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Two finite element approaches are discussed for the analysis of the coupled problems of seepage and deformation of saturated porous media in the 
presence of an acceleration field varying in time and space (e.g. during an earthquake). The equations governing the two phase problem in dynamic regime 
are recalled first under assumptions which seem reasonable in the geotechnical context. Then they are cast into a first finite element form without 
introducing further assumptions with respect to those adopted in deriving them. Subsequently, a simplified formulation is presented which requires a 

reduced number of nodal variables with respect to the first one. After discussing a time integration scheme, the two approaches are applied to the solution 
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of a benchmark example and some comparative comments are presented on their accuracy and on the required computational effort.
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1. Introduction

The problem discussed here is 
retaining structures, such as diaphr
In particular, the case of excavation
water table is considered.

In these conditions the assessmen
on the stability and deformation of t
 to the design of deep 
alls, in seismic regions. 
ranular soils below the 

e effects of earthquakes 
cture requires the eval-

approaches are available for the numerical analysis of seepage and 
of the coupled effective stress-flow problem, e.g. [4–6].

When the acceleration field varies with time, e.g. during earth-
quakes, the analysis of seepage becomes less straightforward since 
recourse cannot be made anymore to the usual concept of hydrau-
lic head [7,8]. This led, in turn, to various numerical approaches for 
dynamic coupled problems that involve different assumptions and 
different sets of independent variables [9–12].
o-phase 

saturated soil exerts on it. Note, in fact, that the relatively high 
hydraulic conductivity of granular soils rules out the assumption 

problem does not permit a straightforward evaluation of the con-
sequences of these assumptions and, hence, makes the choice of 
of undrained conditions sometime adopted in engineering practice 
when dealing with cohesive materials.

In relatively simple cases, e.g. gravity retaining walls, this prob-
lem can be tackled through well-established theories such as those 
originally proposed by Okabe in 1926 [1] and by Mononobe and 
Matsuo in 1929 [2] for the evaluation of the effective pressure, and 
by Westergaard in 1933 [3] for estimating the dynamic increase of 
water pressure. In more complex conditions, however, a coupled 
dynamic analysis of seepage flow and deformation of the soil 
skeleton is required.
     In quasi static conditions, i.e. under a gravity acceleration field 
constant in time and space, broadly accepted numerical
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the most appropriate numerical approach somewhat controversial.
Here, a previous study concerning the numerical analysis of 

dynamic seepage [13–15] is extended to the coupled two-phase 
analysis. This work neglects the possible development of large 
strains in the soil mass, which was considered in other works 
recently presented in the literature, see e.g. [16,17].

First, the equations governing the dynamic flow of a liquid 
within a deformable porous medium are recalled and are coupled 
with those governing the deformation of its skeleton. Then they are 
re-written in finite element form. These derivations are pre-sented 
in some detail to allow the interested reader to follow their various 
steps.

On these bases two alternative finite element formulations are 
described. The first one does not introduce further assumptions 
with respect to those on which the governing equations are based. 
In this case the nodal variables consist of the displacements for the 
solid phase and of the relative seepage velocity for the liquid phase.
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Note that other formulations presented in the literature, e.g.
[10,12], adopt as independent variables the displacements of both 
solid and liquid phases.

The second formulation represents a simplified approach which 
reduces the nodal variables to the displacements of the solid phase 
only.

An iterative time integration scheme is then outlined for both 
formulations and is applied in the solution of a test problem. The 
numerical results suggest some observations on the advantages 
and drawbacks of the two approaches in term of accuracy and 
computational effort.

In the following, the problem is approached considering the sat-
urated porous medium equivalent to two superimposed continua, 
referred to as solid and liquid phases. The two phases have the 
same volume, which coincides with that of porous medium. This 
assumption involves the use of equivalent quantities that will be 
defined subsequently.

A matrix notation and an Eulerian approach with a constant 
geometry are adopted in this paper. All variables are in general 
functions of time t. Upper and lower case bold face letters denote 
matrices and column vectors, respectively. A superposed dot and 
a superscript T denote time derivative and transpose.
2. Equations governing the seepage flow

The dynamic equations governing the seepage flow of a liquid 
within a fully saturated porous skeleton are recalled here introduc-
ing some assumptions that seem reasonable in the geotechnical 
context. In particular, a Newtonian pore liquid is considered, 
referred to in the following as water, with constant deviatoric vis-
cosity and no volumetric viscosity; this liquid has a constant den-
sity and its volumetric deformation linearly depends on the pore 
pressure; isothermal conditions are assumed, thus neglecting the 
influence of temperature; the fluid flow is laminar.

Let introduce now the following quantities: vW is the vector 
collecting the Cartesian components of the velocity of the water
particles; v represents the discharge velocity of flow in Darcy sense, 
which pertains to the liquid phase; u_ is the velocity of the solid 
phase, which coincides with that of the soil skeleton; wW is the 
relative velocity of the water particles with respect to the skeleton 
and w is the relative discharge velocity. The following relationships 
hold between these variables.

wW ¼ vW � _u; w ¼ v � _u ð1a; bÞ
The relative discharge velocity w depends on the relative veloc-

ity of the water particles wW through the matrix NA of the area 
porosities.

w ¼ NAwW ð2Þ 
If the principal directions of porosity coincide with the Carte-

sian axes, NA is a 3 � 3 diagonal matrix the entries of which 
nAx; nAy and nAz are the ratios between the area of pores and the
total area of the sections normal to the reference axes.

The difficulties met in determining the area porosities suggest 
using the volume (or effective) porosity n, which represents the 
ratio between the volume of voids and the total volume of a soil 
element, and that can be seen as the average value of the area 
porosities [7]. Consequently, Eq. (2) becomes.

w ¼ nwW ð3Þ
2.1. Equation of compatibility

The equation of compatibility of the liquid phase relates its
strain rates, collected in vector _eL, to the discharge velocity v
through the same 6x3 differential operator B (see the List of Sym-
bols) that governs the strain–displacement relationship for solids.

_eL ¼ Bv ð4Þ
Considering Eq. (1b), the relationship between the strain rate of 

the liquid phase e_ L, the relative discharge velocity w and the skele-
ton velocity u_ is.

_eL ¼ Bwþ B _u ð5Þ
2.2. Shear stress-shear strain rate relationship

The stresses rL and the strain rates _eL of the liquid phase are
expressed through the following quantities,

p ¼ 1
3
mTrL; sL ¼ rL �mp ¼ I � 1

3
mmT

� �
rL ð6a;bÞ

_eL;vol ¼ mT _eL; _eL ¼ _eL � 1
3
m _eL;vol ¼ I � 1

3
mmT

� �
_eL ð7a;bÞ

where p is the pore pressure (positive if tensile), which coincides 
with the volumetric part of the stresses rL; sL is the deviatoric stress 

vector; _eL;vol and _eL are the volumetric and deviatoric strain rates; I 
is the identity matrix and m is a 6 component vector the entries of 
which are equal to 1 if they correspond to normal strains/stresses, 
otherwise they vanish.

In a Newtonian liquid, a linear relationship holds between stres-
ses and strain rates which is formally analogous to that relating 
stresses and strains for a linearly elastic solid. In the case of solids 
the law depends on bulk and shear elastic moduli; in the case of 
liquids on bulk and shear viscosities. Since the bulk viscosity is 
neglected in the present context, only the deviatoric part of the 
law remains.

sL ¼ lLI0e_ L ð8Þ 
Here lL is the deviatoric viscosity of the liquid phase and I0 is a

6 � 6 diagonal matrix with entries equal to 2 if they correspond to 
normal strains, otherwise they are equal to 1.

Eqs. (8), (7) and (5) lead to the following sL � w relationship,

sL ¼ lLI1 Bwþ B _uð Þ ð9Þ
where

I1 ¼ I0 � 1
3
I0mmT ¼ I0 � 2

3
mmT ð10Þ

Substituting Eq. (9) into Eq. (6b) one obtains.

rL ¼ lLI1ðBwþ B _uÞ þmp ð11Þ
2.3. Conservation of the mass of liquid

If internal sources are neglected, the conservation condition
requires that the liquid phase mass, _m1, accumulated in a unit vol-
ume in a unit time coincides with the difference, _m2, between the
rates of mass entering and leaving it.

_m1 ¼ _m2 ð12Þ
The rate of mass accumulation, _m1, consists of four contribu-

tions. The first one depends on the volumetric strain rate of the
skeleton, _eS;vol, which in turn is a function of its displacement rate _u.

_eS;vol ¼ mTðB _uÞ ð13Þ
Since positive volume strains correspond to a volume increase,

a positive value of _eS;vol involves an increase of the liquid mass
within the volume.



The second contribution is the change in mass due to the volu-
metric strain rate of the fluid phase that, disregarding its volumet-
ric viscosity, depends on the pore pressure rate _p through the bulk
modulus BW of the liquid and the volume porosity n.

The third contribution is due to the strain rate of the soil grains
that depends on the pore pressure change through the bulk mod-
ulus of the soil grains BG and on the porosity n.

Since tensile pore pressure are assumed as positive, a positive
pore pressure rate corresponds to a volume increase of grains
and water and, hence, to a decrease of the liquid mass.

The forth contribution, due to the change in density of the liq-
uid, is here neglected. Hence, the rate of liquid mass accumulation
is,

_m1 ¼ qLm
TðB _uÞ � qL

n
BW

_p� qL
1� n
BG

_p ð14Þ

where the density of the liquid phase qL depends on that of water
qW and on n.

qL ¼ nqW ð15Þ
The difference, _m2, between the rates of liquid mass leaving and

entering the volume depends on the space variations of the relative
discharge velocity.

_m2 ¼ �qL
@wx

@x
þ @wy

@y
þ @wz

@z

� �
¼ �qLm

TðBwÞ ð16Þ

Note that positive values of the space derivatives imply that the 
mass leaving the element exceeds the one entering it. Conse-
quently, since m_ 2 represents a mass accumulation, positive deriva-
tives correspond to negative m_ 2.

Substituting Eqs. (14) and (16) into Eq. (12), the conservation of 
the liquid mass for a three dimensional seepage flow becomes,

mTðB _uÞ þmTðBwÞ � 1
BU

_p ¼ 0 ð17Þ

where BU is the parameter that governs the change in volume of the
saturated porous medium, which depends on the bulk moduli of
water BW and grains BG.

BU ¼ n
BW

þ 1� n
BG

� ��1

ð18Þ
2.4. Equation of motion of the fluid phase

Adopting an Eulerian approach for the liquid flow, the equation
of motion expresses the momentum balance of the mass contained
within a fixed unit volume. This implies that the rate of momen-
tum increase is equal to the difference between the inward and
outward momentum rates plus the contribution of the external
forces.

The equation of motion for a one dimensional flow of the liquid
phase in the x direction reads,

qL
@vx

@t
þ qL

@ vxvxð Þ
@x

þ @ðvxvyÞ
@y

þ @ vxvzð Þ
@z

� �

� @rLx

@x
þ @sLyx

@y
þ @sLzx

@z

� �
� qLgx þ f Dx ¼ 0 ð19Þ

where qL is the density of the liquid phase (Eq. (15)); vi (i ¼ x; y; zÞ 
are the components of the discharge velocity; rLx; sLyx; sLzx are nor-
mal and shear stress components of the liquid phase; gx is the com-
ponent of the acceleration of gravity in the x direction and f Dx is the
drag force due the interaction between the flowing liquid and the
porous skeleton. Note that while the acceleration of gravity is
known and constant with time, the discharge velocity and its time 
derivative are unknown quantities.

Writing Eq. (19) for a three dimensional seepage flow, express-
ing the discharge velocity v in terms of the relative discharge 
velocity w and of the skeleton velocity _u through Eq. (1b), and 
neglecting the quadratic term because the small value of velocity 
makes its contribution marginal in geotechnical seepage problems, 
one obtains.

qL _w þ qL €u � BT rL � qLg þ f D ¼ 0 ð20Þ
Here vectors w_ ; €u; g and f D collect, respectively, the compo-

nents of: relative discharge acceleration; skeleton acceleration; 
acceleration of gravity (which is known and constant with time) 
and drag force.

Confining our attention to laminar flows, the following relation-
ship can be introduced between the drag force vector and the rel-
ative discharge velocity.

f D ¼ lLðK 0Þ�1w ð21Þ 
In the above equation K0 is the intrinsic permeability matrix of

the porous skeleton and lL is the deviatoric viscosity of the liquid 
phase. Note that under gravity conditions the relationship between
the intrinsic permeability k0 (having dimensions of square length) 
and the coefficient of permeability k (having dimensions of 
velocity) is,

k ¼ cW
lW

k0 ð22Þ

where cW and lW are the unit weight and the viscosity of water.
Finally, expressing rL and f D in Eq. (20) through Eqs. (11) and 

(21), the matrix form of the equation of motion of the fluid phase is 
arrived at.

qL
_wþ qLð€u� gÞ � lLB

T ½I1BðwÞ� � lLB
T ½I1Bð _uÞ� � BTðmpÞ

þ lLðK 0Þ�1w ¼ 0 ð23Þ
3. Governing equations for the two-phase medium

In one dimensional condition, and neglecting the quadratic
velocity terms, the equation of motion for the two-phase medium
is,

qS€ux þ qL
@vx

@t
� @rx

@x
þ @syx

@y
þ @szx

@z

� �
� ðqS þ qLÞgx ¼ 0 ð24Þ

where vx is the velocity of the liquid phase, u€x is the skeleton accel-

eration, qS and qL are the (constant) densities of solid and liquid 
phases, and rx; syx; szx are normal (positive if tensile) and shear 
total stress components.

Taking into account Eq. (1b), for a three dimensional motion Eq.
(24) becomes.

qSat
€uþ qL

_w� BTr� qSatg ¼ 0 ð25Þ
Here qSat represents the density of the saturated porous med-

ium, which depends on the densities of soil grains qG and water
qW and on the porosity n.

qSat ¼ qS þ qL ¼ ð1� nÞqG þ nqW ð26Þ
The vector of total stresses r is expressed in terms of the stres-

ses acting on the solid phase, r0
S, and on the liquid phase, rL.

r ¼ r0
S þ rL ð27Þ

Biot’s coefficient a [18], which affects the isotropic part of rL (i.e. 
the pore pressure), has been omitted in Eq. (27) since its value is 
close to unity in the case of granular soils here considered.



In the small strain regime, and assuming that in dynamic condi-
tions the skeleton behavior can be reasonably expressed by uncou-
pling the effects of strain from those of the strain rate, the
following relationships hold.

eS ¼ Bu ð28Þ

r0
S ¼ DSeS þ VS _eS ð29Þ
Here vector eS collects the strain components of the solid 

phase and DS and V S are its constitutive elastic and viscosity 
matrices.

Introducing Eq. (27) into Eq. (25), and expressing the stress vec-
tors r0

S and rL through Eqs. (28), (29) and (11), one obtains,

qSatð€u� gÞ þ qL
_w� BT ½DSBðuÞ� � BT ½VSLBð _uÞ�

� lLB
T ½I1BðwÞ� � BTðmpÞ ¼ 0 ð30Þ

where VSL is the global constitutive viscosity matrix of the coupled
solid and liquid phases.

VSL ¼ VS þ nlLI1 ð31Þ
4. Boundary conditions

The dynamic two-phase problem is governed by the system of 
three differential Eqs. (17), (23) and (30), which involve as 
unknown functions the relative discharge velocity w, the skeleton 
displacements u and the pore pressure p.

To express the boundary conditions with reference to confined 
seepage flows, consider a saturated porous domain having surface 
C and volume X.

The surface C is subdivided into its impervious part, Cw, where 
the relative discharge velocity component normal to it, wn, 
vanishes and its pervious part, Cp, where the pore pressure p is 
known. The corresponding boundary conditions can be expressed 
as follows.

wTT1m ¼ mTTT
1w ¼ wn ¼ 0 on Cw ð32aÞ

p ¼ p and sL ¼ 0 on Cp ð32b; cÞ
In Eq. (32a) T1 is a 3 � 6 matrix the entries of which are the 

direction cosines of the outward vector normal to Cw (see List of
Symbols).

The surface C can be also subdivided into Cu, where the
displacements u are known, and Cr where the three components
of the total surface tractions t are imposed.

T2u ¼ u on Cu ð32dÞ

T2T1r ¼ t on Cr ð32eÞ
In Eq. (32d,e) T2 is the 3 � 3 matrix containing the direction 

cosines of the local reference system axes along which the
boundary displacements and tractions are imposed.

5. Finite element approximation

Consider the eth finite element adopted for discretizing the sat-
urated porous medium and denote with ne

w and ne
u the number of

its nodes where relative discharge velocity we and displacements
ue are defined, respectively. The pore pressure pe is seen here as
an element variable and is defined at the element integration
points.

The distributions of the relative discharge velocities w and of
the solid phase displacements u within the element depend on
the interpolation function matrices Se

w and Se
u.
w ¼ Se
ww

e; u ¼ Se
uu

e ð33a;bÞ
For a three-dimensional problem, Se

w is a 3 � 3 ne
w matrix and Se

u

is a 3 � 3 ne
u matrix. Let also define the following matrices contain-

ing the space derivatives of the interpolation functions, where Be
w is

a 6 � 3 ne
w matrix and Be

u is a 6 � 3 ne
u matrix.

Be
w ¼ BSe

w; Be
u ¼ BSe

u ð34a;bÞ
6. Finite element formulations

Two finite element formulations will be outlined in the follow-
ing. The first one does not introduce further assumptions with 
respect to those already adopted for deriving the governing Eqs.
(17), (23) and (30). In this case the nodal variables consist of the 
displacement u for the solid phase and of the relative seepage 
velocity w for the liquid phase. Note that other formulations 
previously presented in the literature (e.g. [10,12]) adopt as nodal 
variables the displacements of the solid and of the liquid phases.

An alternative, simplified formulation is described subsequently 
where the nodal variables are reduced to the displacements of the 
solid phase only.

6.1. Finite element form of Eq. (23)

To derive their finite element form, Eq. (23) and the boundary 
condition Eq. (32b) are written in weak form multiplying them by a 
virtual variation dw of the relative discharge velocity that ful-fils 
Eq. (32a) on Cw and integrating them, respectively, over the volume 
X and the surface Cp of an element of the porous medium.

qL

Z
X
dwTð _wþ €u� gÞdX� lL

Z
X
dwTBT ½I1ðBwÞ�dX

� lL

Z
X
dwTBT ½I1ðB _uÞ�dX�

Z
X
dwTðBTmpÞdX

þ lL

Z
X
dwTðK 0Þ�1wdXþ

Z
CP

dwTT1mðp� pÞdC ¼ 0 ð35Þ

Applying Green–Gauss theorem (see Appendix A) to the second, 
third and fourth integrals in Eq. (35) one obtains, respectively.

� lL

Z
X
dwTBT ½I1ðBwÞ�dX ¼ �lL

Z
Cp

dwTT1I1ðBwÞdC

þ lL

Z
X
ðBdwÞT I1ðBwÞdX ð36aÞ

� lL

Z
X
dwTBT ½I1ðB _uÞ�dX ¼ �lL

Z
Cp

dwTT1I1ðB _uÞdC

þ lL

Z
X
ðBdwÞT I1ðB _uÞdX ð36bÞ

�
Z
X
dwTðBTmpÞdX ¼ �

Z
Cp

dwTT1mpdCþ
Z
X
ðBdwÞTmpdX ð36cÞ

Note that, since dw fulfils Eq. (32a), the surface integrals over the 
impervious surface Cw vanish. In addition, considering Eqs.
(9) and (32c), the following equation holds.

�lL

Z
Cp

dwTT1I1ðBwÞdC ¼ lL

Z
Cp

dwTT1I1ðB _uÞdC ð36dÞ

Substitution of Eqs. (36) into Eq. (35) leads to

qL

Z
X
dwTð _wþ €u� gÞdXþ lL

Z
X
ðBdwÞT I1ðBwÞdX

þ lL

Z
X
ðBdwÞT I1ðB _uÞdXþ lL

Z
X
dwTðK 0Þ�1wdX

¼ �
Z
X
ðBdwÞTmpdXþ

Z
Cp

dwTT1mpdC ð37Þ



Finally, the following set of ne
W scalar equations is reached by 

writing Eq. (37) for the eth element, by introducing Eqs. (33) and 
(34) and by eliminating from all terms the virtual variation of 
the nodal discharge velocities.

Me
Lww

_we þMe
Lwu

€ue þ V e
Lwww

e þ Ve
Lwu

_ue ¼ f eLp þ f eLp þ f eLg ð38Þ
The following expressions hold for matrices and vectors in

Eq. (38), where the subscript L indicates that they are related
to the liquid phase and a superposed bar denotes the vectors of
data.

Me
Lww ¼ qL

Z
Xe

ðSe
wÞ

TSe
wdX; Me

Lwu ¼ qL

Z
Xe

ðSe
wÞ

TSe
udX ð39a;bÞ

V e
Lww ¼ Ve

Lww1 þ V e
Lww2

¼ lL

Z
Xe

ðBe
wÞT I1Be

wdXþ lL

Z
Xe

ðSe
wÞ

TðK 0Þ�1Se
wdX; ð39cÞ

V e
Lwu ¼ lL

Z
Xe

ðBe
wÞT I1Be

udX; f eLp ¼
Z
Xe

ðBe
wÞTmpedX ð39d; eÞ

f eLp ¼
Z
Ce
p

ðSe
wÞ

TT1mpedC; f eLg ¼ qL

Z
Xe

ðSe
wÞ

TgdX; ð39f ; gÞ

X
duT ½qSatð€u� gÞ þ qL

_w�dX�

Note that vector f eLp (Eq. (39e)) depends on the unknown pore 
pressure distribution within the element.

6.2. Finite element form of Eq. (30)

Eq. (30) and the boundary condition Eq. (32e) are written in 
weak form multiplying them by a virtual variation of the displace-
ments du of the solid phase that fulfils Eq. (32d) on Cu and integrat-
ing them, respectively, over X and Cr.Z Z

X
duTBT ½DSðBuÞ�dX

�
Z
X
duTBT ½VSLðB _uÞ�dX� lL

Z
X
duTBT ½I1ðBwÞ�dX

�
Z
X
duTðBTmpÞdXþ

Z
Cr

duTTT
2ðT2T1r� tÞdC ¼ 0 ð40Þ

Applying Green–Gauss theorem (see Appendix A) to the second, 
third, fourth and fifth integrals in Eq. (40) one obtains, respectively.

�
Z
X
duTBT ½DSðBuÞ�dX ¼ �

Z
Cr

duTT1DSðBuÞdC

þ
Z
X
ðBduÞTDSðBuÞdX ð41aÞ

�
Z
X
duTBT ½VSLðB _uÞ�dX ¼ �

Z
Cr

duTT1VSLðB _uÞdC

þ
Z
X
ðBduÞTVSLðB _uÞdX ð41bÞ

� lL

Z
X
duTBT ½I1ðBwÞ�dX ¼ �lL

Z
Cr

duTT1I1ðBwÞ�dC

þ lL

Z
X
ðBduÞT I1ðBwÞdX ð41cÞ

�
Z
X
duTðBTmpÞdX ¼ �

Z
Cr

duTT1mpdCþ
Z
X
ðBduÞTmpdX ð41dÞ

Note that the surface integrals over Cu in Eqs. (41) vanish (cf. Eq.
(32d)) and that, taking into account Eqs. (27)–(29), (11), the last
integral over Cr in Eq. (40) becomes.
Z
Cr

duTTT
2 T2T1r� t
� �

dC ¼
Z
Cr

duTT1DSðBuÞdC

þ
Z
Cr

duTT1VSðB _uÞdC

þ lL

Z
Cr

duTT1I1ðBwÞdC

þ nlL

Z
Cr

duTT1I1ðB _uÞ�dC

þ
Z
Cr

duTT1mpdC

�
Z
Cr

duTTT
2
�tdC ð41eÞ

Substitution of Eqs. (41) and (31) into Eq. (40) leads to.Z
X
duT ½qSatð€u� gÞ þ qL

_w�dXþ
Z
X
ðBduÞTDSðBuÞdX

þ
Z
X
ðBduÞTVSLðB _uÞdXþ lL

Z
X
ðBduÞT I1ðBwÞdX

¼
Z
Cr

duTTT
2tdC�

Z
X
ðBduÞTmpdX ð42Þ
6.3. Displacement-velocity approach

Writing Eq. (42) for the eth element, introducing the 
interpolation functions and their derivatives (Eqs. (33) and (34)), 
and eliminating from all terms the virtual variation of the nodal 
displacements, the following matrix form is arrived at, which 
corresponds to ne

u scalar equations.

Ke
Su

e þ V e
Sat

_ue þMe
Sat

€ue þ ðVe
LwuÞTwe þ ðMe

LwuÞT _we

¼ �f eup þ f egSat þ f et ð43Þ
Matrices Me

Lwu and Ve
Lwu are given by Eqs. (39b,d). The stiffness 

matrix Ke
S of the solid element, the viscosity V e

Sat and mass Me
Sat 

matrices of the saturated two-phase element, and the vectors in 
Eq. (43) have the following expressions.

Ke
S ¼

Z
Xe

ðBe
uÞTDSB

e
udX; V e

Sat ¼
Z
Xe

ðBe
uÞTVSLB

e
udX ð44a;bÞ

Me
Sat ¼ qSat

Z
Xe

ðSe
uÞTSe

udX; f eup ¼
Z
Xe

ðBe
uÞTmpedX ð44c;dÞ

f egSat ¼ qSat

Z
Xe

ðSe
uÞTgdX; f et ¼

Z
Xe
ðSe

uÞTT
2t

edX ð44e; fÞ

Note that vector f eup (Eq. (44d)) depends on the unknown pore 
pressure distribution within the element.

The final set of solving equation consists of Eqs. (43) and (38), 
which are re-written here for convenience.

Ke
S 0
0 0

� �
ue

0

� 	
þ V e

Sat ðV e
LwuÞT

V e
Lwu V e

Lww

" #
_ue

we

� 	

þ Me
Sat ðMe

LwuÞT
Me

Lwu Me
Lww

" #
€ue

_we

� 	
¼ �f eup

f eLp

( )
þ

f egSat þ f et
f eLp þ f eLg

( ) ð45Þ

Having evaluated the nodal velocities of the solid and liquid 
phases, the pore pressure rate within the eth element is deter-
mined through Eq. (46) that represents the finite element form of 
Eq. (17).

_pe ¼ BUðmTBe
u
_ue þmTBe

ww
eÞ ð46Þ



6.4. Displacement approach

An alternative formulation [12], which does not involve the dis-
charge velocity as an independent variable, takes into account that 
some terms of Eq. (23) can be disregarded since their contribution 
is likely to be marginal with respect to that of other terms. These 
are the first term of Eq. (23), which depends on the relative dis-
charge acceleration, and the third and fourth terms that contain the 
second space derivatives of the discharge velocity and of the 
velocity of the solid phase.

Based on the above assumptions, Eq. (23) reduces to the follow-
ing form,

w ¼ 1
lL

K 0½BTðmpÞ � qLð€u� gÞ� ð47aÞ

which for the eth finite element becomes.

we ¼ ½V e
Lww2��1½f eLp þ f eLp þ f eLg �Me

Lwu
€ue� ð47bÞ

Consider now Eq. (30) that, neglecting the discharge accelera-
tion and the second space derivative of the discharge velocity, 
becomes.

qSatð€u� gÞ � BT ½DSðBuÞ� � BT ½VSLðB _uÞ� � BTðmpÞ ¼ 0 ð48Þ
Consequently, its finite element form expressed by Eq. (43) 

reduces to.

Ke
Su

e þ V e
Sat _u

e þ Me
Sat €u

e ¼ �f eup þ f egSat þ f t
e ð49Þ

Having evaluated the nodal velocities of the solid phase by Eq.
(49), the velocity of the liquid phase and the pore pressure rate 
are determined through Eqs. (47b) and (46).
7. Time integration scheme

Let write Eqs. (45) and (49) of the two formulations in the same 
compact form expressed by Eq. (50), with obvious meanings of 
symbols.

Z1xðtÞ þ Z2 _xðtÞ þ Z3€xðtÞ ¼ bðp; tÞ þ bðtÞ ð50Þ
Note that vector b depends on the pore pressure, while b is

known and depends solely on time t.
To integrate Eq. (50) in time, assume that the variation of €xðtÞ 

within a time increment Dti is governed by an a priori chosen inter-
polation function [19–22]. Consequently, the following equations 
express the independent variable and its first time derivative at
the end of the interval Dti ¼ ti � ti�1.

xi ¼ xi�1 þ
Z tðiÞ

tði�1Þ
_xðtÞdt; _xi ¼ _xi�1 þ

Z tðiÞ

tði�1Þ
€xðtÞdt ð51a;bÞ

Upon integration, Eqs. (51) can be written in the following form

xi ¼ xi�1 þ Dti _xi�1 þ Dt2i
2

€xi�1

� �
þ b0

Dt2i
2

D€xi;

_xi ¼ _xi�1 þ Dti€xi�1½ � þ b1DtiD€xi ð52a;bÞ

and

€xi ¼ €xi�1 þ D€xi ð52cÞ
where D€xi represents the increment of the second derivative at the
end of the step.

The coefficients b0 and b1 depend on the interpolation function
adopted for €xðtÞ within the time step Dti. In particular, b0 ¼ 1 and
b1 ¼ 0 if €xðtÞ ¼ €xi; b0 ¼ b1 ¼ 1=2 if €xðtÞ ¼ ð€xi�1 þ €xiÞ=2; b0 ¼ 2=3
and b1 ¼ 1=2 if €xðtÞ varies linearly from €xi�1 to €xi.
The following recursive equation for the time integration is 
reached introducing Eqs. (52) into Eq. (50).

b0
Dt2i
2

Z1 þ b1DtiZ2 þ Z3

� �
D€xi ¼ �Z1 xi�1 þ Dti _xi�1 þ Dt2i

2
€xi�1

� �
� Z2 _xi�1 þ Dti€xi�1½ � � Z3€xi�1

þ bðpi; tiÞ þ bðtiÞ ð53Þ
Knowing the independent variables xi�1, their derivatives and

the pore pressure at time ti�1, an iterative process is necessary to
evaluate them at time ti:

–

–

Vector bðpi; tiÞ, cf. Eqs. (50), (45), (49), is approximated adopting 
the values of the pore pressure at time ti obtained by the previ-
ous iteration; for the first iteration the value at time ti�1 is 
adopted to this purpose.
Vector D€xi is determined by solving Eq. (53), then xi; x_ i; €xi are 
updated through Eqs. (52).

– The pore pressure rate _pi at the integration points of each ele-
ment is evaluated through Eq. (46) and pi is determined through 
Eqs. (52).

– Vector bðpi; tiÞ is updated and the next iteration is carried out.
– The process ends when vector xðtiÞ and the pore pressure pi

stabilize.

Note that the pore pressure is not among the nodal variables of
the finite element model. This, from the one hand, eliminates the 
consistency problems that could be encountered when both dis-
placements and pore pressure are defined at the same element 
nodes. On the other hand, however, it requires the above men-
tioned iteration process.

With this respect it could be observed that, since the vast 
majority of geotechnical problems involves the elastic–plastic 
behavior of soil, an iterative process would be anyway necessary 
for the nonlinear analysis.

It seems necessary to observe that the described integration 
technique is less sophisticated than other approaches presented 
in the literature, see e.g. [23,24]. The fact that it performed satisfac-
torily is likely to depend on the small value of the time steps 
adopted for integrating the nonlinear problem and that a saving 
in overall computational time can be achieved by adopting the 
above mentioned methods.
8. Illustrative example

The two described finite element approaches have been applied 
to the test problem depicted in Fig. 1. It concerns one of the shal-
low excavations frequently used nowadays in Milan to host gar-
ages and other underground facilities. The excavation is carried into 
the granular subsoil adopting a cut-and-cover, top-down pro-
cedure, see e.g. [25,26]. Note that the lower part of excavation is 
well below the phreatic level.

The analysis is subdivided into two subsequent stages. First, the 
excavation process is simulated in static regime. Then, the effects 
of a seismic excitation are evaluated in the critical conditions in 
which the excavation has been completed but its bottom concrete 
slab has not been constructed yet.

The steps of excavation can be summarized as follows (cf. 
Fig. 1). First the reinforced concrete panels of the diaphragm walls 
(1) are set in place from the ground surface stabilizing the holes 
during excavation through bentonite slurry. Then a series of low 
pressure grouting injections (2) is performed from within the 
perimeter of the diaphragms. This forms a zone with reduced per-
meability necessary to limit the inlet of water when excavating 
below the water table. A few meter thick soil layer (3) is then



Fig. 1. Scheme of the shallow excavation supported by two diaphragm walls.
removed and the reinforced concrete top slab (4) is constructed
and connected to the diaphragm walls. The soil (3) is set again in
place to allow for the use of surface facilities (e.g. roads). The exca-
vation is continued underneath the slab until reaching the layer of
injected soil (2) on which the bottom concrete slab will be subse-
quently constructed.

The elastic–plastic analysis of this process was performed in
plane strain regime and was based on a 105 m wide and 33 m deep
rectangular mesh consisting of 1610 quadrilateral elements and
1704 nodes. Beam elements were used to model the concrete slab
(4) and the 60 cm thick diaphragm walls (1).

The granular soil was divided into 6 horizontal layers, two of 
which are located above the water table. Each layer is assigned 
the mechanical properties evaluated at its mid depth according 
to the data provided by the Milan subway company for the design 
of underground facilities [27] or obtained by previous experimen-
tal studies [28]:

– Dry self weight of soil c = 14.0 kN/m3.
– Coefficient of earth pressure at rest Ko ¼ 0:5.
– Elastic modulus of the natural soil Es increasing with depth
according to the following relationship where pa is the atmo-
spheric pressure and rmin is the least value between vertical
and horizontal effective stresses: Es ¼ 2000 � pa �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmin=pa

p
.

– Elastic modulus of the fully hardened grouted soil Eg ¼ 3Es.
– Negligible cohesion of the natural granular soil, which obeys
Mohr–Coulomb yield condition.

– Effective friction angle of the natural soil /s ¼ 35�.
– Cohesion of the grouted soil linearly increasing with depth
according to the following relationship: cg ½kPa� ¼ 175:þ 5:0�
ðrmin=paÞ.

– Effective friction angle of the grouted soil /g ¼ 33�.
– Coefficient of hydraulic conductivity of the natural soil
ks ¼ 5:0 � 10�5 m/s.

– Coefficient of hydraulic conductivity of the grouted soil about
two order of magnitude smaller than that of the natural soil.

– Non-associated flow rule for natural and grouted soils, with
angle of plastic dilation equal to 10�.

After assigning to each soil element the geostatic effective stres-
ses and pore pressure, the simulation of the excavation process ini-
tiates by ‘‘activating” the beam elements of the diaphragm walls
(1) and by setting the properties of soil (2) to those of the injected
soil. The possible volume change caused by the low pressure grout-
ing was neglected.
The first excavation step concerns the soil of zone (3) above the 
water table. The ‘‘excavation forces” are determined by integrating 
the effective stresses and the self weight of the elements of this 
zone. The elements are subsequently removed from the mesh and 
the excavation forces are applied in small increments to the 
excavation contour.

The beam elements of the concrete slab (4) are then activated; 
the elements of soil (3) are set again in place, with their self weight, 
and the excavation of the upper layer of zone (5), below the slab 
but above the water table, is simulated.

Considering the relatively high permeability of the granular soil, 
no variation of the in situ pore pressure is accounted for during 
these elastic plastic analyses.

The excavation of the remaining layers of zone (5), located 
below the water table, requires a sequence of seepage and elastic 
plastic analyses.

First, a steady state seepage analysis evaluates the pore 
pressure distribution after the water table in the zone within 
the two diaphragm walls has been lowered to the bottom of 
the layer to be excavated. The water table level in the 
remaining part of the mesh is assumed to remain unchanged. 
In this analysis the diaphragm walls are seen as impervious 
zones.

For each excavation step the difference between initial and final 
pore pressure distributions is converted into nodal forces. These are 
added to the excavation forces determined by inte-grating the 
effective stresses and the self weight of the ele-ments to be 
excavated. These elements are subsequently removed from the 
mesh and a further elastic plastic analysis is performed by applying 
the previously calculated forces to the modified mesh.

At the end of the excavation process the base of the mesh was 
subjected to a horizontal sinusoidal acceleration with a frequency 
of 1 Hz and a peak value of 150 cm/s2. The results of the dynamic 
analyses are summarized here in Figs. 2–5.

Figs. 2 and 3 show, respectively, the distributions of the hori-
zontal effective pressure r0

h acting on the diaphragm walls when 
the base acceleration reaches its maximum values in the leftward 
and in the rightward direction. In both cases the dynamic effective 
pressure is compared with the static one evaluated at the end of 
excavation. The diagrams of the dynamic water pore p on the 
diaphragm walls are reported in Figs. 4 and 5. Note that in these 
diagrams the effective stress and pore pressure have been divided

by their maximum values, r0
h;Max and pMax, attained at the end of 

excavation.



Fig. 2. Distributions of the horizontal effective pressure r0
h on the diaphragm walls

corresponding to the maximum base acceleration in the leftward direction (r0
h;Max is

the maximum effective pressure at the end of excavation).

Fig. 3. Distributions of the horizontal effective pressure r0
h on the diaphragm walls

corresponding to the maximum base acceleration in the rightward direction (r0
h;Max

is the maximum effective pressure at the end of excavation).

Fig. 4. Water pressure p distributions on the diaphragm walls corresponding to the
maximum base acceleration in the leftward direction (pMax is the maximum water
pressure at the end of excavation).

Fig. 5. Water pressure p distributions on the diaphragm walls corresponding to the
maximum base acceleration in the rightward direction (pMax is the maximum water
pressure at the end of excavation).
The dynamic calculations show that the difference between the
results of the two approaches increases with depth, reaching a
maximum of about 15% for the effective stress and of 50% for the
water pressure. Quite obviously, the results of the displacement-
velocity formulation are the most accurate among the two. In fact,
they do not depend on the additional simplifying assumptions
which were introduced in the displacement approach.

Naturally, the accuracy of the displacement-velocity analysis
has a cost. This depends on the fact that it involves a number of
nodal variables which is twice than that of the displacement for-
mulation. As a consequence, we have a non-negligible increase of
the usage of core memory and of the required computation time
(about 55% in the present case). This drawback, however, seems
marginal considering the capacity of nowadays multi-processor
and parallel computers and it would not represent a reasons for
adopting the cheaper but less accurate algorithm.
9. Summary and conclusions

The finite element formulation of two-phase dynamic problems
has been discussed on the basis of the assumption, customarily
adopted in geotechnical engineering, that the saturated porous
medium can be treated as the superposition of a liquid and of a
solid phase.

After recalling the differential equations that govern the
dynamic seepage flow of a liquid within a porous medium and
the deformation of its skeleton, these equations have been coupled
together and cast into a finite element form.

This led to a first approach that involves as nodal variables the
displacements of the solid phase and the seepage velocity of the
liquid phase. A second approach was then worked out, by neglect-
ing some terms of the governing equations, in which the nodal
variables are limited to the displacements of the solid phase only.



The two approaches, and a time integration scheme, have been 
presented in detail to allow the interested reader to follow the 
derivations and to implement them into his finite element codes.

The paper aimed also at comparing the computational burden 
and accuracy of the two mentioned approaches. To this purpose, 
a test problem was analyzed that concerns a shallow excavation 
supported by two diaphragm walls and carried out below the 
water table in a granular deposit.

Obviously, the displacement-velocity approach, which involves 
twice the independent variables of the displacement approach, 
turned out to be the most cumbersome one. In particular, for the 
dynamic analysis of the excavation problem it required a cpu time 
55% larger than that necessary for the displacement approach.

On the other hand, the numerical results show a non-negligible 
difference. In fact, the maximum differences between the com-
puted effective pressures on the diaphragm walls is around 15%, 
while the difference between the maximum pore pressures is close 
to 50%.

On the basis of these results, and considering that the 
displacement-velocity approach is the most accurate one among 
the two, it seems reasonable to conclude that it is not worth 
exploiting the computational saving permitted by the displace-
ment formulation and that the more cumbersome displacement-
velocity approach is preferable for the analysis of relevant dynamic 
problems involving saturated granular soils.

Appendix A. Application of Green–Gauss theorem

In order to derive Eqs. (36) and (41) consider a vectorial vari-
able, say u,

uT ¼ ux uy uzf g   ðA:1Þ
and a tensorial variable, say r, which can be represented both in 
vector and matrix forms.

rT
vect ¼ frx ry . . . szx g; rmat ¼

rxx sxy sxz
syx ryy syz
szx szy rzz

2
64

3
75 ðA:2;3Þ

The following relationship holds between the space derivatives
(see List of Symbols) of the two above forms of r.

BTrvect ¼ ðrTrmatÞT : ðA:4Þ
Consider now the space derivatives of the product of the two

variables

rTðuTrmatÞT ¼ uTðBTrvectÞ þ ðBuÞTrvect
¼ uTðrTrmatÞT þ ðBuÞTrvect ðA:5Þ

and integrate them over the volume X.Z
X
rTðuTrmatÞTdX ¼

Z
X
uTðBTrvectÞdXþ

Z
X
ðBuÞTrvectdX ðA:6Þ

X
rTðuTrmatÞTdX ¼

Applying Green theorem to the left hand side integral of Eq.
(A.6) one obtains.Z Z

C
uTT1rvectdC ðA:7Þ

Substitution of Eq. (A.7) into Eq. (A.6) leads to the following 
relationship, which is formally equivalent to those used in Eqs.
(36) and (41) Z
X
uTðBTrvectÞdX ¼

Z
Cr

uTT1rvectdC�
Z
X
ðBuÞTrvectX: ðA:8Þ
List of symbols
Scalars

BG
 bulk modulus of grains

BU
 parameter governing the undrained volume

change of the saturated porous medium

BW
 bulk modulus of water

k0
 intrinsic permeability

k
 hydraulic conductivity

n
 volume (or effective) porosity

nAx; nAy; nAz
 surface porosities in the Cartesian directions

nu; nw
 number of element nodes where displacements

and discharge velocities are defined

p
 pore pressure

p
 imposed boundary pore pressure on CP
t
 time

axn; ayn; azn
 direction cosines of the outward vector normal

to the surface C

ax0x, . . . az0z
 direction cosines of the local reference system

axes x0; y0; z0 with respect to which boundary
displacements and tractions are imposed
b0; b1
 time integration coefficients

cW
 unit weight of water

_eS;vol
 volumetric strain rate of the solid phase

_eL;vol
 volumetric strain rate of the liquid phase

lL
 deviatoric viscosity of the liquid phase

lW
 deviatoric viscosity of water

qL
 density of the liquid phase

qG
 density of grains

qS
 density of the solid phase

qSat
 total density of the saturated porous medium

qW
 density of water

X
 volume

C
 surface

Cp
 pervious boundary

Cu
 displacement constrained boundary

Cw
 impervious boundary

Cr
 loaded boundary
Differential operators

B ¼

@=@x 0 0
0 @=@y 0
0 0 @=@z

@=@y @=@x 0
0 @=@z @=@y

@=@z 0 @=@x

2
6666664

3
7777775
; r ¼

@=@x
@=@y
@=@z

8<
:

9=
;

Vectors (the superscript e denotes the eth finite element)

_eL
 deviatoric strain rate of the liquid phase

f D
 drag forces

f eLp; f eup
 vectors depending on the pore pressure within

the element
f egSat
 data vector depending on the weight of the
saturated element
f eLg
 data vector depending on the weight of the
liquid phase
f eLp
 data vector depending on the imposed
boundary pore pressure
f et
 data vector depending on the imposed
boundary tractions
g
 acceleration of gravity

mT ¼
 f1 1 1 0 0 0 g

u
 displacements of the solid phase

u
 imposed boundary displacements
(continued on next page)



t
 imposed boundary tractions

v
 discharge velocity

vW
 velocity of the water particles

w
 relative discharge velocity with respect to the

skeleton

wW
 relative velocity of the liquid particles with

respect to the skeleton

_eS
 strain rate of the solid phase

_eL
 strain rate of the liquid phase

r
 total stresses

r0
S
 effective stresses
rL
 stresses of the liquid phase

sL
 deviatoric stresses of the liquid phase
Matrices (the superscript e denotes the eth finite element)

Be
w; Be

u
 derivatives of the interpolation functions of
discharge velocity and displacements
DS
 constitutive elastic matrix of the solid phase

K 0
 intrinsic permeability matrix

Ke

S
 stiffness matrix of the solid element

I 2
 6 � 6 identity matrix3
I0 ¼

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

6666664
7777775
,

I1 ¼

4=3 �2=3 �2=3 0 0 0
�2=3 4=3 �2=3 0 0 0
�2=3 �2=3 4=3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775
Me
Sat
 mass matrix of the saturated element
Me
Lwu; Me

Lww
 element matrices depending on the density qL

of the liquid phase3

NA ¼

nAx 0 0
0 nAy 0
0 0 nAz

2
4 5
Seu; Sew
 interpolation function matrices for
displacement and discharge velocity
components 3
T1 ¼
axn 0 0 ayn 0 azn
0 ayn 0 axn azn 0
0 0 azn 0 ayn axn

2
4 5,

T2 ¼
ax0x ax0y ax0z
ay0x ay0y ay0z
az0x az0z az0z

2
4

3
5, T�1

2 ¼ TT
2

VS
 viscosity matrix of the solid phase

VSL
 viscosity matrix of the coupled solid and liquid

phases

Ve

Sat
 viscosity matrix of the saturated finite element

Ve

Lwu; Ve
Lww
 element matrices depending on the deviatoric

viscosity lL of the liquid phase
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