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Background and objectives: Intrauterine Growth Restriction (IUGR) is a fetal condition defined as the ab- normal rate of fetal growth. The pathology is

a documented cause of fetal and neonatal morbidity and mortality. In clinical practice, diagnosis is confirmed at birth and may only be suspected

during preg- nancy. Therefore, designing an accurate model for the early and prompt identification of pathology in the antepartum period is crucial

in view of pregnancy management.

Methods: We tested the performance of 15 machine learning techniques in discriminating healthy versus IUGR fetuses. The various models were trained

with a set of 12 physiology based heart rate features extracted from a single antepartum CardioTocographic (CTG) recording. The reason for the

utilization of time, frequency, and nonlinear indices is based on their standalone documented ability to describe several physiological and pathological fetal

conditions.
Results: We validated our approach on a database of 60 healthy and 60 IUGR fetuses. The machine learn- ing methodology achieving the best

performance was Random Forests. Specifically, we obtained a mean classification accuracy of 0.911 [0.860, 0.961 (0.95 confidence interval)] averaged

over 10 test sets (10 Fold Cross Validation). Similar results were provided by Classification Trees, Logistic Regression, and Support Vector Machines. A

features ranking procedure highlighted that nonlinear indices showed the highest capability to discriminate between the considered fetal conditions.

Nevertheless, is the combination of features investigating CTG signal in different domains, that contributes to an increase in classification accuracy.

Conclusions: We provided validation of an accurate artificially intelligence framework for the diagnosis of IUGR condition in the antepartum period.

The employed physiology based heart rate features constitute an interpretable link between the machine learning results and the quantitative

estimators of fetal wellbeing.

1. Introduction

Nowadays, antepartum fetal monitoring is a routine methodol- 

ogy adopted in clinical practice to assess fetal wellbeing through- 

out pregnancy, namely in the context of pathological fetal state 

identification [1,2].  The most used technique consists in 

recording the Fetal Heart Rate (FHR) by means of the 

CardioTocography (CTG) [3].  The rationale for its utilization relies 

on the fact that it has been extensively shown how FHR changes 

can anticipate and/or

∗ Corresponding author.

even predict fetal distress as well as adverse conditions before the 

insurgence of any other symptom [4].  

CTG analysis has been progressively shifting from pure visual 

observation of the traces to its computerized version [5],  which 

consists of extracting various quantitative parameters associated 

with fetal conditions [6,7].  Morphological [8],  frequency [7,9], 

and nonlinear/complexity indices [10–13] are usually thought to 

summarize the various pathophysiological aspects of FHR. 

Despite the large availability of FHR quantitative indicators, a 

very limited portion of fetal-related literature addresses the inves- 

tigation of fetal surveillance by means of multivariate approaches. 

If this latter consideration was to be attributed to scarce data avail- 
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technological advancements in parallel with novel parameters con-

tributed to an increase in the amount of available data related to

fetal monitoring [15].  

As a result, if adding more measurements could hopefully

contribute to better insights into pathophysiological systems, in

evitability it increases the complexity of data analysis as well a

the interpretation of the extracted results. Machine learning

methodologies appear as a possible solution to this issue, as they

can face large and complex datasets [15,16].  However, it is also

to be underlined that when a subset of features is automatically

extracted from a large amount of data, the interpretation of the

results is usually difficult to be linked to the a priori knowledge

of the underlying physiological mechanisms. 

In the presented study, we designed a two-step methodology

for the early identification of a pathological fetal state, namely

Intrauterine Growth Restriction (IUGR). The implementation wa

achieved by deriving features from a single antepartum CTG trace

by means of advanced signal analytics. Subsequently, various ma-

chine learning techniques were trained with the extracted FHR

features. The rationale for employing such physiology based heart

rate features aimed to realize a tool capable of providing an inter

pretable link between the machine learning results and the physi

ological mechanisms of fetal regulation. Moreover, the

specification of early identification is achieved by removing the

influence of gestational age (GA) at which the available trace

were acquired, thus providing a reliable and effective set of tool

for the antenatal IUGR discrimination. 

As a proof of concept of an impactful and clinically relevant ap-

plication of artificial intelligence in the field of fetal monitoring

in this paper we compared the validity and performances o

several machine learning techniques for the classification o

healthy fetuses versus fetuses affected by IUGR. The forme

pathology along with small for gestational age (SGA) represen

the second cause of perinatal mortalities, contributing to 52% o

stillbirths [17].  More- over, the IUGR condition has been

extensively reported as affecting perinatal and postnata

development under several different aspects [18].  

As reported in [19],  the key point in IUGR management is the

early identification of the pathology to the aim of improving both

the time setting and the management of delivery. Unfortunately

methodologies towards a reliable and timely detection of IUGR

condition are still pending, to the point where the assessment can

only be performed at birth [19].  Throughout the years, the lack

of consensus in IUGR definition has resulted in uncertainty in the

diagnosis of the pathology. Additionally, antepartum CTG is no

consensually adopted as the routine approach in this context. A

a consequence, the overall outcome of IUGR babies has no

changed much over time [19].  The crucial challenge which is ye

to be addressed is aimed to develop reliable tools which ideally

would be able to provide antenatal identification of IUGR

condition, starting from the available and clinically recorded data.

 

2. Materials and methods

2.1. Data collection and subject selection 

In a collaboration framework among the Ob-Gyn Clinics at the

Azienda Ospedaliera Universitaria Federico II, Napoli, Italy, Biomed- 

ical Engineering Labs of Politecnico di Milano, Italy, and Università 
di Pavia, Italy, FHR traces were collected in a large population of

pregnant women. 

Among the available CTG recordings, we asked clinicians to se-

lect 120 CTG recordings: 60 Healthy and 60 IUGR fetuses. The left-

hand side of Fig. 1 displays a 30-min segment for a healthy (top)

and an IUGR (bottom) CTG traces. The prenatal fetal condition for

each subject was verified after delivery to confirm group mem- 
s

bership previously suspected at the CTG timepoint. Exclusion cri-

teria encompass history of pre-existing maternal diseases or drug

abuse during gestation, fetal chromosomal and/or major congenital

anomalies and inadequate umbilical cord samples at birth. Healthy

fetuses at birth presented the following characteristics: weight

and abdominal circumference ±10% with respect to the normative

ranges and 5-min Apgar score = 10. The in-utero diagnosis of IUGR

pathology was assessed by ultrasound biometry, Doppler velocime-

try of Umbilical Artery (UA), Middle Cerebral Artery (MCA), Ductus

Venosus (DV). PI of UA and DV were considered abnormal when
 95th percentile for gestational age, in case of absent or reverse

-wave or end diastolic flow in DV and UA, and PI of MCA < 5th

ercentile. At birth, IUGR fetuses presented estimated weight be-

ow the 10th percentile, abdominal circumference below the 10th

ercentile for the corresponding GA and 5-min Apgar score ≤8

he average duration of the FHR tracing was > 30 min for both 

ealthy fetuses and IUGRs to contain both activity and quiet pe-

iods of the fetus. FHR recordings were collected in a controlled

linical environment, with the pregnant woman lying on a bed

uring the standard protocol of non-stress test. The average GA at

CTG measurement for healthy fetuses was 34.78 ± 0.53 weeks (In-

ter Quartile Range (IQR) = 34–35) whereas for IUGR fetuses was

32.27 ±2.79 weeks (IQR = 30–34). The reason for a nonoverlap in

erms of GA between the two groups relies on the fact that in clin-

cal practice normal pregnancies are usually monitored only after

he 33rd week of gestation whereas earlier assessments are usu- 

lly available when considering suspected IUGR cases. Additional

nformation regarding the clinical characteristics of the population

nalyzed in this work are reported in Table 1.  

.2. FHR signal acquisition and preprocessing 

The FHR signals were measured through Hewlett Packard CTG

etal monitors (series 1351A), connected to a PC. The fetal monito

eries HP-135x employs an autocorrelation technique to compare 

the demodulated Doppler signal of a heartbeat and the follow-

ing one. Such Doppler signal is sampled at 200 Hz. AutoCorrelation

Function (ACF) is computed based on time windows of length 1.2 s

corresponding to a lower bound for FHR equivalent to 50 beats per

inute (bpm). A peak detection software determines the heart pe-

iod (equivalent to the RR interval) based on ACF. By using the in-

erpolation of the peaks temporal position, the system achieves an 

ffective resolution below 2 ms [20].  The resulting heart period is

hen converted into a heart frequency in beats/minute (bpm). 

Due to historical reasons, almost all commercially available feta

TG monitors employed in clinical practice display the fetal hear

ate expressed in bpm. The HP-like monitors produce an FHR

alue in bpm every 250 ms and the series is progressively stored

n a buffer. In this work, FHR time series were acquired and

nalyzed by means of the 2CTG2 software [21],  realized by a

ollaboration among our Academic research groups (University o

avia and Politecnico di Milano), a software company (S.E.A. s.r.l

Pavia,  Italy), and Hewlett Packard Italy. 2CTG2 retrieves FHR

alues from the buffer at 2 Hz. Thus, Nyquist frequency for FHR

eries is 1 Hz. The rationale behind reading the FHR values every

.5 s represents a reasonable compromise to achieve enough

andwidth and acceptable accuracy. In fact, as reported in [22

ignificant correlations between beat-to-beat FHR values and the

 Hz derived series were found. Moreover, for some nonlinea

ndices, as the ones to be discussed in the following section, 2 Hz

ampling frequency has been reported as the best solution as i

ontributes to simpler and faster FHR signal processing and

rchiving [22].  

As known by practitioners in CTG tests, many factors may

orsen the accuracy of FHR detection and/or cause a signal loss. In

he HP-M1351A, a quality index provides a direct measure of FHR
ignal quality by means of three different levels: optimal (green), 



Fig. 1. Left panel display two 30-min CTG recordings of a healthy (top) and an IUGR (bottom) subjects respectively. On the right-hand side, the corresponding time series

of time domain features are shown. Delta, II, and STV are computed by considering 1-minute window, thus resulting in 30 estimates throughout the reported recording. On

the other hand, a 3-min window is employed in STV computations, thus 10 values are obtained.

Table 1

Demographics of normal and IUGR fetal groups AVG ± STD. 

Population Healthy IUGR

Subject number 60 60

Maternal age (years) 32.34 ± 5.64 29.68 ± 6.21 

GA at CTG (weeks) 34.78 ± 0.53 32.27 ± 2.79 

GA at birth (weeks) 39.74 ± 1.15 34.15 ± 2.99 

Newborn weight at birth (g) 3275 ± 518 1479 ± 608 

Fetal gender (male/female) 25/35 34/26

1-min Apgar score 8.46 ± 0.53 10.00 ± 0.00 

5-min Apgar score 6.61 ± 5.64 7.44 ± 0.56 

Delivery mode 58% Spontaneous 15% Spontaneous

42% Caesarean 85% Caesarean
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cceptable (yellow), and insufficient/unavailable signal (red). Such

ndex is based on the output of the autocorrelation procedure upon

hich FHR signal extraction is built. Each FHR recording has been

ivided in subintervals of either 120 (60 s) and 360 points (180 s),

fter having red-quality points being corrected. The use of 1-min

r 3-min subintervals is related to differences in the extracted pa-

ameters and it will be explained in the following sections. Isolated

ed-quality points were substituted, through a moving average pro-

edure, with the average of the nearest five FHR points. On the

ther hand, subintervals including either more than five consec-

tive red-quality points or more than 5% of red-quality values (6
 w
HR values out of 120 points per subinterval or 18 FHR values out

f 360 points per subinterval) were discarded in further analysis. 

.3. Selection and statistical preprocessing of features 

In previous works, we approached the identification of IUGR

etuses by means of various FHR-based encompassing time

omain, frequency, and nonlinear domains. 

Time domain indices were computed as suggested by Arduin

t al. [8]:  Delta, Interval Index (II), Short Term Variability (STV)

nd Long Term Irregularity (LTI). The former three parameters were

omputed dividing the signal in windows of length equal to 60 s

TI in windows of length equal to 180 s. 

The frequency content of the FHR signal was analyzed by means

f Power Spectral Density (PSD) [23].  This technique provide the

ower associated with specific frequency components of FHR, as

escribed in detail in [7].  In this study, the power associated to

ow Frequency band (LF_pow) is computed in the frequency range

0.03–0.15 Hz), Movement Frequency power (MF_pow) in the fre-

uency range (0.15–0.5 Hz), High Frequency power (HF_pow) in the 

requency range (0.5–1 Hz). Powers in the different bands have also

een combined to extract the ratio LF/(MF + HF). 

Regarding nonlinear features of the FHR signal, we estimated

pproximate Entropy (ApEn) [10],  Lempel Ziv Complexity (LZC
ith binary alphabet [24],  and Phase Rectified Signal Average 



Table 2

Spearman’s Rank Correlation coefficient between extracted parameters and GA_CTG — unad- 

justed (U) and adjusted (A) distributions.

Correlation coefficient ρ

Unadjusted (U) Adjusted (A)

Parameter Overall Healthy IUGR Overall Healthy IUGR

Delta 0.3295 ∗ −0.1000 0.2128 0.0117 −0.0184 −0.0339

II 0.0024 0.0286 −0.1455 0.0174 0.0061 −0.0412

STV 0.4170 ∗ −0.0388 0.3505 ∗ 0.0178 −0.0388 −0.0399

LTI 0.3030 ∗ −0.1266 0.0937 0.0103 −0.0429 −0.0101

LF_pow 0.1684 −0.0265 −0.1254 0.0393 0.0143 0.0052

MF_pow −0.0286 −0.0122 0.1120 −0.0017 0.0347 −0.0124

HF_pow −0.2407 ∗ −0.0041 −0.0732 −0.0544 −0.0408 −0.0049

LF/(MF + HF) 0.1684 −0.0265 −0.1254 0.0498 −0.0653 −0.0092

ApEn(1, 0.1) 0.2313 ∗ 0.0551 0.1527 0.0083 0.0245 −0.0288

LZC(2, 0) 0.2310 ∗ −0.2799 ∗ 0.0204 0.0839 −0.1556 0.0429

APRS 0.4112 ∗ 0.0408 0.2502 0.0147 0.0184 −0.0283

DPRS −0.4896 ∗ −0.0408 −0.3478 −0.0152 0.0163 0.0087

∗ Indicates statistically significant correlation p < 0.05.
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(PRSA) features [25].  Nonlinear FHR measures were computed con

sidering nonoverlapping windows of length equal to 180 s, with the

exception of PRSA features, namely APRS and DPRS which consist 

of a single estimate since they are computed based on the entire

recorded CTG trace. A detailed and more extensive description of 

the computed indices is reported in the Supplementary Materials 

and in the Data Brief Article. 

The complete procedure of parameter extraction produced

N = 12 indices, 10 of which are extracted by averaging the cor-
responding time series (extracted by subdividing the FHR record-
ing in windows), and 2 of them are global parameters computed
considering the whole recording at once. The right-hand side of
Fig. 1 displays an example of time domain parameters. The length

of each series is equal to the number of available windows (num-

ber of accepTABLE 1ntervals) in the original CTG trace after per-

forming the quality assessment. As reported in [7],  the majority o

FHR parameters can noticeably vary depending on the fetal state

(quiet or activity). In order to reduce such intrasubject source of

variability and considering that fetal state annotation cannot be

performed routinely in clinical practice, the average of the param-

eters of each time series was calculated. This approach is justified

by the fact that our database contains recordings with both activity

and quiet periods. 

The reason behind the selection of this restricted subset of

features relies on their individual peculiar ability in discriminat-

ing IUGRs and normal fetuses as described in the following. To

summarize: the a priori knowledge parameters to be employed

as the starting set of features for further analysis are: Delta, II

STV, LTI (time domain) [8];  LF_pow, MF_pow, HF_pow, LF/(MF + HF)

(frequency domain) [7];  ApEn(1, 0.1) [10],  LZC(2, 0), Acceleration
Phase Rectified Slope (APRS) and Deceleration Phase Rectified 

Slope (DPRS) (nonlinear domain) [26].  

Parameters employed in the computation of ApEn were m = 1

and r = 0.1 thus resulting in the feature ApEn(1, 0.1). LZC was com
puted within a binary approach, having the factor value (p) set to

zero, the computed quantity is reported as LZC(2, 0). Additiona

in- formation regarding LZC applied to FHR analysis may be found

in [27].  The last nonlinear technique employed to investigate

FHR was the so-called PRSA method, introduced by Bauer et al

[25].  In this context, Acceleration Phase Rectified Slope (APRS

and Deceleration Phase Rectified Slope (DPRS) were computed a

reported in [28]. 

All preprocessing operations on the extracted features were per- 

formed by R, a free software environment for statistical comput-

ing [29].  A very limited portion of the total number of subjects

(8 out of 120) presented some missing features (the percentage of 
missing features is equal to 1.5% of the total number of features). 
n order to account for features missingness, we employed the R

ackage missForest [30].  It is suitable to be used in the case o

ixed-type data. The imputation procedure is based on the train

ng of a random forest which is capable of predicting the missing

ess based on the observed and available data [30].  

The majority of extracted features showed evidence of interme-

iate correlation accordingly to the definition by Cohen [31] (0.30

 |Spearman’s Rank Correlation coefficient ( ρ)| < 0.50) with the 

A at which trace was acquired (GA_CTG). This assumption stands

onsidering both the whole cohort but even when limiting the 

nalysis to the considered IUGR population as reported in Table 2

he reason behind feature adjustment for GA_CTG relies on previ- 

us studies showing the evolution of linear and nonlinear indices 

hroughout pregnancy [32,33].  

Therefore, to address the dependence of measures with respec

o time of the assessment, all variables were adjusted using a Ro

ust Linear Regression (RLR). If compared to classical linea

egression, the peculiar advantage of RLR methodology relies on

eriving a model less sensitive to outliers present in the observed

ata. 

dditionally, the robust fitting method is less affected by consis

ent changes in small portions of the data, with respect to ordi

ary least squares techniques. RLR consists of an iterative process

t each step, the weight associated to each data point is updated

sing a process called iteratively reweighted least squares. In the 

rst iteration, each point is assigned equal weight and mode
oefficients are estimated using ordinary least squares. A
ubsequent iterations, weights are recomputed so that point
arther from model predictions in the previous iteration are given
ower weight. RLR model coefficients are then recomputed using

eighted least squares. The process continues until the values o
he coefficient estimates converge within a predefined specified
olerance. Once the final RLR model is derived, it is possible to
ompute the so-called residuals which represent the difference
etween the observed data and the RLR fit. The derived residual
ere employed in the further analyses to provide machine

earning classifier with features independent from the GA a
hich the CTG traces were recorded. Results of correlation

etween parameters (Unadjusted and Adjusted) and GA_CTG are
eported in Table 2.  As an example, distribution of Unadjusted
_U) and Adjusted (_A) of four of the further employed feature
re shown in Fig. 2 along with the corresponding regression lines
urthermore, to the aim of validat- ing the proposed methodology
e tested the influence of GA_CTG by means of linear regression
odels. Specifically, we considered alternatively each feature o

he corresponding residuals as a dependent variable and GA_CTG
nly, GA_CTG + Group (healthy versus IUGR), and GA + Group +
A∗

 Group as independent variables. 



Fig. 2. Scatterplots showing Delta, STV, HF_pow, APRS distributions as a function of GA_CTG. Green items and red items represent the Healthy and IUGR populations respec- 

tively. Circles and rhombuses represent Unadjusted and Adjusted features respectively. Solid lines represent the RLR fit in the healthy (green), IUGR (red), and combining the

two groups (black). The three RLR fits coincide in a single fit line (black dotted) in the graphs displaying residuals given the absence of any trend after performing RLR.
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esults showed a consistent absence of significant effect of GA_CTG

regardless the regression model) on the residuals derived from

LR correction. 

.4. Multivariate analysis 

n this investigation, we deepened the preliminary results ob

ained by analyzing the same database analyzed in [34].  While

ur previous work was mainly focused on the comparison be

ween the performances of univariate versus multivariate classi

ers, in this paper we investigate within a more detailed

pproach the possible influence of GA over the performances o

achine learning methodologies and their feature robustness and

nsensitivity to GA_CTG. Moreover, the more precisely conducted

nalysis on feature space will provide validation for the utilization

f physiology based heart rate features for the early identification

f IUGR pathology. As a general consideration, multivariate

nalysis was designed to search for an optimal decision rule in

he multidimensional space of the parameters to predict the class

f interest, namely healthy versus IUGR. A complete roadmap

rom CTG signal to binary classification is depicted in Fig. 3.  

Several multivariate models were employed towards to aim o

dentifying the most reliable technique for predicting IUGR con

ition. The employed machine learning techniques and the corre

ponding employed R packages are reported in Table 3.  

The following algorithms were applied: 

Logistic Regression (LR):  is a regression model where the prob-

bility of a class of interest is obtained as the results of a logistic

unction provided with a linear combination of the features. The

eneral formulation for Logistic Regression is expressed in Eq. (1):

 ( y | x ) = 

e α+ ∑ N 
i =1 βi xi

1 + e α+ ∑ N 
i =1 βi x i 

(1) 

here y is a target class (Healthy versus IUGR), x i are the available

eatures, α and βs are the regression coefficients estimated by the
lgorithm. The method, as formulated in the previous Eq. (1) gen

rates a linear decision boundary, i.e., a hyperplane in the multidi

ensional space. 

LR can be utilized including all covariates (LR), namely the

whole set of previously extracted parameters or coupled with a

eatures selection algorithm called stepwise selection of informa

ive features (step function) [35],  allowing (LR-SW-INT) or no

LR- SW) for pairwise interactions between features [36];  

Within the family of approaches based on regression we also

mployed RIDGE regression for binary outcomes (RIDGE) [37];  elas

ic net regression for binary outcomes with different alpha settings

alpha = 0.25 (ENET 0.25),  alpha = 0.50 (ENET 0.5),  alpha =
.75 (ENET 0.75) [38];  and Least Absolute Selection and Shrinkage

perator for binary outcomes (LASSO) [39].  For RIDGE, ENET and

ASSO regressions, the optimal lambda parameter was computed

y considering each training set separately (as described in the

ollowing) and the same seed was imposed for each analysis. 

Naïve Bayes (NB): is a classification algorithm based on the

ayes theorem. NB assumes that the attributes xi  are conditionally

ndependent given the class y,  as formulated in Eq. (2):  

 (y | x ) α P (y ) 
N 

�
i =1

P ( x i | y ) (2)

Despite these rather simplistic assumptions, NB often outper-

orms more sophisticated machine learning algorithms. This is due

o the fact that although the individual class density estimates

ay be biased, the assumption of feature independence (given the

lass variable) is not effectively affecting the posterior probabilities

40] of belonging to a specific class.

Classification Trees (CT): are widely used in the machine learning

eld and they consist of a set of rules that defines a tree-like struc-

ure, in which branches represent different decisional paths and

erminal nodes (leaves) corresponds to the assignment to a target

lass. CT generates a set of nonlinear decision boundaries through

iecewise constant functions in the multidimensional space. In this



Fig. 3. Machine learning approach to the classification of antepartum fetal heart rate signal. Top panel: from signal to feature extraction; middle panel: feature processing,

imputation of missing parameters, feature space reduction based on physiological knowledge; bottom panel: machine learning techniques and validation of performances.

Table 3

Tested machine learning techniques, their corresponding acronyms, and employed R packages.

Machine learning technique Acronym R package

Logistic Regression including all covariates LR stats

Logistic Regression, stepwise feature selection and pairwise interactions between features LR-SW-INT stats

Logistic Regression, stepwise feature selection and without pairwise interactions between features LR-SW stats

RIDGE regression RIDGE glmnet

Elastic NET, alpha = 0.25 ENET 0.25 glmnet

Elastic NET, alpha = 0.50 ENET 0.5 glmnet

Elastic NET, alpha = 0.75 ENET 0.75 glmnet

Least Absolute Selection and Shrinkage Operator LASSO glmnet

Naïve Bayes NB e1071

Classification Trees CT rpart

Random Forests RF randomForest

Support Vector Machines, linear kernel SVM-LIN e1071

Support Vector Machines, polynomial kernel SVM-POLY e1071

Support Vector Machines, radial kernel SVM-RAD e1071

Support Vector Machines, sigmoid kernel SVM-SIGM e1071
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work, the information gain was employed as the splitting criterion 

for CT [41].  

Random Forests (RF): are ensemble classifiers that consist of a

variable number of CTs grown based on a set of attributes se-

lected randomly from the complete set of parameters; each CT

contributes with its own classification of the analyzed examples.

As a result, the final classification is provided by a voting approach,

which considers the complete set of CTs. Thanks to their scalabil-
ty and generalization performance, RFs are increasingly exploited 

n clinical research [42].  

Support Vector Machines (SVM): are a family of classifier capable

f mapping the training samples into high-dimensional attributes

pace, to the aim of defining a hyperplane that maximizes the

istance between observations belonging to the different classes.

f the training set cannot be separated by a linear boundary,

he optimal hyperplane that best discriminates between/among
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xamples of different class labels is identified resorting to a suit- 

ble space transformation through kernel functions. In this work, 

e employed SVMs with linear kernel (SVM-LIN),  polynomial ker

el (SVM-POLY),  radial kernel (SVM-RAD), and sigmoid kerne

SVM-SIGM) [43].  

From an implementation point of view, models were learned

n the training sets using the default settings. The available data

ere split into training and testing sets according to a 10 Fold

ross Validation (CV). The training sets were employed to the aim

f evaluating the performances of classification algorithms and

if- ferent feature selection while the corresponding test sets were

sed to test the relative discriminative performances. The above

escribed machine learning methods were tested on either the U

nd A set of features towards to aim of comparing the two ap

roaches and identifying if GA_CTG had a significant effect on

UGR classification. 

.5. Multivariate model evaluation 

In this work, an IUGR subject correctly classified as such i

ounted as a true positive (TP), and a healthy subject correctly

lassified is counted as a true negative (TN). On the contrary, an

UGR subject erroneously classified as healthy is counted as a

alse negative (FN), and a healthy subject erroneously classified a

UGR is counted as a false positive (FP). 

he performances of each model are reported in terms of fou
ifferent figures of merit, namely Classification Accuracy: CA =
 TP + TN )/( TP + TN + FP + FN ), sensitivity: sensitiv- ity = TP 
 TP + FN ), specificity: specificity = TN /( TN + FP ), positive
redictive value: PPV = TP /( TP + FP ), and negative predictive
alue: NPV = TN /( TN + FN ). The Area Under the Receive
perating Char- acteristic (AUROC) was estimated by averaging

he results obtained by providing the model with different tes
ets, namely the ones obtained using 10 Folds CV procedure. Since
he healthy/IUGR ratio was 1, model ranking was performed based
n CA. 

. Results

Multivariate analysis has been performed considering alterna-

ively the U and A set of features. Prior to multivariate testing, a

reliminary analysis of the correlation between covariates has been

erformed. As a general consideration, features to be provided to

ny machine learning algorithm should be highly correlated with

he classes to be distinguished but not be highly correlated with

ne another [44].  By way of example, values of correlation fo

he A set of covariates are reported in Table 4.  

The correlation coefficient values in each domain are on aver

ge higher than comparing feature correlation in the same area

he former result is related to the fact that the proposed features

ave the ability to grasp different characteristics of FHR, thus thei

nformation content is different, resulting in a low value of cor- 
Table 4

Spearman’s Rank Correlation coefficient computed on the adjusted set of 

Delta II STV LTI LF_pow MF_pow

DPRS −0.60 −0.03 −0.62 −0.42 −0.37 0.22

Delta 0.03 0.93 0.43 0.4 −0.17

II −0.10 0.03 −0.11 0.15

STV 0.38 0.36 −0.13

LTI 0.29 −0.18

LF_pow −0.72

MF_pow
elation. Regarding high values of correlation among indexes of

he same domain, a clear example is the parameter LF/(MF + HF)

hich is highly correlated to the other frequency extracted indexes

LF_pow, MF_pow, and HF_pow). Based on this criterion, the ra- 

io LF/(MF + HF) was excluded from the set of employed parame-

ers, resulting in a reduced parameter space of 11 features: Delta,

I, STV, LTI (time domain); LF_pow, MF_pow, HF_pow (frequency

omain); ApEn(1, 0.1), LZC(2, 0), APRS, DPRS (nonlinear domain). 

Tables 5 and 6 report the mean discriminative performances o

he top five machine learning techniques in classifying the test sets

10 Folds CV) for _U and _A set of covariates respectively. The av- 

rage performances in the first case are: CA = 0.8812, Sensitiv-

ty = 0.8912, Specificity = 0.8704, PPV = 0.8908, NPV = 0.8988,

hereas on the second one: CA = 0.8296, Sensitivity = 0.8544,

pecificity = 0.8048, PPV = 0.8320, NPV = 0.86 6 6. 
The two machine learning techniques which outperformed,

howing the best discriminative performances were: RF_U (Ran-

om Forests_Unadjusted): mean CA = 0.911 and CT_U: CA = 0.911

hen considering the model learned on U covariates. In the case

f adjusted covariates by GA_CTG, RF_A(Random Forests_Adjusted):

ean CA = 0.855, and LR-SW_A: mean CA = 0.833, showed the

est CA among the proposed machine learning models. 

Focusing the attention on the comparison of AUROC for RF_U,

T_U, RF_A, and LR-SW_A, no statistically significant difference was

bserved after performing post-hoc tests between models’ AUROC.

he values of AUROC (averaged over the 10 test sets) for RF_U: AU- 

OC = 0.974, CT_U: AUROC = 0.892, RF_A: AUROC = 0.935, and 

R-SW_A: AUROC = 0.933 are reported in Fig. 4.  
In order to define the final models, RF and LR-SW were learned

n the whole set of computed features. Nevertheless, features se-

ection procedures for both RF and LR-SW were performed. It is

rucial to pinpoint that investigating the performances of the for-

er machine learning techniques on a reduced feature space may

e helpful in reducing the amount of FHR extracted parameters

ithin achieving the same level of prediction accuracy. 

Regarding RF_U and RF_A, the relative importance of each fea

ure is shown in Fig. 5.  Results indicate that for the U set of co

ariates LZC(2, 0), ApEn(1, 0.1), HF_pow, LTI and DPRS caused the

reatest decrease in terms of CA if removed from the model. Sim-

larly, when considering RF_A, LZC(2, 0), HF_pow, ApEn(1, 0.1), LTI 

nd LF_pow were identified as most explanatory variables for the

odel. It is crucial to highlight that the most explanatory parame-

ers are encompassing all the investigated domain: time, frequency

nd nonlinear. The latter assumption is valid for both RF_U and

F_A enforcing the idea that combining FHR features belonging to

ifferent domains provides a more comprehensive and extensive

napshot of the interacting mechanism leading to the IUGR condi-

ion. 

Coming to the second-best performing machine learning tech- 

iques, CT_A identifies the same covariates previously found for

F_U as most explanatory. In the case of LR-SW_U, the covariates
covariates.

HF_pow LF/(MF + HF) ApEn(1, 0.1) LZC(2, 0) APRS

0.29 −0.37 −0.03 −0.26 −0.84

−0.45 0.40 0.06 0.33 0.57

0.01 −0.11 0.01 0.13 −0.07

−0.41 0.36 0.02 0.31 0.57

−0.21 0.28 0.08 0.17 0.37

−0.75 0.99 −0.27 0.24 0.33

0.15 −0.72 0.20 0.07 −0.27

HF_pow −0.75 0.32 −0.39 −0.18

LF/(MF + HF) −0.27 0.26 0.33

ApEn(1, 0.1) 0.14 0.02

LZC(2, 0) 0.19



Table 5

Median (25th, 75th percentiles) of classification accuracy (CA), sensitivity, specificity, positive and negative predictive values (PPV and 
NPV) for adopted machine learning techniques learned on the UNADJUSTED set of covariates. Machine learning techiniques are sorted in 
descending order of CA.

Model CA Sensitivity Specificity PPV NPV

RF 0.911 (0.860, 0.961) 0.902 (0.820, 0.985) 0.919 (0.819, 1.019) 0.936 (0.859, 1.013) 0.918 (0.852, 0.984)

CT 0.911 (0.846, 0.975) 0.871 (0.766, 0.976) 0.950 (0.892, 1.008) 0.949 (0.890, 1.009) 0.893 (0.808, 0.978)

LR-SW 0.867 (0.797, 0.937) 0.900 (0.817, 0.983) 0.833 (0.721, 0.946) 0.859 (0.774, 0.944) 0.900 (0.822, 0.978)

SVM-RAD 0.867 (0.781, 0.952) 0.850 (0.762, 0.938) 0.883 (0.770, 0.996) 0.893 (0.790, 0.996) 0.856 (0.775, 0.938)

SVM-POLY 0.850 (0.762, 0.938) 0.933 (0.850, 1.017) 0.767 (0.627, 0.907) 0.817 (0.712, 0.922) 0.927 (0.838, 1.017)

Table 6

Median (25th, 75th percentiles) of classification accuracy (CA), sensitivity, specificity, positive and negative predictive values (PPV and

NPV) for adopted machine learning techniques learned on the ADJUSTED set of covariates. Machine learning techiniques are sorted in

descending order of CA.

Model CA Sensitivity Specificity PPV NPV

RF 0.855 (0.794, 0.916) 0.838 (0.729, 0.947) 0.871 (0.766, 0.976) 0.889 (0.799, 0.980) 0.862 (0.773, 0.951)

LR-SW 0.833 (0.759, 0.908) 0.867 (0.773, 0.961) 0.800 (0.665, 0.935) 0.835 (0.737, 0.934) 0.870 (0.785, 0.955)

LR 0.825 (0.743, 0.907) 0.850 (0.731, 0.969) 0.800 (0.665, 0.935) 0.830 (0.730, 0.931) 0.862 (0.766, 0.958)

SVM-RAD 0.818 (0.738, 0.897) 0.850 (0.719, 0.981) 0.786 (0.687, 0.885) 0.806 (0.723, 0.888) 0.866 (0.756, 0.977)

LASSO 0.817 (0.716, 0.917) 0.867 (0.744, 0.990) 0.767 (0.627, 0.907) 0.800 (0.687, 0.914) 0.873 (0.761, 0.985)

Fig. 4. Mean AUROC (95% CI) for the multivariate analysis: RF_U, CT_U, RF_A, and

LR-SW_A. The label _U indicates UNADJUSTED features. The label _A indicates AD- 

JUSTED features. False positive rate is defined as FP/(FP + TN) and true positive rate 

corresponds to sensitivity.

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Variables importance according to the RF classifier on the whole cohort and

associated decrease in model CA when progressively excluding features. Top bar

graph is relative to RF_A and bottom one to RF_U.

C  

i  

o  

0  
producing the highest decrease in accuracy if excluded are: LTI,

LZC(2, 0), STV, LF_pow, HF_pow, ApEn(1, 0.1), MF_pow. Consistently

with RF, despite the different ranking of importance, CT_A and LR-

SW_U select a reduced set of variables encompassing the three

different domains. Fig. 5 displays variables ranked in descending

order of mean decrease in accuracy. It is crucial to pinpoint that

RF methodology appears stable and quite insensitive to covariance

dependence upon GA_CTG. LZC(2, 0) is identified as producing the

most impactful decrease in accuracy by both RF_U and RF_A. The

remaining covariates are on average ranked in a similar fashion by

the two models, strengthening the limited impact of GA_CTG on

classification accuracy. On the opposite, it is peculiar to observe
the dramatic drop of performances when comparing CT_U and 
T_A. In particular, CT_U is ranked as the second-best perform-

ng machine learning technique while CT_A is the least performing

ne (CA = 0.771, Sensitivity = 0.757, Specificity = 0.786, PPV =
.805, NPV = 0.802) followed by SVM-SIGM only (CA = 0.702,
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ensitivity = 0.705, Specificity = 0.700, PPV = 0.709, NPV = 0.710). In

he latter case, GA_CTG plays a fundamental role and it be-

omes evident that the correction for such dependence is manda-

ory to provide accurate discrimination between healthy and IUGR

etuses. Regarding the remaining machine learning techniques,

amely SVM and ENET, yet not giving the best performances,

hey appear less dependent upon GA_CTG providing comparable

esults in terms of CA when employing either U or A set of

ovariates. 

. Discussion

The presented investigation provides evidence of a feasible ap-

lication of machine learning techniques for the early identifica-

ion of IUGR condition in the antepartum period. Such design ap-

ears as radically different with respect to the up-to-date clinical

ractice where IUGR condition is assessed at birth and only sus-

ected in the antepartum period. The rationale for the utilization

f the presented physiology based heart rate features relies on the

act that these features as standalone parameters had shown en-

anced discrimination power in classifying healthy versus IUGR

e- tuses [24,28,45].  

However, throughout the years it has become clear that a single

ndex cannot be descriptive of all pathophysiological processes tak

ng place in the pregnancy period thus the need for multivariate

nalysis of FHR emerged as evident. These are the main reason

ontributing to the choice of the use of physiology based heart

ate features in this investigation. Moreover, our approach demon

trated the independence of different machine learning method

logies to the time at which CTG recordings were acquired. These

ndings are reflected in the discriminative performance of the

mployed machine learning classifiers as reported in Fig. 4

lthough characterized by different diagnostic results, no

tatistically significant differences were found in the classification

f healthy versus IUGR fetuses comparing the top-performing

echniques trained with the unadjusted and adjusted set o

eatures. 

Coming to the discussion of the results section, it appears ev

ident that both RF_U and RF_A achieved adequate performances

hus proposing as a possible candidate as a tool for early discrim

nation in the context of the presented investigation. The assump

ion of RF insensitivity to GA_CTG found in this investigation is 

ased on the results reported in Figs. 4 and 5.  Specifically, as re-

orted in Fig. 4 and statically verified by a post-hoc analysis on

UROC, no difference in the classification performance between

F_U and RF_A was found. Moreover, Fig. 5 shows agreement in 

eature ranking comparing the results obtained providing RF clas- 

ifier with either the unadjusted and adjusted set of features. 

Random Forest is becoming a popular machine learning tech

ique and it has been claimed as particularly accurate and in

erpretable by several authors [46,47].  A clear example of inter

retability of the results is the feature ranking results reported in 

ig. 5.  Consistently with previous findings [45],  LZC(2, 0) is asso

iated with the most considerable mean decrease in accuracy. On

verage, IUGR fetuses have been reported as characterized by lower

alues of LZC with respect to healthy ones [28],  as this is also

erified in this analysis. The reported difference is to be attributed

o lower complexity of FHR for pathological subjects, thu

upporting the hypothesis of an unbalance in the autonomic

ervous system mechanisms in IUGR condition. Similarly, value

f ApEn(1, 0.1) are greater in healthy versus IUGR. Nevertheless

his entropy index re- sulted in a lower mean decrease in

ccuracy accordingly to the re- ported lower discriminative powe

ith respect to LZC measures [45].  Moreover, the corresponding

ime domain index (LTI) which quantifies FHR variability

onsidering windows of analogous time duration was found
mong the top informative features. As for both LZC(2, 0) and 

pEn(1, 0.1), LTI values in healthy are greater
o the ones for IUGR subjects as previously found in [28].  Thi

atter finding contributes to the hypothesis of an impaired ANS

egulation in the pathological conditions. Lastly, PRSA-derived

ndex DPRS was found significantly greater in IUGR versu

ealthy. Despite not providing an analogous definition o

cceleration and deceleration as ones found in the clinica

ontext, the PRSA slope is dependent upon both the amplitude

nd duration of the ANS-related events modulating the FHR [9].  

To summarize, the reported results reinforce the idea that sev-

ral controlling mechanisms affect HRV, acting linearly and non- 

inearly. This specifically happens when a pathological condition 

rises, and the analytic frameworks need to merge and combine 

nformation coming from different domains to obtain an exhaus- 

ive and comprehensive description of FHR dynamics. The latter

onsideration is reflected in the obtained findings considering fea-

ure ranking in RF, reporting the first five features encompassing 

he three domains of investigation, namely time, frequency, and 

onlinear. 

. Conclusions

Findings reported in this investigation confirm the importance

f a multivariate approach to investigate the variety of implica-

ions resulting from a pathological condition such as IUGR. The

dvantages resulted by the application of several machine learn-

ng techniques rely on: (i) easy-to-use model capable of providing

n early and interpretable antenatal diagnosis of IUGR condition;

ii) parameters extracted from routinely CTG examination can be

ed into the model regardless the considered GA_CTG. The latter

ovelty is of primary importance given that, in nowadays clinical

ractice, IUGR fetuses are usually monitored far in advance with

espect to healthy ones so that the proposed model may see its

irect translation in the clinical field. This opens to further and ex-

ensive validation of multi-feature model presented in this work

n a large already recorded and available dataset. The cutting-edge

rontier for the methods described in this work would be focus-

ng on tracking the evolution from health condition to pathological

tate in a patient-specific way by integrating heterogeneous data

hich are dynamically evolving in time. 
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