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Companies’ adoption of Smart Technologies to achieve structural ambidexterity: an analysis with SEM  
 

Abstract 

The transition to “Industry 4.0” and the adoption of Smart Technologies (STs) are generally driven by expectations of 
gains in productivity, better control over operations and supply chain processes and, therefore, improved 
competitiveness. These factors are important to achieve success, but sustainable competitive advantage depends on a 
company’s ability to exploit its current assets, while simultaneously exploring new ways of producing value. The 
ambidextrous balancing of these two areas requires concerted effort and the capacity to balance paradoxical tensions. 
Literature has thoroughly covered the aspect of how to overcome the trade-off between exploitation and exploration. 
However, research has only recently started focusing on the pivotal role that digital technologies may play in this 
process. Our paper contributes to this nascent literature stream by investigating how STs can operate as antecedents 
of structural ambidexterity. This study relies on the 3rd CINet Survey (2016-2017) involving over 370 companies 
worldwide. Leveraging on STs and structural ambidexterity as mediators, we used Structural Equation Modelling to 
show that manufacturing firms with good business performance are in a favorable position to achieve better innovation 
performances. Our results shed new light on the current debate around the Industry 4.0 transition, with implications 
for both academics and practitioners. 
 
1. Introduction  

Manufacturing firms have evolved incredibly over the past century. Their key mission shifted from enlarging their 
production scale, in the 1960s, to reducing production costs and promoting product quality, in the 1970-80s (Zhang 
et al., 2014). All their effort went in the direction of exploiting their manufacturing assets as fully as possible, while all 
the time improving the firm’s productivity and efficiency. In the 1990s, with the increasing level of competition, it 
became clear that productivity and efficiency were no longer enough to sustain competitive advantage; the need to 
be extremely flexible and responsive intensified and, as highlighted by Gunasekaran (1999), agility, a firm’s capacity 
to redirect its strategic focus, reacting quickly and effectively to ever-changing turbulent markets, became a 
fundamental axiom. The capability of exploring new and innovative ways of creating value became pivotal even in 
manufacturing firms (Gunday et al., 2011). 

Nowadays, manufacturing companies are facing the Fourth Industrial Revolution, which can be summarized as the 
convolution of physical and digital realities into a single, complex competitive playground characterized by continuous 
technological innovation (Culot et al., 2020). In this scenario, firms are increasingly pushed to be efficient and 
competitive in the short term, as well as flexible and innovative in the long term; in other words, they need to be 
ambidextrous (Bodwell and Chermack, 2010; Derbyshire, 2014). Ambidexterity is ‘‘the ability of an organization to 
both explore and exploit: to compete in mature technologies and markets where efficiency, control, and incremental 
improvement are prized, and also to compete in new technologies and markets where flexibility, autonomy and 
experimentation are needed’’ (O’Reilly and Tushman, 2013).  

Companies in every sector are asked to develop ambidexterity to cope with today’s business challenges (Martini et 
al., 2013), and this is particularly true for manufacturing firms, which must excel in quite traditional operational 
performance areas (cost efficiency, punctuality and quality, to name a few) and, at the same time, pursue product 
and process innovation as never before (Herzallah et al., 2017). 

The literature has thoroughly investigated how to overcome the trade-off between exploitation and exploration, 
distinguishing reconciling actions at both intra- and inter-organizational levels (Petruzzelli, 2019). Our study focuses 
on the intra-organizational level, where research has started to focus on the crucial role that digital technologies may 
have in this process (Gastaldi et al., 2018; Park et al., 2020). In this regard, manufacturing once again stands out as a 
very interesting context, because of the expected role of digital technologies in driving efficiency and innovation, as 
suggested by the Industry 4.0 paradigm (Dalenogare et al., 2018).  



This expectation was checked through a literature review that investigated both ambidexterity and Industry 4.0. Its 
twofold purpose was, on the one hand, to identify all possible ambidexterity configurations, their antecedents, their 
effects and how they can be operationalized, and, on the other, to understand the impact of Industry 4.0 on 
companies that are adopting this new business model. 

A main research gap arose from the literature review, that of understanding whether investment in Industry 4.0 
enables companies to be ambidextrous, and thus to pursue exploitation and exploration at the same time. The 
importance of decision-makers has already been demonstrated and remains fundamental, being what really drives 
ambidexterity in practice (Tushman et al., 2011; Mazzelli et al., 2020). However, we question whether digital 
technologies could enable and leverage on ambidexterity. Providing evidence of this relationship could be a significant 
contribution, and help manufacturing firms to find better balance when justifying the investment needed for their 
digitization programs. If ambidexterity were proven, it would mean that investment payback should be pursued not 
only by improving short-term business performance but also through better long-term innovation performance. To 
achieve our purpose, we leveraged on data collected in the 3rd CINet Survey, administered from November 2016 to 
June 2017 and involving over 370 companies worldwide. Leveraging on innovative technologies and structural 
ambidexterity as mediators, we used Structural Equation Modelling to find evidence that manufacturing firms with 
good business performance are in a favorable position to achieve better innovation performance. Our results shed 
new light on the current debate over Industry 4.0 transition, with implications for both academics and practitioners. 
 
2. Theoretical background  

2.1. Ambidexterity 

In organizational studies, the term “ambidexterity” was first introduced by Duncan (1976), but scientific debate 
around the concept started in 1991, when March proposed the constructs “exploitation” and “exploration” to identify 
the two divergent strategies that constitute ambidexterity. Exploitation means leveraging on existing resources and 
is about consolidating, refining and becoming more efficient in the utilization of existing resources (e.g. equipment, 
knowledge), while exploration represents the way companies search for new opportunities and get out of their 
“comfort zone” by pursuing variation, taking risks and experimenting (March, 1991). The importance of being 
ambidextrous comes from the fact that firms cannot just engage in exploiting their current assets, because sustained 
competitive advantage cannot rely on static competencies alone, as these tend to become obsolete. At the same time, 
companies that focus only on exploration would never gain any return on their current assets. The right balance 
between exploration and exploitation is difficult to achieve and to be maintained (Levinthal and March, 1993).  

Despite having originated within organizational studies, the constructs of exploration, exploitation and ambidexterity 
are overspilling into manufacturing literature, and currently there is a moderate consensus about the merits of this 
balancing process (Lavie et al., 2010). There is, however, little agreement on the means whereby organizations pursue 
this balance, including outside the manufacturing domain (Adler et al., 2009). Ambidexterity could be achieved, within 
a single firm, by using internal resources or leveraging on external actors (i.e. suppliers, customers, competitors) as 
described by Ardito et al. (2020). Only when the focus is on intra-firm balancing processes does the literature divide 
into two approaches (Eisenhardt et al., 2010; Schreyögg and Sydow, 2010), which differ in terms of their emphasis 
being on differentiation or on integration when addressing the diverging alternatives (Andriopoulos and Lewis, 2009).  

On the one side, there are the structural approaches to ambidexterity, which stress the use of structure and strategy 
to enable differentiation among organizational units. Segregated efforts target either one or the other dichotomous 
activity (Andriopoulos and Lewis, 2009). As an example, in manufacturing firms it is common to find an Innovation (or 
R&D) department, mainly concerned with exploring new products and processes, while the objective of an Operations 
department is to increase efficiency in the production processes. Blindenbach-Driessen and Van Den Ende (2014) 
show that this structural approach increases exploration, exploitation and ambidexterity in both manufacturing and 
service firms. 



On the other side, there are the contextual approaches to ambidexterity, which — mostly rooted in the organizational 
learning and innovation management literature streams — utilize behavioral, cognitive and social means to integrate 
diverging activities (Eisenhardt et al., 2010; Gibson and Birkinshaw, 2004). In manufacturing industries, for instance, 
an operations manager will apply a contextual approach when asking line managers and their teams to apply lean 
production practices as a strategy to explore new ways of generating value while exploiting their current assets (Secchi 
and Camuffo, 2019). Recently scholars have developed hybrid models, which combine aspects coming from both 
structural and contextual ambidexterity (Ossenbrink et al., 2019).  

In the manufacturing context, a capacity for ambidexterity becomes relevant when it can affect business performance 
positively (Derbyshire, 2014). He and Wong (2004) have provided strong empirical evidence of the positive effect of 
ambidexterity on sales growth rates in manufacturing firms. Nowadays, these firms are facing an increasingly dynamic 
and complex environment where ambidexterity, together with absorptive capacity (Tu et al., 2006), can produce a 
greater competitive advantage. Patel et al. (2012) have demonstrated that firms that can absorb external knowledge 
and pursue ambidextrous capabilities are better positioned to leverage on manufacturing flexibility so as to achieve 
higher performance outcomes. Lastly, Vilkas et al. (2021) have shown that lean production can be viewed in the light 
of ambidexterity as it (i) actually contributes to both incremental and radical process improvement and (ii) facilitates 
both exploration and exploitation processes. 

After having outlined the concept of ambidexterity and its manufacturing contextualization, it was important for us 
to give an overview on how ambidexterity is measured in the literature. Cao et al. (2009) discussed two fundamental 
concepts that reach beyond measurement models, “combined dimension” and “balance dimension”; nevertheless, 
there is no consensus about which method should be used, as ambidexterity could be measured in different ways. 
Given any measure of the two constructs of exploration and exploitation, any operator that could be used to obtain a 
score for ambidexterity shows both strengths and weaknesses. For instance, the sum operator, i.e. “combined 
dimension”, is the simplest way to assess ambidexterity and provides the lowest loss of significance compared to the 
other models (Lubatkin et al., 2006), but it neglects the perspective of the “balance dimension”, as a company that 
scores 1 in exploitation and 6 in exploration (or vice versa) appears to be more ambidextrous than a company scoring 
3 and 3, while in reality the focus should be on the combined action of the two. The multiplication operator used by 
several authors (e.g. Ardito et al., 2018) captures the interaction effect, but it suffers from multicollinearity (Gibson 
and Birkinshaw, 2004); moreover, when using multiplication, a company that scores 2 and 3 in the two strategies 
appears to be more ambidextrous than one scoring 2 and 2, and this is - again - partially in contrast with the idea of 
“balance dimension”. Lastly, the “absolute value of the subtraction” operator seems to be the most accurate for 
balance, but, once again, a company that scores 1 in both exploration and exploitation appears to be just as 
ambidextrous as one scoring 5 and 5, and this is absurd. On this point, Simsek (2009) states that an organization with 
low levels of exploitation and exploration is balanced but not ambidextrous. 

 
2.2. Industry 4.0 and Smart Technologies 

In around 2010, academics and practitioners observed the upcoming transformation in the social and economic 
landscape, caused by changes to customer behavior and the maturation of new promising technologies (Brousell et 
al., 2014). This event has been labelled as the Fourth Industrial Revolution, and, in the manufacturing context, it has 
led to the term “Industry 4.0” or I4.0 (coined in Germany in 2011 and introduced publicly at the Hannover Fair to 
describe the German government’s high-tech strategy to support German manufacturing). In our view, Industry 4.0 
refers to a vision of the future in industry and manufacturing where digital and smart technologies will boost 
efficiency and competitiveness by interconnecting resources of every kind (data, people machinery and assets) 
within a factory/manufacturing organization and along the value chain (Miragliotta et al., 2018).  

Today, there is moderate consensus about the Industry 4.0 concept and the Smart Technologies (STs) by which it is 
enabled, as highlighted by Zheng et al. (2021), Ardito et al. (2019) and Culot et al. (2020): advanced automation (e.g. 
collaborative robots), additive manufacturing, augmented human-machine interface technology (such as e.g. 



augmented and virtual reality), simulation, cloud manufacturing (as defined by Xu, 2012, and by Tedaldi and 
Miragliotta, 2020), Industrial Internet of Things, big data analytics (including artificial intelligence) and cyber security.  

Industry 4.0 is impacting traditional manufacturing companies in the four process areas of smart manufacturing, smart 
products, smart supply chain and smart working (Frank et al., 2019a; Meindl et al., 2021). Moreover, academics are 
studying Industry 4.0 in conjunction with other major trends, such as sustainability and servitization. De Sousa Jabbour 
et al. (2018) proposed a framework that takes in eleven critical factors of success which enterprises should manage 
when integrating Industry 4.0 and “green” (i.e. environmentally sustainable) manufacturing. Frank et al. (2019b) 
discuss the link between Industry 4.0 and servitization, and propose a conceptual framework where the latter can 
lead to the creation of “manual”, “digital” and “Industry 4.0” services for customers, in which smart technologies can 
open new channels for gathering data and information. 

Going back to Smart Technologies (STs), a remarkable number of papers state that Industrial IoT, big data analytics 
and cloud are key-enablers for this manufacturing revolution (Miragliotta and Shrouf, 2013; Lasi et al., 2014). These 
technologies, in cooperation with existing traditional IT systems - such as Enterprise Resource Planning (ERP), 
computer aided process planning and product data management / product lifecycle management - and traditional 
automation systems belonging to the field of “Operational Technologies” (OT) - such as programmable logic 
controllers and supervisory control and data acquisition (SCADA) systems - are the fundamentals of today’s digital 
manufacturing scenario (Lu, 2017).  

Today, it is universally acknowledged that STs help companies to increase efficiency within their production 
sites/operations (Xu and Duan, 2019), i.e. to exploit their assets better. For instance, some companies have been 
implementing IoT platforms to extract data in real-time from machinery and to alert operators when failure occurs, 
thereby avoiding worse consequences and reducing overall downtime (Sowmya et al., 2021). Other firms leverage on 
data produced by the machinery and develop condition-based algorithms to predict when maintenance will be 
needed, in order to prolong the life of machines and components and limit downtime (Shin and Jun, 2015). In parallel 
with this exploitation side are the many exploration activities that take place in the manufacturing domain when 
companies adopt STs to re-design products or processes. The introduction of any new technology, such as using 
additive manufacturing to accelerate new product development or produce spare parts on demand (Attaran, 2017), 
relates to exploration, as it requires the company to invest time, acquire new knowledge through experimentation, 
and take risks on the outcomes in the long-term (March, 1991). Exploration also comes into play when companies 
make fundamental changes to their business model enabled by STs. Bressanelli et al. (2018) explored the role of IoT 
and big data analytics in the introduction of new business models; they identified some functionalities linked to the 
circular economy paradigm - where the central aspect is the company’s capacity to innovate its products - that are 
enabled by these technologies. 

However, companies struggle to adopt STs because of several barriers. Kamble et al. (2018) identified 12 such barriers, 
and arranged them according to the hierarchical relationships connecting them. Their study indicates that the most 
relevant barrier is the lack of a clear comprehension of the benefits (which makes investments in STs more risky), and 
the second most significant is the high level of investment required. Other barriers exist, both technically (e.g. lack of 
standards, as in Lu et al., 2020, or security issues, as in Pereira et al., 2017) and from an organizational perspective, 
because many processes could be changed with the introduction of STs, and operators and managers would require 
new skills (Pinzone et al., 2017).  

  



2.3. Gaps and objectives of the study 

The review of extant literature shows an almost complete absence of research that simultaneously considers the 
adoption of STs and ambidexterity in intra-organizational contexts within manufacturing firms. Halse and Ullern (2017) 
claim that – for a manufacturing firm – both openness to an external network of partners and organizational 
ambidexterity are vital for its “Industry 4.0 transformation”.  

A first question then arises about the opposite relationship, i.e. the effect of STs on a firm’s ambidexterity. Szalavetz 
(2019) investigated the impact of advanced Industry 4.0-associated manufacturing technologies on a company’s 
subsidiaries, and discovered that they can contribute in two ways, in that they encourage the increase of both 
production capability (i.e. operating at a given level of technology with excellent operational efficiency) and R&D 
capabilities, but she makes no reference to the balance between the two, i.e. the ambidexterity of these subsidiaries. 
Mahmood and Mubarik (2020) demonstrated that intellectual capital (i.e. the knowledge, ability and strength of 
employees) has a profound influence over ambidexterity where Industry 4.0 and related STs are just defining the 
current context of transformation. Their findings show that technology absorption capability also plays a significant 
mediating role, but there is no reference to the actual applications of STs. While these papers evaluate the 
antecedents or the outcomes of ambidexterity in the Industry 4.0 era, to the best of the authors’ knowledge, no paper 
has investigated the effect of STs on a firm’s ambidextrous strategy. This gap is interesting to study, as today 
companies are adopting STs mainly to exploit their internal resources better (i.e. increase efficiency, productivity, 
availability of machinery etc.). Should STs prove to be the antecedents of ambidexterity, companies ought to look at 
them from a different perspective, considering investment in STs as an enabler for a balanced development of 
exploitation and exploration capabilities, thus higher competitiveness in both the short and the long term. 

Gastaldi et al. (2018) and Rialti et al. (2019) share this position, but with different objectives. Gastaldi et al. (2018) 
analyzed how digital technologies can help hospitals to improve the exploration-exploitation dilemma over time, but 
their study is confined to healthcare settings, and so removed from the manufacturing context. Rialti et al. (2019) 
found that the capabilities developed in a company when it implements big data analytics solutions has a positive 
effect on its ambidexterity, but they did not address other key STs.  

A second gap concerning Industry 4.0 is that many authors studying this topic focus their attention on the benefits of 
adopting STs, and how STs can have a positive, or potentially even negative, impact on a company’s business 
performance (Dalenogare et al., 2018; Gastaldi et al., 2015; Jeschke et al., 2017). Nevertheless, as suggested by Piening 
and Salge (2015), the opposite relationship has not been investigated, i.e. there are no studies which assess business 
performances as enablers for the adoption of STs and so conducive to innovation performance. This gap should be 
covered, since many ST applications require high investment.  

A third gap is the fact that many scholars concentrate on ambidexterity, without defining how companies should 
behave if they are to put exploitation and exploration into practice simultaneously. He and Wong (2004) accepted 
that their study does not address the issue of which organizational design principles are appropriate for ambidexterity. 
Some scholars have argued that, if a firm aims to excel in both improving existing products and generating new ones, 
it should apply structural ambidexterity (Gibson and Birkinshaw, 2004; Levinthal and March, 1993; Raisch and 
Birkinshaw, 2008); nevertheless, no one has clearly demonstrated that structural ambidexterity can have a positive 
influence on innovation performance. This is relevant, as most manufacturing firms are organized with a structural 
subdivision, with departments dedicated mainly to exploitation (e.g. the production unit) or mainly to exploration 
(e.g. the R&D unit). 

In brief, our study addresses a core research problem, which is the relationship between Industry 4.0, in particular the 
adoption of STs in manufacturing contexts, and ambidexterity; this research problem will therefore be framed across 
three research questions (RQs), as follows: 



• RQ1: Do STs enable manufacturing firms to be ambidextrous and thus pursue strategies of exploration and 
exploitation simultaneously? 

• RQ2: Is investing in STs an investment priority of well-performing manufacturing companies? 
• RQ3: Do exploitation, exploration and structural ambidexterity have a positive impact on innovation performance 

in manufacturing firms? 
 

In order to answer the outlined RQs properly, our work was conducted on the basis of a model which incorporates six 
hypotheses, as shown in Figure 1. 

 

Figure 1. Research questions and hypotheses  

The first hypothesis is to understand whether good business performance promotes the adoption of STs. Although it 
is clear that companies able to achieve good business performance are well positioned to invest (Sharfman et al., 
1988), we question whether they are actually currently investing in STs, rather than continuing along more traditional 
courses of investment, such as conventional product development, improving/extending their distribution channels, 
etc. This hypothesis is rooted in the fact that ST adoption can be very costly (Lin and Chen, 2012), as it usually requires 
ad-hoc solutions designed for a specific company (Müller et al., 2018). The implications of this position are significant, 
as it could induce us to say that (financially) high performing companies could be at an advantage in this Industry 4.0 
transformation. On the basis of these arguments, we defined the first hypothesis as H1: 

H1. Good business performance of a manufacturing firm positively influences the implementation of STs. 

The second hypothesis assumes that there is a positive relationship between STs and exploitation, which is strongly 
supported by the literature. Over the past decades, several authors have studied digital technologies as one of the 
antecedents of exploitation (Malhotra, 2001; Stein and Zwass, 1995; Xue et al., 2012). In addition, a point worth 
keeping in mind is that, when companies embark on digital transformation, their initial objective is generally to exploit 
their resources more effectively and become more efficient in terms of time savings, cost reductions and simplified 
management (Gastaldi et al., 2018). With respect to STs, Ali and Azad (2013) considered their benefits from an 
operational perspective, highlighting the optimization of time-cost trade-offs and increased energy savings, while 
Kang et al. (2016) generally talked about increased efficiency. Thus, H2 is: 

H2. The adoption of STs has a positive influence on exploitation within a manufacturing firm. 

The third hypothesis comes from evidence that, once companies can achieve the main benefits of their initial 
digitization investment, the digitization system introduced enables them to explore new and radical ways of providing 



products or services. Gastaldi et al. (2018) addressed this argument, but their work was far removed from the 
manufacturing context. Digital technologies are expected to improve the data collection and processing side, so 
organizations can respond to market changes in a timely manner and identify new business opportunities (Chaudhuri 
et al., 2011). On the basis of these arguments, the next hypothesis is as follows: 

H3. The adoption of STs has a positive influence on exploration within a manufacturing firm. 

Concerning the fourth hypothesis, it is acknowledged that exploitation enhances short-term performance (Atuahene-
Gima, 2005) but, at the same time, some authors have found that exploitation can also have a positive influence on 
both short-term and long-term innovation performance (i.e. continuous improvement and radical innovation) (He and 
Wong, 2004). Firms following an exploitation strategy in their operations should also benefit in their innovation 
performance, because of their improved, leaner and so more suitable processes (Benner and Tushman, 2002; Lee et 
al., 2019). Atuahene-Gima and Murray (2007) suggested that, when companies increase their exploitation capabilities, 
their learning processes become more efficient, and this has a positive influence on their innovation performance. On 
the basis of these ideas, H4 was developed as follows: 

H4. The level of exploitation within a manufacturing firm has a positive influence on its overall innovation performance. 

The aim of the fifth hypothesis is to study the relationship between a company’s level of exploration and its overall 
innovation performance. Atuahene-Gima and Murray (2007) and He and Wong (2004) found the same results as for 
exploitation vs innovation performance. Nerkar (2003) demonstrated that the higher the exploration, the greater is 
the impact on knowledge creation, but he also discovered that the returns could decrease for high levels of 
exploration, thus obtaining an inverted U-shape relationship, and this is somehow recognized also by Li et al. (2010). 
H5 reflects these arguments and is as follows: 

H5. The level of exploration within a manufacturing firm has a positive influence on its overall innovation performance. 

Ardito et al. (2018) conducted one of the first attempts to test the link between process innovation and ambidexterity 
performance empirically. They demonstrated that process innovation (in production or IT processes) could increase 
the ambidexterity performance of a company. Here, we would like to study the opposite relationship, i.e. the effects 
of ambidexterity on overall innovation performance. In particular, we will consider the structural dimension of 
ambidexterity, whereby the Operations and Innovation departments are separate and distinct units in an enterprise. 
Operations should be directed towards exploitation, and innovation (R&D) towards exploration. This hypothesis is 
rooted in the idea that, by balancing exploitation and exploration, a company’s overall innovation performance should 
improve. Many authors agree with this idea; for instance, Katila and Ahuja (2002) and Nerkar (2003) suggest that firms 
enhance their innovation performance by pursuing exploitation and exploration alike. Conversely, other authors, such 
as Atuahene-Gima (2005), have shown that ambidexterity has a negative influence on innovation performance, and 
argue it is more suited to coupling high (low) exploitation with low (high) exploration, as a high-high pairing could lead 
to tension caused by the opposing pull of the two processes. However, as most of the authors, we have assumed that 
structural ambidexterity has a positive influence on innovation performance, therefore: 

H6. Structural ambidexterity in a manufacturing firm has a positive influence on its overall innovation performance. 

  



4. Methods  

4.1. Context and data 

The research model was tested using data collected through the 3rd CINet Survey, a global research project carried out 
within the Continuous Innovation Network (CINet)1. A common questionnaire was administered between November 
2016 and June 2017 in 11 countries (Austria, Brazil, Canada, Denmark, Hungary, Netherlands, Pakistan, Spain, Sweden 
and Switzerland) by local research groups under our coordination.  

The sample frame used in each country restricted the survey to employees whose job title was chief operating officer 
or chief technology officer. According to previous research (e.g. Adebanjo et al., 2018), these are the officials within 
manufacturing firms who have the most knowledge of the topics under examination. In every country,  where only one 
or neither of these positions were held in a company, we asked the chief executive officer to answer our questionnaire. 
Replicating Gastaldi et al. (2019), potential respondent bias was handled in two ways: (i) using scales derived from 
previous literature (see section 4.2), and whose effectiveness has already been verified in similar settings; (ii) pre-
testing the questionnaire on practitioners and academics in the fields of the study, and revising it together, with the 
wording of some questions being modified on the basis of their feedback, before submitting the questionnaire to all 
potential respondents. These methodological choices meant that we also ensured methodological rigorousness and 
that the questions could be clearly understood by professionals. 

The survey focused on respondents from manufacturing firms indexed in the International Standard Industrial 
Classification (ISIC) with codes ranging from 10 to 33 (similarly to Pramongkit et al., 2000). We contacted several 
manufacturing firms in each country and asked them to take part in the survey, working through the solid networks of 
local technical universities involved in the study. We endeavored to select a varied group of firms, in terms of size, focus 
and industries, replicating Kauppi et al. (2016). Questionnaires were distributed to the companies that agreed to take 
part; a total of 138 usable survey responses were used to test the research hypotheses. 

All country samples were checked for early and late response bias and non-response bias, before being entered into 
the global database. For early and late response bias tests, the coordinator for each country was required to compare 
the responses from early and late respondents (Armstrong and Overton, 1977). A t-test of difference was run on their 
sales figures, number of employees and ISIC code for early and late respondents, without finding any statistically 
significant differences. For the non-response bias test, each country coordinator compared the respondents with the 
non-respondents. A t-test of difference was run on their sales figures, number of employees and ISIC code. No statistical 
difference was found between the respondents and the non-respondents. 

The potential common method bias was tested using the Harman single factor test. Less than 50% of the common 
variances were explained by one single factor, which indicates that the data gathered was not affected by problems of 
common method variance (Podsakoff et al., 2003). With multi-country data, measurement equivalence has also to be 
considered. In this case, calibration equivalence was ensured in the survey design by using standardized Likert scales 
items in all countries (Wiengarten et al., 2016). Translation equivalence was ensured by taking care that the translation 
guidelines were strictly followed in all countries. We assessed metric equivalence post-survey by calculating individual 
Cronbach's alphas for each country for all constructs, and individually each provided results above the threshold values. 

4.2. Measures 

We surveyed the literature to identify valid measures for related constructs and adapted existing scales to measure the 
different constructs mentioned in the theoretical background. The measures adopted in the research are described 
below. Table 1 gives the complete list of items and information on the values of Cronbach’s alpha for the various 
constructs. 

Innovation performance. A 4-item scale (α = 0.76) was developed. Following Prajogo and Ahmed (2006), we considered 
a broad definition of innovation performance, which includes aspects related to new product development (Atuahene-
Gima, 2005), employee skills (Pullman et al., 2009), project planning accuracy (Griffin and Page, 1993) and the capacity 
of launching environmental-friendly products (Wong et al., 1996). For each of these aspects, we asked the respondents 

 
1 For more information: www.continuous-innovation.net.  



to think about their average performance over the past three years, and to relate it to their main competitors. This part 
was intended to reduce potential biases associated to idiosyncratic events. 

Exploitation. A four-item scale (α = 0.83) was adapted from Atuahene-Gima (2005). All measures were assessed by 
asking participants to answer questions on their views about their Operations unit on a five-point Likert-type scale, 
ranging from “strongly disagree” to “strongly agree”. Table 1 gives the specific measures. 

Exploration. A four-item scale (α = 0.73) was adapted from Akman and Yilmaz (2008). All measures were assessed by 
asking participants to answer questions on their views about their innovation department on a five-point Likert-type 
scale, ranging from “strongly disagree” to “strongly agree”. Table 1 gives the specific measures. 

Ambidexterity. As illustrated in the literature review, the interaction between exploration and exploitation has been 
computed in the past according to different perspectives, without reaching a consensus. In order to overcome this 
issue, we are proposing an alternative way of operationalizing ambidexterity, which considers the combined 
dimension and the balance dimension simultaneously: 

𝐴𝑚𝑏𝑖𝑑𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦 = !"#$%&'(	(%#'&*%"&
+,-,&.'	(%#'&*%"&

=	 /01-"%2,2%"&3/01-"4,2%"&
|	/01-"%2,2%"&	–/01-"4,2%"&	|	

                                   (1)2 

In this computation, the value of the two approaches is summed and divided by the relative imbalance between the 
two strategies. As a consequence, the computation simultaneously addresses two different perspectives; on the one 
hand, the numerator is the sum of the exploitation and the exploration, which reflects how ambidexterity is calculated 
according to the combined dimension vision (Cao et al., 2009); on the other hand, the denominator includes the 
absolute difference between exploitation and exploration, which is perfectly in line with the balance dimension theory 
(Cao et al., 2009). Therefore, we were able to overcome the main drawbacks relating to summing or multiplying (i.e. 
difficulties in detecting the level of balance between the two strategies) and those relating to absolute difference (i.e. 
enterprises scoring low in both exploration and exploitation being considered as ambidextrous). 

Investments in STs. A five–items scale (α = 0.74) was adapted from Vázquez-Bustelo et al. (2007) and Bottani (2010), 
asking respondents how extensively were STs being adopted and exploited within the respondent’s company. All 
measures were assessed by asking participants to answer questions on a five-point Likert-type scale, ranging from “not 
applied” to “high degree of application”. Table 1 gives the specific measures. 

Business performance. Business performance was measured, as suggested by McDougall and Tyers (1994), through 
three items, where respondents were asked to assess, on a five-point Likert scale (from “much lower” to “much 
higher”), the average performance of the respondent’s firm – in terms of net profit, return on sales and profit growth 
– compared to that of their main competitors over the past three years. The focus on net profit, return on sales and 
profit growth ensures the comprehensive assessment of business performance. 

Control variables. We controlled for three variables: region, industry and company size. The region variable was 
incorporated as a set of dummy variables for South America, North America, Europe and Asia (which was considered 
as the reference category). Company size was measured through the number of employees. We layered the companies 
in three groups, small companies with less than 50 employees, medium companies with 50 to 250 companies and big 
companies with more than 250 employees. The industry was coded through eight dummy variables corresponding to 
the industries of the various respondents (1 = food products manufacturing; 2 = rubber and plastic products 
manufacturing; 3 = fabricated metal products manufacturing, except machinery and equipment; 4 = computer, 
electronic and optical products manufacturing; 5 = electrical components manufacturing; 6 = machinery and equipment 
manufacturing; 7 = furniture manufacturing; 8 = others). 

 

 

 
2  Whenever the value of the denominator becomes zero for any of the observations, the following formulae can be used instead. 
𝐴𝑚𝑏𝑖𝑑𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦 = 	 "#$%&'()('&*+"#$%&,)('&*

|	"#$%&'()('&*	–"#$%&,)('&*	|	+	0
  or alternatively,  𝐴𝑚𝑏𝑖𝑑𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦 = 𝑀𝑖𝑛( "#$%&'()('&*+"#$%&,)('&*

|	"#$%&'()('&*	–"#$%&,)('&*	|	
, Μ1) where 

Μ1 is the maximum ambidexterity value within the observations that have a non-zero denominator.   



4.3. Data analyses  

In order to answer our research questions, we conducted a three-step methodology. We first ran an exploratory factor 
analysis (EFR) to identify the underlying constructs. We then ran a confirmatory factor analysis (CFA) to test the 
distinctiveness of the constructs. Lastly, we used Structural Equation Modelling (SEM) to test the hypotheses and reveal 
the relationships between various constructs. All the analyses were conducted in Stata 14.  

Concerning the data pre-processing, we first checked the responses to make sure that there were no outliers. Then, 
where more than 4 answers were missing (out of the 23 relevant questions), those responses were omitted from the 
analysis. Lastly, we conducted mean imputation for the remaining missing values. The final sample size after the data 
pre-processing contained 138 completed questionnaires. 

We next conducted Principal Component Analysis (PCA) and, in order to choose the appropriate number of factors, we 
carried out a parallel analysis (with 1,000 repetitions), which is more accurate than considering the number of 
eigenvalues greater than one (Kaiser-Guttman criterion) or the scree plot (Hayton et al., 2004). Next, we assigned the 
items to the constructs according to the rotated factor loadings. We considered factor loadings that had an absolute 
value higher than 0.4. Cronbach’s alphas of the retrieved factors were calculated to assess their level of internal 
consistency. Following Kim et al. (2016), Cronbach’s alphas greater than 0.7 were considered to be acceptable. To test 
the sampling adequacy, we calculated the Kaiser-Meyer-Olkin (KMO) measure (Cerny and Kaiser, 1977) and verified 
that it was higher than 0.5 (Hair et al., 2006). 

As mentioned, SEM was used to examine the hypothesized model. In this study, we adopted Anderson and Gerbing's 
(1988) comprehensive, two-step analytical strategy to test the hypothesized model presented in Figure 1. In addition, 
we have also given the Comparative Fix Index (CFI; Bentler, 1990), the Standardized Root Mean Square Residual (SRMR), 
and the Root Mean Square Error of Approximation (RMSEA; Steiger, 1990) to gauge model fit. CFI was considered to 
be the best approximation of the population value for a single model, with values greater than or equal to 0.90 
considered indicative of good fit (Medsker et al., 1994). The SRMR is a standardized summary of the average covariance 
residuals. A favorable value is less than 0.10 (Kline, 1998). The RMSEA is a measure of the average standardized residual 
per degree of freedom. A favorable value is less than or equal to 0.08, and values less than or equal to 0.10 are 
considered “fair” (Browne and Cudeck, 1989). 

 

5. Results  

5.1. Exploratory Factor Analysis  

Although all measures have been already tested in the literature, we conducted an exploratory factor analysis including 
all 22 items corresponding to the 5 measures (business performance, STs, exploitation, exploration, innovation 
performance). This provides further evidence on the discriminant validity of the measures.  

As mentioned, we used the KMO test to evaluate sampling adequacy. The smallest KMO measure is 0.69 (for two items 
only) while for most items the measure was greater than 0.75. The overall KMO for the complete model is 0.78. This 
indicates that the proportion of common variance is low and that data are suitable for PCA. After confirming the sample 
adequacy, exploratory factor analysis and parallel analysis with 1,000 repetitions was carried out to detect the number 
of underlying factors. Figure 2 shows the scree plot and the results of the parallel analysis, indicating that a five factors 
model is the most appropriate, as the dashed line for parallel analysis crosses the PCA line just after the fifth 
component. It is worth noting that, by considering the Kaiser-Guttman criterion or the scree plot alone, we would reach 
a similar number of factors. 



 
Figure 2. Scree plot of the results of parallel analysis with 1,000 repetitions 

 

Table 1 shows the results of the exploratory factor analysis. All factor loadings are greater than the 0.4 threshold and 
they all load on a single factor (no cross loadings with values greater than 0.3). The Cronbach’s alpha values confirm 
the internal consistency reliability of the measures.  

 

Construct Measure Factor 
Loading 

Cronbach’s 
Alpha 

Innovation 
performance 

Total new product development costs as a percentage of sales 0.59 

0.76 

Employee performance re health and safety, quality of life, motivation and 
satisfaction, knowledge and skills 0.77 

Project planning accuracy (e.g. percentage of projects over-running planned project 
lead time, time-to-market or budget) 0.78 

Development of environmental-friendly products 0.81 

Exploitation 

Strengthen and upgrade current knowledge and skills for familiar production 
processes and technologies 0.77 

0.83 Invest in incrementally improved equipment, tools and techniques to improve the 
performance of our production processes 0.85 

Acquire state-of-the-art knowledge, skills, equipment, tools and techniques 0.78 
Acquire new managerial and organizational skills that are important for production 0.72 

Exploration 

Use clear project targets, project phase standards and project management 
regulations for our product development activities 0.55 

0.73 
Support and encourage creativity, inventiveness and participation in product 
innovation and improvement 0.85 

Invite and use feedback and ideas from external partners (customers, suppliers, 
research institutes) to improve product development practices and performance 0.80 

Adapt to changes in the competitive environment by innovating products 0.66 

Investment 
in STs 

Computer-Aided Process Planning (CAPP) 0.74 

0.74 

Automatic identification / Bar code systems / RFId / Industrial IoT 0.68 
“Smart” ICT applications supporting collaboration, connectivity, data processing, 
information mining, modeling, simulation 0.64 

Manufacturing Resource Planning (MRP) and/or Enterprise Resource Planning (ERP) 0.61 
Advanced manufacturing technologies, additive manufacturing, 3D printing, high 
precision technologies (micro/nano-processing) 0.59 



Business 
performance 

Average performance, in terms of net profit, relative to main competitor over the 
past three years 0.94 

0.92 Average performance, in terms of return on profit growth, relative to main 
competitor over the past three years 0.92 

Average performance, in terms of return on sales, relative to main competitor over 
the past three years 0.87 

 

Table 1. Results of exploratory factor analysis 

 

5.2. Confirmatory Factor Analysis 

We considered five nested models with various numbers of factors. In particular, we considered (a) a single factor 
model that incorporates all five constructs; (b) a two-factor model combining business performance and innovation 
performance (factor 1), exploration, exploitation and STs (factor 2); (c) a three-factor model combining business 
performance and innovation performance (factor 1), exploration and exploitation (factor 2) and STs (factor 3); (d) a 
four-factor model that combines innovation performance and business performance and, lastly, (e) a model that 
considers each construct as a separate factor. The fit indexes of the models are presented in Table 2 and confirm that 
the five factors model is the only one with a good fit (for all the indexes). Thus, it is the best approach as the 
measurement part of our model. The factor loadings of all items were significant at p < 0.01.  

 

Model CFI TLI RAMSEA SRMR χ2 df Difference 
1 factor 0.393 0.322 0.162 0.182 792.053 170  
2 factors 0.673 0.632 0.119 0.128 504.301 169 287.752* 
3 factors 0.727 0.690 0.109 0.124 446.392 167 57.909* 
4 factors 0.838 0.813 0.085 0.108 329.708 164 116.684* 
5 factors 0.971 0.965 0.037 0.063 189.927 160 139.781* 

Note: CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; SRMR= Standardized 
Root Mean Squared Residual; Difference = difference in chi-square between the consecutive models; * = Significant at p < 0.01 

 

Table 2. Results of the confirmatory factor analysis 

 

Table 3 shows the composite reliability of the constructs, as well as the correlations among them. To further test the 
discriminant validity of the measures, we followed the approach of Fornell and Larcker (1981). We checked that the 
average variance extracted of each latent construct is larger than the squared correlation of the same latent construct 
with any other construct. Results confirm that each variable has more common variance with its own items than with 
any other four latent constructs included in the model. 
 

 

Variables Composite 
reliability 

Business 
Performance 

Innovation 
Performance Exploration Exploitation Investment 

in STs 
Business 

Performance 0.81 1     

Innovation 
Performance 0.77 0.28* 1    

 

Exploration 
 

0.76 0.03 0.38* 1   
 

Exploitation 
 

0.83 0.30* 0.22* 0.27* 1  

Investment 
in STs 0.74 0.29* 0.18* 0.28* 0.59* 1 

* = Significant at p < 0.05 
Table 3. Composite reliability and correlations among variables 

 



Before calculating the ambidexterity measure, according to Eq. 1, we standardized both the exploration and the 
exploitation latent variables. This reduces the correlation between the ambidexterity measures and the exploration 
and exploitation latent variables, and hence mitigates the potential for multicollinearity between the variables. This 
approach is also used by Cao et al. (2009) for the combined dimension of ambidexterity. The correlation coefficients 
between the ambidexterity measure of Eq. 1 and the exploration and exploitation variables are 0.46 and 0.45, 
respectively. The correlation coefficients are below 0.5 and far smaller than the 0.65 threshold, which indicates 
potential for multicollinearity (Tabachnick et al., 2001). 
 

5.3. Path analysis 

Figure 3 shows the structural model of the relationship between the various constructs. The hypothesized model 
showed good fit to the data (χ2(430) = 1,560.635, CFI = 0.90, SRMR = 0.086 and RMSEA = 0.048). 

 
Figure 3. SEM results of the hypothesized model 

Notes: the figure shows the standardized coefficients, with standard errors in the parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01. We have omitted the control 
variables associated to industries and regions in order to not complicate the figure 

 

The results indicate that business performance is positively related to STs (β = 0.32, p < 0.01). We found that STs 
significantly and positively affect both exploitation (β = 0.62, p < 0.01) and exploration (β = 30, p < 0.01). The model 
indicates that exploration is positively related to innovation performance (β = 0.27, p < 0.05), but that the effect of 
exploitation on innovation performance is insignificant (β = -0.03). This is exactly in line with the findings of Cao et al. 
(2009). The effect of ambidexterity on innovation performance is also positive and significant (β = 0.31, p < 0.01). It is 
worth noting that the coefficient of ambidexterity is greater than the coefficient of the exploration construct (β = 0.31 
for ambidexterity vs β = 0.27 for exploration). These coefficients are standardized and thus comparable. So, when it 
comes to increasing innovation performance, improving the ambidexterity would be more effective than increasing the 
exploration alone.  

Concerning the control variables, company size has a significant effect on business performance (β = 0.19, p < 0.05), 
but an insignificant effect on innovation performance (β = -0.01). The coefficients of the dummy variable for South 
America on innovation performance is significant and negative (β = -0.37, p < 0.01), indicating that, in our sample, 
companies in this region performed worse than the companies in Asia (the reference category). Similarly, the 
coefficient for South America on business performance is negative and significant (β = -0.16, p < 0.1). There are no 
significant differences in innovation performance across industries. In terms of business performance, the coefficient 
corresponding to Industry 5 (electrical components) is negative and significant (β = -0.29, p < 0.05) when compared to 
Industry 1 (food products manufacturing, the reference category).  



6. Discussion of the statistical results 

On analyzing the numerical results above, it was possible to obtain several insights into the extant theory on 
ambidexterity and Industry 4.0. For the sake of clarity, in this discussion, we have considered the academic and 
managerial contributions separately. 
 

6.1. Academic contributions  

Focusing on the theoretical perspective, four main contributions can be highlighted. First of all, the outcomes of the 
statistical analyses highlight that Industry 4.0 positively affects the capability of simultaneously pursuing exploitation 
and exploration strategies within different departments (e.g. Operations department to “exploit”, R&D department 
to “explore”), thus fostering structural ambidexterity within an organization. This finding is a remarkable contribution 
to the academic community because, as underlined in the literature review, there  are virtually no papers that consider 
STs and ambidexterity simultaneously, and only a few articles have recently assessed the role of Industry 4.0 as an 
enabler for structural ambidexterity. Im and Rai (2014) discovered that information systems play a major role in 
enabling contextual ambidexterity, and they described how digital capabilities in inter-organizational relationship 
coordination can promote contextual ambidexterity. Park et al. (2020) recognized that digitization plays a greater role 
when pursuing the intrafirm pathway to achieve structural ambidexterity, but admit to a potential limitation in the 
generalizability of their findings to recent digital technologies. Our research is in fact the first empirical analysis to test 
this hypothesis in the intra-company context, thus filling a significant literature gap in the manufacturing domain (the 
gap in the literature actually refers to both services and manufacturing firms). 

Secondly, the proposed model sheds light on the ambiguous relationship between structural ambidexterity and 
innovation performance. As stated in the literature review, many authors argue that, if a company aims to excel at 
both improving existing products and generating new ones, it should apply structural ambidexterity. It is also the case 
that no one has clearly demonstrated that structural separation positively influences overall innovation performance. 
Our analysis clarifies that, by pursuing structural ambidexterity, i.e. by combining exploitation within Operations and 
exploration within Innovation/R&D, companies can improve their innovation performance, thus filling another 
significant gap in the literature. 

As third evidence, it has been demonstrated that good business performance can affect a company’s ability to invest 
in innovation/R&D, and can lead to outstanding performance in innovation. As the literature analysis has shown, the 
positive effect of innovation on business performance has frequently been underlined, since an innovative mindset 
allows organizations to tackle environmental changes effectively and therefore improve their performance, creating 
a competitive advantage difficult to be matched by their competitors. However, it would appear that there are no 
works that cover the inverse relationship. In proving this positive connection, this research directly answers the 
question put forward by Piening and Salge (2015), who suggested investigating whether business performance has a 
positive influence on an enterprise’s innovation performance. Additionally, the enabling role of monetary 
performance in the adoption of STs has been established, confirming that organizations which perform well are 
investing their resources into implementing these costly technologies. This fills another gap, since it advances the 
theory that well-performing companies could also be in a favorable position to face the Fourth Industrial Revolution.  

Lastly, this paper is proposing an innovative way to operationalize ambidexterity in SEM path analysis. The review of 
the extant literature shows the lack of agreement between scholars regarding the conceiving of ambidexterity. 
Although there is broad consensus that ambidextrous organizations engage in both exploration and exploitation, it is 
unclear whether these firms concentrate their effort on the combined value of their work in exploitation and 
exploration, or on the value of their work in exploitation matching the value of their work in exploration. This 
paradoxical perspective refers to the dual theory of combined dimension and balance dimension, which has led 
several authors to calculate ambidexterity as the multiplication or the absolute difference between the two 
strategies/components. Nevertheless, as illustrated in the literature, both alternatives present serious drawbacks. The 
new formula proposed in this paper was found to be a reliable solution for preventing the dangerous issue of 



multicollinearity and for considering the two perspectives of combined dimension and balance dimension 
simultaneously.  
 

6.2. Managerial contributions 

Alongside its valuable academic implications, this study can provide useful managerial suggestions and thus support 
decision-makers in manufacturing firms.  

The first and most important implication concerns fully embracing Industry 4.0 principles and, in particular, the 
adoption of STs as a reliable enabler of ambidexterity within a manufacturing context. This evidence, supported by 
the statistical analysis, implies that managers should opt for introducing new technological tools (e.g. industrial 
internet, additive manufacturing, RFId tags, etc.) as they will improve their company’s capability to optimize and 
streamline its current production processes and, at the same time, enable it to explore new solutions that can give 
results in the long term. This is important, because researchers usually focus on the connection between investment 
in STs and related business performance (e.g. Dalenogare et al., 2018) and tend to ignore or underestimate the 
contribution of STs to innovation performance. As demonstrated by this study, STs can enable ambidexterity, and can 
thus have an impact in both the short term (business performance) and the long term (innovation performance). 
Therefore, both types of performance should be assessed through suitable KPIs and considering a wider range of 
strategic considerations rather than focusing only on efficiency gains, cost savings and short-term payback.  

As a second practical implication, the study shifts the focus of the debate to the structural conception of 
ambidexterity. Managers should consider organizational separation as a viable solution for a company to become 
ambidextrous and, thus, to be aligned and efficient in its management of daily business as well as being adaptive to 
changes in the environment. In particular, this research suggests the companies should exploit cost saving measures 
in the production department and explore product and process redesign solutions in the R&D (product innovation / 
process innovation) department. In practical terms, this suggestion is in line with the model proposed in Tumino et al. 
(2017), according to whom data from digital devices in factories or connected products in the field can be used in 
operational efficiency projects (exploit) and also in new product or service design projects (explore), while also 
specifying that the two strategies should have specialized management, targets and KPIs. However, decision-makers 
should be careful, because separation must be correctly managed, otherwise it could lead to isolation, with innovative 
units too far away from the core business (O’Reilly and Tushman, 2008).  

This study also emphasizes the fact that business performance can have a significant impact on the chance of 
ambidexterity projects being successful. Managers in well-performing enterprises – from a monetary point of view – 
should invest their finances in keeping up with the technological change that is taking place globally. In particular, 
given the high cost of introducing STS and their initial implementation, business performance (i.e. financial availability) 
constitutes a key condition of any I4.0 initiative. In this regard, in many regions worldwide, governments have 
launched national programs supporting digital transformation in their manufacturing sector. Backed by public money 
to underpin their investment plans, many companies have started out on their ST adoption process; nevertheless, 
public funding generally covers only a small part of the total monetary and organizational costs, and this kind of 
operation may soon backfire if companies are not prepared to back up their initial investment with suitable financial 
resources in the medium and long run. This finding has an additional implication for manufacturing firms, especially 
SMEs. The availability of financial resources is simply a necessary condition to invest in STs, management still has to 
decide whether to use those resources for such an investment, rather than just continuing along more traditional 
courses of action, such as investing in product innovation or improving/expanding their distribution channels. STs, as 
empirically proven in this paper, have the power to improve short-term and long-term performance simultaneously, 
therefore should be regarded as an extraordinary source of competitive advantage. 

Lastly, interesting evidence for managers also stemmed from the analysis of the control variables. The SEM path 
analysis illustrates how the context in which organizations are operating has an influence over the possibility of 
achieving outstanding innovation performance. The level of innovation varies country by country, and this affects 



accessibility to STs. Therefore, in order to avoid wasting financial assets, decision-makers should evaluate the level of 
innovation for the industry in which the enterprise is operating. These results seem connected with the theory of 
industrial commons (Pisano and Shih, 2009), and the relevance of the geographical variable on the competitiveness 
of a company.  

Lastly, as discussed in Section 4, the statistical analyses reveal a null impact of the company size; this means that STs 
are ambidexterity enablers both in small and large businesses. Once again, this is a strong message from a managerial 
viewpoint, as small businesses are usually deemed to be less capable of handling and leveraging on complex 
technological investment. Financial assets, instead, naturally in shorter supply within SMEs in absolute terms, are a 
stronger explanation for successful ambidexterity. 

All in all, these considerations highlight the role of managers, the decisions they make and the organizational culture 
they create, as these factors are what really drives the practice of ambidextrous production innovation, while STs can 
act as its enablers. 

 

7. Conclusions  

In this study, we have shed light on how the transition to Industry 4.0 carried out through the adoption of STs could be 
an enabler of structural ambidexterity. The results demonstrate (i) the antecedent role of STs on ambidexterity at the 
intra-company level; (ii) how well-performing companies are currently investing in STs and thus are in a favorable 
position to improve their performance and (iii) how exploitation, exploration and structural ambidexterity enhance 
innovation performance in manufacturing firms in both the short and long term. These findings fill key gaps in current 
theoretical knowledge and have interesting practical implications.  

There are some limitations that should be considered when interpreting the results of this research. The sample 
included incomplete responses (i.e. missing values) meaning that it was necessary to remove several observations 
where the values were lacking, which reduced the sample available to test the hypotheses. Moreover, the missing 
values were not distributed uniformly, as many missing values were from the same few countries. However, we 
conducted a data imputation analysis to avoid any substantial bias due to missing values. The questionnaire used to 
test our assumptions (i.e. the enabling role of STs over business performance and innovation performance) covered a 
given timeframe (i.e. the company’s performance over the past three years), while it would have been better to 
measure a company’s innovation performance for a longer period than that used for its business performance.  

We envision several avenues for further investigation. Similar research could be conducted on a larger sample of 
countries, in order to gain a more comprehensive perspective on differences in performance. Moreover, using panel 
data to include the time lag between business performance and innovation performance could be an interesting path 
for future studies. Further analysis could also investigate other causal relationships, for instance, the direct path 
between STs and innovation performance or between STs and ambidexterity. It would be interesting to assess the 
impact of each single ST over structural ambidexterity and, thus, innovation performance. For instance, the effect of 
adopting additive manufacturing could be compared with the effect of implementing cloud manufacturing; by 
comparing the results, it would be possible to understand which ST is the most suitable, and in which scenario, to drive 
the simultaneous implementation of exploitation and exploration within the firm. 

It is worth noting that the extant literature has often linked ambidexterity and company performance with 
environmental dynamism and market turbulence, investment volume with the management’s level of risk aversion, 
and structural ambidexterity effectiveness with level of coordination within the organization. These relationships have 
not been considered in this study, but they could be included in the model with the purpose of gaining a more complete 
overview of company dynamics.  
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