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Abstract. The Multi-armed Bandit (MAB) framework has been ap-
plied successfully in many application fields. In the last years, the use
of active approaches to tackle the nonstationary MAB setting, i.e., algo-
rithms capable of detecting changes in the environment and re-configuring
automatically to the change, has been widening the areas of application
of MAB techniques. However, such approaches have the drawback of not
reusing information in those settings where the same environment condi-
tions recur over time. This paper presents a framework to integrate past
information in the abruptly changing nonstationary setting, which allows
the active MAB approaches to recover from changes quickly. The pro-
posed framework is based on well-known break-point prediction methods
to correctly identify the instant the environment changed in the past, and
on the definition of recurring concepts specifically for the MAB setting to
reuse information from recurring MAB states, when necessary. We show
that this framework does not change the order of the regret suffered by
the active approaches commonly used in the bandit field. Finally, we pro-
vide an extensive experimental analysis on both synthetic and real-world
data, showing the improvement provided by our framework.

Keywords: Multi-Armed Bandit - Non-stationary MAB - Break-point
Prediction - Recurring Concepts

1 Introduction

The stochastic Multi-Armed Bandit (MAB) setting has been widely used in
real-world applications in sequential decision-making problems, e.g., for clinical
trials [4], network routing [17], dynamic pricing [21], and internet advertising [16].
In the stochastic MAB framework, a learner selects an option — commonly re-
ferred to as arm — among a given finite set and observes a corresponding stochas-
tic reward. The learning goal is to maximize the rewards collected during the
entire learning process. The success of this framework is mainly due to its strong
theoretical properties [7], which, in practice, turns into very effective results.
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Over the past few years, researchers have targeted new strategies to increase
the flexibility of the MAB framework, thus foresee new applications to more
complex scenarios. One of the most interesting extensions of MAB techniques
consists of handling scenarios where the distribution of rewards varies over time.
This is a relatively common situation in real-world dynamic pricing [21] and
online advertising problems [13], where the distributions of reward for each arm
can be considered stationary only over short time intervals as they might evolve
due to changes of the competitors’ strategies or abrupt modification of the user
behaviour. While the most general situation where reward distributions are al-
lowed to arbitrarily change over time is not tractable by this framework, it is
possible to design efficient and theoretically grounded learning algorithms under
some mild assumption on change type and regularity.

One of the most studied settings, which commonly occurs in practical ap-
plications, is that of the so called abruptly changing MAB environments, where
each arm reward expected value is a piece-wise constant function of time and is
allowed to change a finite number of times. MAB algorithms operating in this
setting follow two mainstream approaches to cope with nonstationarity: pas-
sive [9,22], and active [14, 8]. Passive methods use only the most recent rewards
to define the next arm to be selected. Thus, they progressively discard rewards
gathered in the far past as soon as new samples are collected. Conversely, ac-
tive MAB algorithms incorporate detection procedures to spot the change and
adapt the decision policy only when necessary. This approaches, from now on
addressed as Change Detection MABs (CD-MABs), couple a stationary MAB
procedure with a Change Detection Test (CDT) [5], as for instance in [14]. Even
if from a theoretical point of view the two approaches have similar guarantees,
it has been shown that the active approaches are performing generally better
when their empirical performances are tested [14].

In the CD-MAB framework, a CDT is used to monitor the distribution of
rewards, and as soon as this gathers enough empirical evidence to state that a
change has occurred, it triggers a detection and restarts from scratch the classical
MAB procedure. In practice, a change detected on a specific arm triggers a
reset of both the statistics of the CDT and the corresponding arm. The major
limitation of this approach is that it discards the information gathered in the past
by MAB, while this could be potentially used in two situations. On the one hand,
samples gathered between the occurrence and the detection of the change can be
used to reconfigure the MAB over the specific arm and avoid a complete restart
from scratch. On the other hand, when the process presents some regularity over
time, e.g., seasonal effects, it would be ideal to identify when the arm goes back
in a state that was already encountered and use the information learned about
that distribution to have a fast recover after the detection.

In this paper, we present the Break-point and Recurrent MAB (BR-MAB),
which extends generic CD-MABs to reuse data collected before the detection and
replaces the MAB cold restart with a better initialization. Most remarkably, our
neat approach still makes theoretical analysis amenable in these non-stationary
settings. In particular, our novel contributions are:
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— we propose a technique based on break-point prediction [11], to reuse the
most informative samples for the current distribution gathered before the
change has been detected;

— we propose a technique to identify the so-called recurrent phases in the MAB
setting, to handle cases in which seasonality effect are present;

— we integrate these techniques in a single framework, called BR-MAB, which
allow their application to a generic CD-MAB,;

— we show that, BR-MAB applied to CUSUM-UCB maintains the theoretical
guarantees of the original active non-stationary MAB;

— we provide extensive empirical analysis to show the improvement provided
by BR-MAB, when applied to a CD-MAB, comparing its performance with
the state-of-the-art techniques for non-stationary MAB settings.

2 Related Works

The algorithms designed to tackle non-stationary MAB problems with a limited
number of changes are divided into passive and active approaches.

From the passive approaches, we mention the D-UCB algorithm [9], which
deals with nonstationarity by giving less importance to rewards collected in the
near past by weighting them by a discount factor. Conversely, the SW-UCB
algorithm [9] fixes a window size and feeds a UCB-like algorithm only with the
most recently collected samples. They provide guarantees on the upper-bound for
the pseudo-regret of order O(v/N By log N) and O(y/N By log N), respectively,
where N is the time horizon of the learning process, and By is the number
of changes present in the environment up to time N. Another well-analyzed
passive method is the SW-TS [22], which applies the sliding window approach
to the Bayesian Thompson Sampling algorithm. It provides a bound on the
pseudo-regret of O(v/Nlog N), if the number of changes is constant w.r.t. N.
We want to remark that, in general, the passive approach does not allow for
incorporating information coming from past data since their intrinsic strategy
consists of systematically discarding them. Therefore, they are not appealing
candidates for the approach proposed here.

For what concerns the active approaches, i.e., those algorithms using a CDT
to actively detect changes in the expected values of the arms’ reward distri-
butions, the bandit literature offers a wide range of techniques [14,8,6,15].
More specifically, the CUSUM-UCB method [14] uses the CUSUM CDT to
detect changes and a UCB-like approach as MAB strategy. This method pro-
vides theoretical upper bound for its regret of order O(\/NBy log(N/By)).
The Monitored-UCB [8] is a UCB-like policy with random exploration which
uses a windowed CDT to provide a regret bound of O(/NBy log(N)). The
GLR-kIUCB [6] uses a KL-UCB algorithm in combination with a Generalized
Likelihood Ratio (GLR) test as a change detection algorithm to get a regret of
O(\/NBy log(N)). Notably, the approach we propose here can be applied to
any of the aforementioned active approach.

Finally, other well known and efficient methods are Adapt-EvE [10], an ac-
tively adaptive policy that uses UCB1-Tuned as a sub-algorithm and employs the
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Page-Hinkley test [12] to detect decreases in the mean of the optimal arm. When-
ever a change-point is detected, a meta-bandit transient phase starts, whose goal
is to choose between two options: reset the sub-algorithm or not. Instead, the
BOCD-TS [15] uses Thompson Sampling with a Bayesian Change Point Detec-
tion algorithm. The upper-bound for these methods is unknown, hence they are
accounted as heuristic algorithms.

Garivier et al. [9] showed that the problem of abruptly changing MAB has
a lower bound for the the expected pseudo-regret of order 2(v/N). We recall
that, in settings in which the optimal arm expected value can change without
any restriction, only trivial upper bounds for the dynamic pseudo-regret Ry (L)
are known [2]. Conversely, if stricter assumptions holds, e.g., the occurrence of
global changes, better guarantees can be derived.

3 Problem Formulation

We model our problem as a stochastic abruptly changing MAB setting, similar
to what has been defined in [9], in which the arms reward distributions are
constant during sequences of rounds, and they change at specific rounds unknown
to the learner. Formally, at each round n over a finite time horizon N, the
learner selects an arm a;(,) among a finite set of K arms A := {a1,...,ax}
and observes a realization of the reward x;(y) , from the chosen arm a;(,). The
rewards for each arm a; are modeled by a sequence of independent random
variables X; ,, from a distribution whose parameters are unknown to the learner.
As customary in the MAB literature, here we consider Bernoulli distributed
rewards, i.e., X; , ~ Be(; ), where p; , is the expected value of the reward
for arm a; at round n.! During the learning process, we denote as breakpoints
those rounds in which the expected reward of at least one arm a; changes.
Formally, a break-point b € {1,..., N} is a round in which for at least an arm
a; we have E[X; ,_1] # E[X,;]. In the analysed setting, we have a set of By
breakpoints B := {b1,...,bp, } that occur before round N (for sake of notation
we define by = 1), and whose location is unknown to the learner. The breakpoints
determine a set of phases {F1,...,Fg, }, where each phase Fy is a sequence of
rounds between two consecutive breakpoints:

Fo={ne{l,... N} | by_1 <n<by}. (1)

With abuse of notation, we denote with y; ¢ := E[X; ], with n € Fy, the
expected value of the reward of the arm a; during the phase Fy. Figure 1 illus-
trates an example of a specific setting with two arms a; and as in which three
phases F1, Fa, and F3 occurs over the time horizon. Note that, differently from
the classical MAB setting, a single optimal arm over the entire time horizon
might not exist. Indeed, during each phase Fy4 we define ag 1= argmax; fi;,s the
arm having the largest expected reward pj, := max; p;,¢. A policy tlis a function

! The extension to other finite support distributions is straightforward and the theo-
retical results here provided are still valid.
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Fig. 1: Example of a nonstationary setting.

U(h) = a;@n) that chooses the arm a;(,, to play at round n according to history
h, defined as the sequence of past plays and obtained rewards.

Our goal is to design a policy 4 that minimizes the loss w.r.t. the optimal
decision in terms of reward. This loss, namely the dynamic pseudo-regret, is:

N
Rn(4) =E [Z i, - uim),n] , (2)

where p, := max;c(1,... Kk} fin is the optimal expected reward at round n.

In this work, we are interested in reusing the information coming from the
situation in which an arm a; has a value of the expected reward that recurs
over the different phases. This models the possibility that an arm behaviour is
recurring over time due to seasonality effects. Formally:

Definition 1. A recurrent phase on arm a; occurs when there exist two phases
Fo, For, with ¢ # ¢, s.t. pi 6 = iy, i.e., when the arm over the two phases
has the same expected reward.?

The rationale behind the above definition is that the information gathered from
an arm are valid in the future, no matter how the other arms’ rewards are
changing, and, thus, they can be reused as long as the arm has the same reward
distribution. In Figure 1, two recurrent phases are present, i.e., as F; and Fj,
since the arm a; has p11,1 = p1,3. Notice that, if a concept recurs during phase
Fo, one might reuse the samples collected during phase F; to speed up learning.

Finally, it is common in the CD-MAB literature to require two assump-
tions [8,14]. At first, we require a minimum magnitude for the change s.t. it is
possible to detect it:

Assumption 1 3 ¢ € (0,1], known to the learner, such that for each arm a;
whose expected reward changes between consecutive phases ¢ and ¢+ 1, we have:

l1ti,¢ — Migr1] > €. (3)

2 Since we are considering Bernoulli reward, having the same expected value also im-
plies to have the same distribution. This definition can be easily generalized to handle
other distributions, requiring that the distribution repeats over different phases.
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The second assumption prevents two consecutive breakpoints from being too
close in terms of rounds:

Assumption 2 There exist a number M, known to the learner, such that:

min (b(z; - b¢,1) Z KM. (4)

With reference to Figure 1, the two assumptions are stating that the two break-
points b1, and by must be such that (bp—b1) > KM, and that |1o,¢ — to,¢+1]| > €,
and |p1,4 — p1,¢| > € for each ¢ € {1,2}. These two assumptions are natural in
MAB algorithms adopting CDT as tools to detect changes, e.g., [14,8, 15] since
they state that the changes are detectable by the CDT in a limited amount
of rounds (Assumption 1) and allow to set the CDT at the beginning of the
learning process and after each change is detected (Assumption 2). Therefore,
the knowledge of € and M is customary when designing algorithms following
the active framework and allows them to outperform passive ones in terms of
empirical performance significantly.

4 The BR-MAB Algorithm

In what follows, we present the BR-MAB algorithm, which can be seen as a
generalization of the CD-MAB framework presented in [14] that learns from
historical information after each detected change. The BR-MAB algorithm builds
upon the definition of a concept C; as follows:

Definition 2. A concept C; = {x1,...,z¢c} is a set of rewards collected over
time for the arm a;, which are deemed to belong to the same phase.

This definition is used in BR-MAB to store information about past phases and
identify recurrent phases. In this case, we refer to recurrent concepts.

The pseudo-code of the BR-MAB algorithm is presented in Algorithm 1, and
takes as input any nonstationary active CD-MAB policy (namely both a change-
detection test to be used on each arm and an arm-selection policy), a break-point
prediction procedure B, and a test £ to evaluate when two concepts can be
conveniently aggregated. At first, the algorithm initializes all the parameters for
the selected CD-MAB and, for each arm a;, the set of tracked recurrent concepts
¢;, the actual concept being observed C;*°*, and a binary variable cf; to check
if a concept had been used in the past for that arm (Line 1). Then, at each
round n € {1,..., N}, the algorithm selects an arm ai(n) accordingly to the
CD-MAB policy (Line 3), uses the reward to update the CD-MAB (Line 4), and
updates the concept currently in use CZE%” for the selected arm a;(,), i.e., adds
the currently collected reward x;(,,) , to the set CZE?S’ (Line 5). Subsequently, the
CDT of the CD-MAB is being executed and when this detects a change in the
currently selected arm a;(,,), the break-point procedure B, detailed in Section 4.1,
is activated to estimate the break-point r (Line 7). As a result, the rewards
collected during rounds {r,...,n} corresponding to the arm a;(,) are used to
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update the information of the arm a;¢,) in the CD-MAB (Line 8). Moreover,
the algorithm removes the rewards selected by the break-point procedure from
the current concept Ci”(f;)”, adds the current concept CZ"(‘:L’)“ to the set of available
concepts €; (Line 10), and resets it using the reward of arm a(,) collected after
the break-point (Line 11). Finally, BR-MAB sets cf; = 0, to state that the arm
a; is eligible of using one of the concept in €;(,) if it is recurring (Line 12). After
the change detection phase occurred, the algorithm tries to detect if a concept
in €;(,) is recurrent. More specifically, if no concept has been already used for
the arm a;(,) (cfi(n) = 0), for each concept C present in &), it checks if it can
be considered equivalent to the current concept szff)” using the test £ (Line 16),
detailed in Section 4.2. If the test £ passes, the current concept CZ‘(‘?’S’ is updated
with the rewards contained into the concept C (Line 18), and C is removed from
€i(ny (Line 10). Finally, the CD-MAB procedure is updated using the reward
present in the recurrent concept C.

4.1 Break-point Prediction Procedure

In this section, we present the break-point prediction procedure B that identifies
the position of the break-point after the CDT provides a detection. This problem
is commonly addressed in the statistical literature by the change-point formula-
tion [11]. These tests perform a retrospective and offline analysis over a sequence
of observations that presumably contains a change and determine whether there
is enough statistical evidence to confirm the sequence contains a change and case
its location. Change-point formulation has also been extended to detect changes
in streaming data from a Bernoulli [19] or arbitrary [18] distributions. In this
case, the change-point formulation provides change-detection capabilities, and
the break-point estimate is automatically provided after each detection.

The CUSUM test [5] is a popular option for the CDT used for monitoring
the stream of rewards in the CD-MAB is the CUSUM test. In this case, the
test already provide after each detection a break-point estimate. Let ¢ be the
time when a change has been detected on the arm a; (or possibly ¢ = 0),
and let {ifi,t(m .. .xi,t(M)} be the sequence of last M rewards collected from
arm a; from the current phase at rounds {¢(1),...,¢(M)}. The CUSUM test
uses such rewards to estimate the expected values of the reward of a;, namely
m; = 22/121 Zith)  When monitoring the next rounds h € {t' + M +1,...}, the
CUSUM test computes the following statistics to detect an increase/decrease in
the expected reward u; 4:

ot = max{O,gZT':h_1 +xip—m; —ep  ifi(h) =1 (5)
bh 95 otherwise

o = max{0,g; ), ; +m; —zp —e}  ifi(h) =i (©)
Y g otherwise ’

where the quantities has been initialized as g;ft,+M =0and g; =0, and eis
defined in Assumption 1. Changes are detected as soon as one of these statistics
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Algorithm 1 BR-MAB

Require: non-stationary algorithm CD-MAB, break-point prediction procedure B,
recurrent concept equivalence test £

1: €« 0, CPY « 0, cfi < 0Vi e {17...,K}

2: forne{l,...,N} do

3 Play a;(») according to CD-MAB
4 Collect reward x;(,),,» and update the CD-MAB accordingly
5: Update the concept C(7) < Ci(7) U{Zi(n)n}
6: if a change has been detected by the CD-MAB then > change detection
7 Run B to identify the change round r > break-point prediction
8 Update arm a;(,) in the CD-MAB using rewards from rounds {r,...,n}
9: Remove rewards collected from a;(n) from rounds {r,...,n} from C/7y
10: Citny = Gy U{CIET Y
11: Initialize C;(5y with the rewards of arm a;(,) collected at rounds {r,...,n}
12: Cfi(n) +—0
13: end if
14: if cfi(n) = 0 then
15: for C € ¢;,,) do
16: if £(C,Cj(7y) then > recurrent concept test
17: cfitny <+ 1
18: iy < CUCHRY > concept merge
19: €i(n) <« €i(n) \C
20: Update arm a;(,) in the CD-MAB using the rewards in C
21: end if
22: end for
23: end if
24: end for

exceed a suitable threshold. Let us assume that this occurs at time ¢, the round
corresponding to the break-point is then identified as:

. J’_ . —
r=arg min g, or r=arg min g; 7
he{t!,... t"} b hef{t/,...t"} ih (7)

depending on whether the detection comes from monitoring g;,rh or g; ,, respec-
tively. If there are multiple values attaining the minimum in Equation (7), we
set r as the most recent value. Once the break-point prediction occurred, we
initialize the CUSUM as described above and reset the two statistics g: 5, and

g; p, before restarting monitoring.

4.2 Recurrent Concepts Equivalence Test

After a change has been detected, we need to assess whether the currently ex-
pected reward of an arm a;, represented in the concept C*°", corresponds to any
of the previously encountered phases using the concepts stored in €;. Inspired
by [1], we solve this problem by an equivalence test £(-,-) that consists in a Two
One Sided Test (TOST) [20]. More specifically, let C[**" be the current concept
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associated to the arm a;, and let C be any concept from the collection of pre-
viously seen concepts C € €;. The TOST determines whether there is enough
statistical evidence to claim that the expected rewards in the two concepts C;**"
and C differ less than a given threshold.

The TOST formulates the following statistical tests over the expected values
p' and p' of the rewards in C*** and C, respectively:

Test 1 Hy:p' —p' <—d Vs. Hy:py' =y > —d, (8)
Test 2 Ho:p' —p’" >d vs. Hy:p/ — " < d, ©)

where d > 0 is the equivalence bound, indicating a difference between rewards
that is deemed as negligible when identifying recurrent phases. When the TOST
rejects both the null hypothesis, we argue that there is enough statistical evidence
that the difference |/ — p”’| lies within (—d, d) Therefore, the test £(CI°%,C)
asserts that the two concept are recurrent, and they are merged into a single
concept in the BR-MAB algorithm.

In particular, it uses two two-sample z-test to compare proportions, formally
it requires to compute the following test statistics:

N7 d A — 0" —d
Fmd = ~7 (H ~7 £ ):/t ~iy and zg = ~7 (M ~7 £ )A// N (10)
\/u(l—u)+u(1—u) \/u(l—u)+u(1—u)

’ " / 1
n n n n

where i’ and i are the empirical means of the reward stored in the concepts
Crew and C, respectively, and n’ := |C***| and n” := |C| are their cardinality. In
this test, we fix a significance level a,, and we reject both null hypothesis when
the test statistic z_g4 is above the 1 — a, quantiles of a normal distribution and
zq is below the a, quantiles of a normal distribution.

Even though representing in each concept C the set of rewards is not very
efficient in terms of memory requirements, in our case, a much more compact
representation is possible. In fact, in the case of Bernoulli rewards, the TOST
requires only the mean of the rewards collected in the concept C and the concept
cardinality, which can be updated incrementally and stored in just two values.

4.3 Regret Analysis for Generic CD-MABs

At first we consider the CD-MAB setup, where there is no break-point prediction
nor the recurrent concept identification. Assume to have a stationary stochas-
tic MAB policy P ensuring an upper bound on the expected pseudo-regret of
C (log N)+C5 over a time horizon of N for the stochastic stationary MAB prob-
lem (being Cy,Cy € RT suitable constants), and a CDT procedure D ensuring
an expected detection delay of E[D] and an expected number of false positive of
E[F]. We prove the following:

Theorem 3. The expected pseudo-regret of a CD-MAB algorithm, where the
arm selection is performed using P with probability 1 —a and randomly selecting
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an arm with probability o and that uses D on a generic abruptly changing MAB
setting, is upper bounded by:

Rn(CD-MAB) < (1+ By +E[F])KM + (By +E[F]) (01 log ;V—N + 02>

KBNE|D
4 EBnE[D]

N 11
o tal, (11)

where we assume that the CDT requires M samples for each arm to be initialized.
Proof. Due to space limitations, the proof is deferred to Appendix A.

The contribution to the regret in the right-hand side of Equation (11) is com-
posed by the following components (from left to right): 4) the samples required
for the initialization of the CDT at the beginning of the learning procedure and
each time a change is detected, ) the regret of the stationary MAB procedure
repeated every time a change is detected, i) the loss due to the detection delay,
and i) the loss due to random sampling performed over the time horizon N.

This result generalizes that in [14], in which the authors provide an upper
bound to the expected pseudo-regret of the same order for an algorithm us-
ing as stationary MAB procedure the UCB1 algorithm [3]. In the same work,
the authors also present theoretical results for the specific choice of UCB1 as
stationary MAB and CUSUM as CDT and provide a bound of the order of

O(4/BnNN log %), when the values of the threshold of the CUSUM h and the

exploration parameter o are adequately set. Notably, Theorem 3 provides the
same order of pseudo-regret of the CUSUM-UCB when substituting in Equa-
tion (11) the guarantees provided by CUSUM and those of UCBI.

4.4 Regret Analysis for the Break-point Prediction Procedure

Here, we analyse the theoretical guarantees provided by a specific instance of
the BR-MAB algorithm, using CUSUM-UCB as CD-MAB procedure and using
a generic break-point prediction procedure B. Indeed, updating CUSUM-UCB
after each detection, exploiting a bounded number of reward values recovered
by the break-point prediction procedure B, allow us to provide theoretical guar-
antees on the performance of BR-MAB. We show that:

Theorem 4. Consider the BR-MAB algorithm with the CUSUM-UCB as CD-
MAB procedure and a break-point procedure B, s.t. number of rewards selected
by this procedure are less than glog N;. Using such an algorithm on the abruptly
changing MAB setting provides an upper bounded on the pseudo-regret of:

Ry() <O («/NBN log N/BN) : (12)

where £ is the parameter used in the UCB bound for the CUSUM-UCB algorithm,
N; == )", Ny is the number of samples collected from the instant a change has
been detected.
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Proof. Due to space limitations, the proof is deferred to Appendix A.

We remark that any break-point procedure B can be adapted to satisfy the
constraint in 4, by using max{r,t — glog N}, where r is the round at which B
predicted the break-point and ¢ is the current time instant. Notice that the limi-
tation in terms of samples is required to avoid that the estimated expected value
for an arm, used in the CUSUM-UCB to take decisions, is biased significantly
by the presence of samples coming from the previous phase.

5 Experiments

In what follows, we conduct experiments to evaluate the empirical improvement
provided by the proposed BR-MAB approach on generic CD-MAB algorithms. At
first, we present a toy example to show the effect of using the BR-MAB approach
on a CD-MAB algorithm. After that, we evaluate the proposed algorithm on
synthetically generated data, and a real-world problem of online ads selection.

In the experiments, we evaluated two flavours of our BR-MAB algorithm ap-
plied to the CUSUM-UCB algorithm: the former exploiting only the break-point
prediction procedure B, denoted from now on with BR-CUSUM-UCB(B,/), and
the latter using both the break-point prediction procedure B and the recurrent
concept equivalence test £, denoted by BR-CUSUM-UCB(B,£). This allows us to
separately evaluate the improvements provided solely by the break-point predic-
tion in BR-MAB. We compare our method against: i) the UCB1 algorithm [3], an
algorithm designed for stationary stochastic bandits, #) D-UCB and i) SW-
UCB [9], which are algorithms for non-stationary MAB adopting the passive
approach to deal with changes in the environment, jv) CUSUM-UCB [14], the
version of the CD-MAB algorithm without using our framework. We set the
parameters required by each one of the tested algorithms as suggested by the
corresponding papers. A summary of the parameters is provided by Table 2 pro-
vided in Appendix C. We evaluate the different algorithms in terms of empirical
pseudo-regret R, (1) over the time horizon. The experiments have been repeated
for 200 independent simulations. The code used for the experiments is available
at https://github.com/gerlaxrex/BR-MAB.

5.1 Toy Example

The aim of this experiment is to compare the behaviour over time of the upper
confidence bounds of the CUSUM-UCB algorithm, BR-CUSUM-UCB(B,/), and
BR-~-CUSUM-UCB(B,E). In this experiment, we model K = 2 arms over a time
horizon of N = 10° with By = 4 break-points. We tested the three algorithms
on an abruptly changing scenario where the expected rewards p; 4 varies over
time as depicted in Figure 2a.

In Figures 2b, 2c¢, and 2d we provide the estimated expected value (solid
line) and the confidence bounds (shaded areas) used for the arm selection by the
CUSUM-UCB, BR-CUSUM-UCB(B,/), and BR-CUSUM-UCB(B5,£) algorithm,
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Fig. 2: Toy example: (a) expected rewards for the arms, upper confidence bounds
for (b) CUSUM-UCB, (c) BR-CUSUM-UCB(B,/), (d) BR-CUSUM-UCB(B5,£).

respectively. The sole introduction of the B procedure improves the estimate
of the mean value at the beginning of the phases, since the mean values are
initialized using the samples collected before the detection of the change. This is
evident at times n = 20,000 and n = 40,000 where the CUSUM-UCB algorithm
features downward spikes, while ours take advantage of the samples collected
before the detection to reinitialize the empirical expected value of the reward
and reduce the variance in reward’ estimates.

Comparing Figures 2b and 2d in the interval 60,000 < t < 100,000 of, we
observe that the test £ to identify recurrent concepts makes the upper con-
fidence bounds tighter, especially those corresponding to the optimal arm in
each phase. This means that the amount of exploratory pulls required by BR-
CUSUM-UCB(B,€) to identify the optimal arm are greatly reduced, which also
reduces the regret suffered.

Moreover, the management of recurring concepts also mitigate the impact of
false positive detection. This is evident in Figures 2c and 2d, when two false pos-
itive detections occurring at ¢ 2 7,000 and ¢ ~ 12,000 (small spikes in the figure
on the orange arm statistics). While the BR-CUSUM-UCB(B,/) algorithm re-
covers slowly from these false detections, the BR-CUSUM-UCB(B5,£) algorithm
experiences only a slight spike in the mean, while the upper confidence bounds
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Fig. 3: Synthetic setting: (a) reward expected value, (b) empirical pseudo-regret over
the learning process. The shaded areas represent the 95% confidence intervals for the
mean.

continues to decrease monotonically. This suggests that the reuse of informa-
tion provided by recurrent concept is also useful to recover promptly to a false
positive detection of the CDT adopted in the CD-MAB.

5.2 Synthetic Setting

The first experiment was carried out in a setting with K = 5 arms, on a time
horizon of N = 10° rounds, with By = 9 break-points, evenly distributed over
time. The expected reward of the arms over time is depicted in Figure 3a.

Results Figure 3b shows the empirical pseudo-regret R, () over time of the
different algorithms. In this specific setting, the two passive approaches D-UCB
and SW-UCB are those providing the worst performances, since the value of the
regret gets larger than 3,500 after ¢t =~ 30,000. UCB1, which in principle should
not be able to adapt after changes, is performing better than passive approaches.
This is due to the fact that the arm originally optimal in the first phase /7 is also
optimal in the phases F3, F5, F7, and Fy, therefore, the information gathered in
the past are helping in the selection performed by UCB1. Conversely, in the even
index phases, where a different arm is optimal, the UCB1 algorithm experience
an almost linear increase of the regret, due to the fact that it focus on the arm
optimal in the initial phase, overall providing evidence that it is not suited for
such a scenario. After t = 25,000 rounds the CUSUM-UCB keeps its regret
below all the above-mentioned algorithms, showing the superiority of the active
approaches. Even using this approach, we have that the increase of the regret
is accentuated as soon as a change occurred. This effect is mitigated by BR-
CUSUM-UCB(B,/) thanks to the samples recovered by the B procedure. Indeed,
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Table 1: Regret Ry (1) at the end of the time horizon N.

lAlgorithm ‘Synthetic Setting‘Yahoo! Setting‘
UCB1 3,193 + 17 908 + 5
D-UCB 17,758 £ 8 1,653 +1
SW-UCB 9,307 + 15 1,599+ 1
CUSUM-UCB 2,719 + 84 831+ 35
BR-CUSUM-UCB(B,/) 2,619 £+ 80 805 + 34
BR-CUSUM-UCB(5, ) 2,273 +61 682 + 21

on average BR-CUSUM-UCB(B,/) is performing better than CUSUM-UCB but
no statistical evidence for its superior performance is provided, even at the end
of the learning period (the shaded areas are overlapping). Conversely, the BR-
CUSUM-UCB(B, ) is getting a significant advantage in terms of pseudo-regret,
by exploiting the fact that all the even phases are recurrent, as well as all the
odd ones. The proposed approach is able to incrementally gain advantage over
the other algorithms as the number of recurring phases increases.

The regret at the end of the time horizon N is presented in Table 1, second
column. Even if there is no significance that the BR-CUSUM-UCB(8,/) algo-
rithm performs better than CUSUM-UCB, on average it decreases the pseudo-
regret of & 4% in the synthetic setting. Instead, the BR-CUSUM-UCB(B, &) pro-
vides a significant improvement of ~ 15% over CUSUM-UCB. This suggests that
the information provided by previous phases, in a setting where the environment
presents recurrent phases multiple times, might provide a large improvement to
nonstationary MAB algorithms.

5.3 Yahoo! Setting

The second experiment used a dataset of click percentage of online articles, more
specifically the ones corresponding to the first day (7' = 90,000) of the Yahoo!
Dataset [23]. In this setting the use of a CDT-MAB approach is appropriate
since the user behaviour is known to vary over time, and the recommender
system wants to maximize the visualization of the most interesting article at
each time over the day. We selected K =5 article at random from the available
ones, and a phase Fy is defined computing their average click-through rate each
5,000 seconds and keeping the arms expected reward constant over this period.

Results The results corresponding to the empirical pseudo-regret are presented
in Figure 4. Also in this scenario, the two passive approaches, D-UCB and SW-
UCB, are providing the worst performance, with a regret at the end of the time
horizon of almost twice the value of the other considered algorithms. UCBI1 is
performing worse than CUSUM-UCB, which means that in this specific setting,
the active approach is a valid solution to tackle this problem. The adoption
of the break-point prediction procedure B used by BR-CUSUM-UCB(B,/) is
not achieving a significant improvement, even when looking at Table 1, third
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Fig.4: Yahoo! setting: (a) reward expected value, (b) empirical pseudo-regret
over the learning process. The shaded areas are the 95% confidence intervals.

column, where we have a slightly smaller regret a the end of the time horizon of
~ 2.5% on average. Conversely, when adopting also a technique to integrate the
samples coming from recurrent concepts, we have a significant improvement in
terms of regret for ¢ > 40,000 w.r.t. the one of CUSUM-UCB, which leads to a
improvement of ~ 15% at the end of the time horizon. This strengthens the idea
that the presented BR-MAB framework outperforms standard active techniques.

6 Conclusion and Future Works

We propose BR-MAB, a general framework extending CD-MAB algorithms to
better handle non-stationary MAB setting. The rationale behind BR-MAB con-
sists in gathering, after having detected a change, all the possible information
that is consistent with the current state of the arm. More specifically, BR-MAB
adopts a break-point prediction technique to recover rewards acquired in between
the detection and the unknown change-time instant, and a procedure to identify
recurrent phases of the arm. Our analysis demonstrates that including informa-
tion collected by the break-point prediction procedure preserves the guarantees
on the pseudo-regret in the CUSUM-UCB case. Moreover, experiments indicate
that identifying recurrent concepts is beneficial in terms of accumulated regret,
also thanks to a better recovery after false positive detections. Ongoing work con-
cerns a further investigation to achieve tighter theoretical guarantees on specific
settings, like the case of changes affecting all the arms simultaneously.
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