogurt. To
verify this hypothesis, a tentative simulation was performed, where the alkaline content of
the yogurt was increased by the addition of ionic species (Scat in the yogurt characterization
was increased by 0.5 mol·L−1), which could be for instance salts of a strong base and a
weak acid (e.g., organic acids or phosphate salts). The tentative simulation was represented
with light blue lines in Figure 5, and it only affects the fit of alkalinity and pH.

Model prediction performances criteria TIC and MARE changed from 0.095 and 0.139
for alkalinity at the sixth iteration, to 0.054 and 0.089 at the end of the fictitious iteration
and from 0.013 and 0.022 for pH to 0.011 and 0.017, respectively.

4. Discussion

The combined protocol proposed to determine ADM1 input state variables proved
to be effective for the characterization of waste sludge and expired yogurt. It included
several analytical determinations and the execution of BMP tests on different fractions
(soluble/particulate) of the substrate. For practical purposes, it is clear that a reduction in
the number of tests and analyses to be carried out to reach satisfactory predictive ability is
advisable. As for the sludge, based on the results from the sensitivity analysis and from
measurements, and given the predominance of the particulate matter, the determination
of soluble components other than VFAs can be avoided. In this case, the biodegradability
of the particulate and soluble COD fractions can be assumed to be equal to the overall
degradability and the remaining biodegradable soluble COD can be divided into three
equal parts (Ssu, Saa, Sli) [13,19,24] or using the same proportion found in the particulate
matter, as suggested in a previous work [7].

On the other hand, the soluble content of the biochemical fractions in yogurt has to be
verified through measurements in order to accurately calibrate the disintegration and the
hydrolysis kinetic constants of the process. As suggested by Zaher et al. (2009) [40] through
the development of the General Integrated Solid waste Co-Digestion model (GISCOD), it is
difficult to find unique parameter values that are applicable to a combination of substrates.
In addition, it has been recently demonstrated that the mechanisms of hydrolysis can
be successfully described as a sequential degradation of substrates (according to their
bioaccessibility), as opposed to the common approach used that considers simultaneous
degradation of multiple substrates [41]. The present work proves that it is essential to
independently evaluate disintegration constants for each co-substrate, as the hydrolysis
kinetic constant mainly depends on the characteristics of the biomass and on possible
adaptation due to co-digestion conditions.

As regards the ionic balance and the poor performance in the prediction of effluent
alkalinity during co-digestion, results from the present study highlight the potential impor-
tance of taking into account possible ionic species other than those suggested in the ADM1,
when using substrates different from sewage sludge.

The iterative procedure proposed for model calibration was effective, and a similar
methodology used by Girault et al. (2011) [14] provided good results even though, in
that case, the model performance was verified using only the methane production rate
measured on the continuous reactor. In the present work, more variables were used for
model calibration, proving that the methane rate alone might be insufficient to fully verify
the model accuracy.

A more accurate estimate of VFA degradation kinetics is required and tests with single
VFAs might be beneficial for this purpose. Moreover, as regards the test with glucose
shown in Figure 4b (initial COD concentration of 4 gCOD·L−1), a double change in the
slope of the curve was observed, with a very fast kinetic in the middle associated with
rapid degradation of the substrate. This was likely due to an initial pH lowering causing
the initial slowdown of the process. As soon as the methanogens started to degrade the
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VFAs produced, the pH rose, and a fast methane production was observed. Tests with
glucose were performed at different COD concentrations, but this behavior was found for
all tested concentrations. This peculiar shape was not properly predicted by the model,
since this would require the calibration of inhibitory kinetics parameters. Furthermore,
activity tests varying the initial COD concentration of target substrates would be useful
to improve the identifiability of parameters as also suggested by Girault et al. (2011) [14],
and to assess inhibitory phenomena. For instance, by testing low concentrations of COD
in tests with glucose, inhibition phenomena due to the initial lowering of the pH would
be reduced, making the estimation of the kinetic parameters for the degradation of sugars
more reliable. Once identified km,su, Ks,su the test can be repeated at high glucose concen-
trations, to estimate the parameters describing the inhibition process. Shi et al. (2019) [42]
recently presented a modification to ADM1 using a variable approach to the acidogen-
esis stoichiometry as opposed to the common use of constant stoichiometry to describe
carbohydrate fermentation.

In addition, VFAs inhibition kinetics on methanogenic biomass was not included in
the model but is essential to predict the stability of the digester in response to possible
yogurt overloading in a scenario analysis [4]. Regarding this aspect, testing higher yogurt
loads will likely be essential for model validation.

Finally, it would be also advisable to implement an automated iterative procedure
for parametric identification to make the calibration procedure more effective and
less time-consuming.

5. Conclusions

The method for the characterization of the ADM1 input state variables was effective,
and the iterative procedure proposed for calibration improved model prediction perfor-
mances. Model fitting criteria (TIC and MARE) were significantly reduced from 0.066 and
0.100 for alkalinity at the first iteration to 0.054 and 0.089 at the end of the last iteration;
from 0.475 and 2.00 for TVFA to 0.207 and 0.507; from 0.080 and 0.150 for N-NH4

+ to 0.055
and 0.099; from 0.220 and 0.339 for VS to 0.156 and 0.238; and from 0.097 and 0.198 for COD
to 0.070 and 0.156. Except for km,ac, which did not change during iterations, modifications of
the other parameters selected for calibration ranged from 25% (kdis) to 93% (KS,ac), showing
significant improvements in parameter estimation. Further refinements can be achieved
mainly by: (i) automating the iterative procedure; (ii) including missing measurements
within the analytical protocol and specific activity tests to predict inhibitory phenomena;
and (iii) separating the disintegration/hydrolysis constants for different co-substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13213100/s1, Table S1: Kinetic parameters estimated at each iterative step of the calibration
process, Table S2: Model performance criteria (TIC and MARE) evaluated at varying iterative steps
for selected batch activity tests and BMP tests, Table S3: Model performance criteria (TIC and MARE)
evaluated at varying iterative steps for the seven output variables monitored during the operation of
the pilot plant. A distinction is made between the mono-digestion period (Phase I and Phase III) and
the co-digestion period (Phase II).
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Nomenclature

Cac, Cpro, Cbu, Cva concentrations of acetic, propionic, butyric, and
valeric acids [g·L−1];

γac, γpro, γbu, γva stoichiometric conversion coefficients from moles of acetic,
propionic, butyric, and valeric acids to COD [mol·gCOD

−1];
MWac, MWpro, MWbu, MWva molecular weights of acetic, propionic, butyric,

and valeric acids [g·mol−1];
CHtot, PRtot total concentration of carbohydrates and proteins [g·L−1];
LIp particulate concentration of lipids [g·L−1];
LIs soluble concentration of lipids [g·L−1];
CHs, PRs, LIs soluble concentrations of carbohydrates, proteins,

and lipids [g·L−1];
αch,COD, αpr,COD, αli,COD conversion coefficients from carbohydrates, proteins,

and lipids to COD [g·g COD
−1];

fY percentage of COD used for cell growth during
BMP test [gCOD·gCOD

−1];
CIN concentrations of ammoniacal nitrogen [gN·L−1];
MWN molecular weight of nitrogen [gN·mol−1];
Alk concentration of alkalinity [M];
Sac-, Spro-, Sbu-, Sva- concentrations of dissociated species of acetic, propionic,

butyric, and valeric acids [M].

Appendix A

Table 1. Computation of total, soluble, and particulate, degradable and undegradable COD fractions from measurements.

Variable Name Equation n.

Soluble COD from VFAs CODvfa = Cac· γHac
MWHac

+ Cpro·
γHpro

MWHpro
+ Cbu· γHbu

MWHbu
+ Cva· γHva

MWHva
(1)

Total COD CODtot = CODVFA + CHtot·αch,COD + PRtot·αpr,COD +
(
LIs + LIp

)
·αli,COD (2)

Soluble COD
Excluding VFAs CODs = CHs·αch,COD + PRs·αpr,COD + LIs·αli,COD (3)

Particulate COD CODp = CODtot −CODs −CODvfa (4)

Undegradable total COD CODtot,undeg = CODtot·
(

1− fY − BMPtot
350

)
(5)

Undegradable particulate COD CODp,undeg = CODp·
(

1− fY −
BMPp

350

)
(6)

Undegradable soluble COD CODs,undeg = CODtot,undeg −CODp,undeg (7)

Degradable total COD CODtot,deg = CODtot −CODtot,undeg (8)

Degradable particulate COD CODp,deg = CODp −CODp,undeg (9)

Degradable soluble COD CODs,deg = CODs −CODvfa −CODs,undeg (10)
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Table 2. Computation of ADM1 state variables from measurements.

Variable Name 1 Equation n.

Particulate inert Xi = CODp,undeg (1)

Soluble inert Si = CODs,undeg (2)

Particulate carbohydrates Xch = (CHtot −CHs)·αch,COD·
(CODp,deg)

CODp
(3)

Particulate proteins Xpr = (PRtot − PRs)·αpr,COD·
(CODp,deg)

CODp
(4)

Particulate
lipids Xli = LIp·αli,COD·

(CODp,deg)
CODp

(5)

Soluble
sugars Ssu = CHs·αch,COD·

(CODs,deg)
CODs

(6)

Soluble
amino acids Saa = PRs·αpr,COD·

(CODs,deg)
CODs

(7)

Soluble
fatty acids Sfa = LIs·αli,COD·

(CODs,deg)
CODs

(8)

Soluble total acetic acid Sac = Cac· γHac
MWHac

(9)

Soluble total propionic acid Spro = Cpro·
γHpro

MWHpro
(10)

Soluble total butyric acid Sbu = Cbu· γHbu
MWHbu

(11)

Soluble total valeric acid Sva = Cva· γHva
MWHva

(12)

Soluble inorganic nitrogen SIN = CIN
MWN

(13)

Soluble bicarbonate Shco3 = Alk−
(
Sac− + Spro− + Sbu− + Sva−

)
(14)

1 Computations of acid-base pairs, Scat, and San are not shown: they were calculated from the charge balance and
from the acid-base equilibria as reported in Rosen and Jeppson, 2006 [1].

Table 3. Computation of yields from disintegration of complex particulates.

Coefficient Name Equation n.

Yield of particulate carbohydrates fXc_Xch = Xch
Xc

(1)

Yield of particulate proteins fXc_Xpr =
Xpr
Xc

(2)

Yield of particulate lipids fXc_Xli =
Xli
Xc

(3)

Yield of particulate inert fXc_Xi =
Xi
Xc
· Xi
(Si+Xi)

(4)

Yield of soluble inert fXc_Si =
Xi
Xc
· Si
(Si+Xi)

(5)
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