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1 Introduction 

Quality management (QM) policies in majority of companies evolve continuously over a 
number of years by focusing on quality issues that may be critical, since quality is 
broadly acknowledged as one of the key factors to success in global market (Shetwan  
et al.,2011). QM practices have been extensively researched in almost any industry sector 
(Wiengarten and Pagell, 2012). Nowadays, Academics and Managers agree that Quality 
is fundamental to improve competitiveness in industrial firms. This link between Quality 
and firms’ performances is confirmed by Colledani and Tolio (2011), and before by Chi 
Phan et al. (2011), who explored the relationship between quality management practices 
and competitive performance in manufacturing companies. Ahire and Dreyfus (2000) 
state that “Product quality is the result of manufacturing resources – people, processes, 
materials, and equipment”. Results from other empirical studies state that QM practices 
effectively improve overall performance (Kull and Wacher,2010). In light to these 
findings, and according to the basic requirements of the new ISO 9001:2015 Standard, it 
appears fundamental to drive firm efforts and resources towards an embedded risk 
analysis in QMS prioritisation of interventions to front quality problems. The present 
research work can be configured within the thread of QM. The methodic approach 
developed within this study aims to define a new NC classification and ranking 
encompassing firms’ and customers’ perspective. The work embeds FMECA analysis 
and fuzzy inference engine in QMS, to search insights on NC evaluation and the relative 
corrective actions (CA) prioritisation. Starting from the assumption that NC addressing is 
the key factor for the continuous improvement (Sousa and Voss, 2002; Rossini et al., 



2014; Sidin and Sham, 2015; Kafetzopoulos et al., 2015), our findings provide the 
following insights: 

1 Which can be the most important features that can characterise a quality NC under 
firm’s perspective and customer’s perspective 

2 How a quality NC can be ranked according to its potential risks, to define the correct 
priority of the relative CA 

The remainder of the paper is as follows. 
The second section analyses the topic of quality and QM approaches emerging from 

the most relevant literature findings. The third section describes the industrial context in 
which the research starts and develops. The fourth section relates about the gist of the 
research and its methodology, while the fifth section deals with the development of the 
industrial case and its results. In the sixth section we discuss the advancements of the 
research. Then, the conclusions draw on the limits, the possible evolutions of this study 
and the additional insights. 

2 Literature review 

2.1 Quality management and non-conformities in ISO 9001: 2015 perspective 

Quality management acts to manage the conformity of processes according to design and 
process specifications. QM controls the six factors affecting quality such as man, 
machines, material, methods, environments and measurements (Chi Phan et al., 2011, 
Savino et al., 2015). In general, QM encompasses a set of mutually reinforcing principles, 
and each of them is supported by a set of practices and techniques (Dean and Bowen, 
1994; Battini et al., 2012). QM can be defined as a holistic management philosophy that 
fosters all functions of an organisation through continuing improvement and 
organisational change (Kaynak and Hartley, 2005). 

Sousa and Voss (2002) state that QM has become an all-pervasive management 
philosophy, finding its way into most sectors of today’s business society, while Brun 
(2010) divides QM into four dimensions; 

1 quality planning 

2 quality control 

3 quality assurance 

4 quality improvement. 

In this context, Six Sigma is considered a new QM method (Zu et al., 2008, Brun, 2010) 
for strategic process improvement based on statistical methods. Similarly, total quality 
management (TQM) is a QM philosophy providing a set of practices for continuous 
improvement, meeting customers’ requirements, reducing rework, competitive 
benchmarking and team-based problem-solving (Agus and Hassan, 2012). Bennouna  
et al. (2014) analysed the impact of TQM on quality conformance and customer 
satisfaction identifying four critical aspects for its implementation in companies. The 
concept of quality conformance is strictly related to NC that can be defined also as an 
inspection error or as a production mistake found in some phases of a production process 



and/or on finished product (Köksal et al., 2013). According to Lari et al. (2002), without 
an effective corrective and preventive actions program, problems will occur again, 
continuous improvement will be difficult and any of the other quality system elements 
might not work properly. QMS are essentially based on the requirements of ISO 9001 
standard, where audits evaluate the level of compliance to ISO 9001 requirements. In the 
context of NC management, Wu et al. (2006) developed an information analysis system 
to isolate the causes of NCs, thereby reducing the time taken to solve quality-related 
problems. Under manufacturing perspective, a good internal process quality management 
means fewer scrap, defects and rework, and leads to a better operational performance 
(Parveen and Rao, 2009; Mellat-Parast, 2013; Fiegenwald et al., 2014). 

Considering the fact that there is no such a company able to operate with infinite 
resources, we may argue that in QM a key role is played by NC, their CA and by the 
evaluation of their impact on productivity and production costs. Thus, especially in case 
of shortage of resources, companies need to have efficient criteria to prioritise NCs and 
CAs. According to Love et al. (1995), costs of NCs are typically broken down into two 
areas: 

1 cost of internal failures (scrap, rework and other excesses before the product is 
shipped) 

2 cost of external failures (warranty services, costs of product failures during its use). 

The interesting finding of Santa et al. (2014) and Syn et al. (2011) inspired us in 
modelling our approach. While the first one appraises the impact of technological 
innovation on performances improvement, the second and the third one revise the use of 
fuzzy sets in modelling the effects of product defectiveness on costs and customer 
dissatisfaction. 

Some requirements of the recent ISO 9001:2015 standard emphasise risk 
management and the control of process outputs. Toward this emphasis, we may mention 
the following; 

1 implement planned activities at appropriate stages to verify that product 
requirements have been met 

2 the application of NC management to products after delivery 

3 determine methods for monitoring, measurement, analysis and evaluation of risks 
(ISO, 2015). 

This study is focused on the research stream of strategic QM. Through an on-field 
investigation, it focuses on 

1 how we can appraise risk regarding product quality at the certain stages of its 
production process 

2 which are relevant features of an NC that can allow an efficient NC management and 
control. 

Under academic perspective, the present work gives its contribution in the domain of 
multi-criteria NC evaluation by means of Artificial Intelligence tools, demonstrating that 
such tools might allow the appraisal of hidden or unspoken features that, albeit being 
hardly quantifiable, may still have a big relevance within a firm’s quality management 
system. 



From practitioners’ point of view the present work is intended to add a practical 
contribution in terms of how to approach the NC appraisal and management abiding by 
the new requirements of ISO 9001:2015 standard. 

2.2 Fuzzy techniques for quality management 

As regards the above objectives, fuzzy sets can be a practical tool to for features 
evaluations, being widely acknowledged as a suitable mathematical tool to deal with 
information of different origin and affected by uncertainty and subjectivity (Savino and 
Mazza, 2014). In recent years fuzzy theory has been considered a key technique for QM 
within manufacturing system (Yaqiong et al., 2011). In some previous work it has been 
used to control the key quality parameters, grade product quality to reduce parameters 
variability and better adjust specification limits (Taylan, 2011). 

The core of a fuzzy model is the fuzzy engine (FE), in which an inference process is 
developed with a set of fuzzy rules and one or more basic conditions (Savino and Mazza, 
2014). Fuzzy theory was developed based on the premise that the key elements in human 
thinking are not numbers, but linguistic terms that can be modelled by fuzzy sets. Under 
QM perspective, fuzzy approaches have been explored in quality function deployment for 
modelling customer preferences/attributes and engineering characteristic (Chougule et al., 
2013). Earlier, Lao et al. (2012) developed an intelligent food QM system facilitating the 
selection of the most appropriate quality control operations and suggesting the best 
storage environment. Syn et al. (2011) developed an expert system using fuzzy logic 
model to predict the effect of carbon dioxide on laser cutting quality. Fuzzy techniques 
have been also applied by Kumru and Kumru (2013) to failure mode and effects analysis 
(FMEA), as one of the well-known techniques of quality management in product or 
process designs, or to FMECA by Savino et al. (2011). Fuzzy sets applied to QMS can be 
found also in the work of Savino and Sekhari (2009), and in the one of Lau et al. (2009), 
who addressed the hidden relationships among process variables with fuzzy association 
rules. 

3 Research questions and framework 

In current literature on QMS, NC classification is based on their frequency and on the 
impact on final product (Wu et al., 2006; Mazzuto and Paciarotti, 2014). Approaches 
relative to NC classification and coding are mostly related to product features and 
defectiveness reduction. Under this perspective, Sun and Liu (2011) focused on reduction 
of surface quality-related problems of plastic products through raw material selection and 
debugging of shaping process. Similarly, Savino et al. (2008) defined a set of pointers to 
front quality NCs and to measure production improvements. Based on these works, we 
may assert that such QM techniques are post-process based. To comply with the new 
ISO 9001:2015 requirements, the control of process NC and their monitoring needs also 
to manage the potential risks relative to NCs. Based on this assumption, different aspects 
should be selected to completely characterise the risks relative to a NC. Then, these 
aspects should give the possibility to appraise the CA priority for each NC. According to 
these considerations, this focused on practice investigation is aimed to answer the 
following research questions: 



RQ1 What are the main factors that may characterise a quality NC? 

RQ2 How Fuzzy sets can help in NC ranking as regards to its potential risks? 

The empirical study to answer RQ1 is conducted by investigating which can be the most 
important features of an NC and how they can impact on NC criticality and their 
prioritisation for CA. We start from audit development and NC detection (Bernardo  
et al., 2009). With the data of the NC detected on the production line, RQ1 is investigated 
by addressing each NC for a set of features with respect to the elements of resource 
related to the traditional and strategic definition of quality (Fiegenwald et al., 2014). This 
investigation resulted in a set of features based on the above literature review and through 
the analysis of the claims and the NC detected. 

Figure 1 Research methodology 

Answering to RQ2 addresses the requirement of ISO 9001:2015 relative to the control of 
NC for process outputs. This portion of research required the development of an 
assessment method for NC criticality within the QMS. This task is pursued by means of 
the FE. The main objectives are: 



1 to address the linguistic definitions used by NC auditors for NC classification 

2 to appraise the NC criticality the QMS as regards where the NC is detected in the 
production/logistic processes. 

This portion of research is developed thorough a risk criticality index – RCI computed 
combining risk priority number (RPN) of failure mode effect analysis (Savino et al., 
2011) along with the approach of Liukkonen et al. (2011). The research methodology is 
structured in Figure 1. 

In defining the RCI, we are also consistent with the findings of Lari et al. (2002), and 
Nikolaidis and Nenes (2008) who demonstrated the importance of an effective NC 
ranking. According to Di Foggia and D’Addona (2013) and Colledani and Tolio (2011) 
the main factors of risk for an NC are the cost (C) of the product, the percentage (P) of 
the defectiveness and the NC gravity (G). 

The evaluation of G risk factor was developed by addressing the detection point (DP) 
of the NC. The DP is defined as the point in which the NC is detected, linking the RCI to 
the criticality factors by (1). 

( )@( , , , ) , , *occ DPRCI f P C G DP f P C G n DP= = ∑ (1)

where nocc@DP is the number of occurrences of that NC for each DP. 
The gravity scale for DP is derived by the Likert five point-scale 1:5, usually adopted 

to assist practitioners for prioritising service attributes to enhance service quality and 
customer satisfaction (Zhao et al., 2004). 

The development of (1) requires a common definition of NC criticality that may 
encompass P, C and G parameters. For this task the FE has been developed based on two 
objectives: 

1 to address the linguistic definitions used by the auditors for NC classification 

2 to define a fuzzy criticality index (RCIfuzzy).for the evaluation of NC criticality. 

The suitability of the fuzzy sets to link the linguistic definitions used by NC auditors 
(Figure 2) was suggested by its previous use in the QMS to process audit data coming 
from different sources (Chougule, 2013; Yaqiong et al., 2011). 

Figure 2 Fuzzy inference engine (see online version for colours) 

The FE is realised with the fuzzy toolbox of Matlab r2010a. It receives in input the 
classes shown in Figure 4, linked by triangular membership degree (MD) to the crisp 



values of C, P and G. To design the FE, we followed the research results of Aghaarabi  
et al. (2008) who used the opinions of quality experts in appraising NC criticality classes 
to model the inferential rules. Each range of the five fuzzy levels is associated through 
mixed trapezoidal-triangular functions (Figure 3) already used by Savino and Sekhari 
(2009) and by Savino and Mazza (2014) to model the linguistic evaluation of NCs. 

Figure 3 MF and classes (see online version for colours) 

4 The industrial context 

The model is developed within a plant featured by a product mix made of 30 different 
products. Within this plant, the test bed is a production line of vacuum and water pumps 
that are around the 20% of the total production. 

The line is composed of 15 automatic stations, plus one loading-unloading station and 
two components-feeding stations. It operates on two working shifts per day with a cycle 
time of about 20 seconds. 

The line is featured by the following main parameters: 

• production rate: three pieces/minute

• workforce required to run the line: three operators

• operators saturation rate: 15% (for manual activities such as loading/unloading
components)

• incidence of quality controls on product costs: 20%

• NC costs (average): 11€/NC (only scrapped materials costs; does not include the
‘hidden factory’ costs, e.g., loss of productivity)

• average number of NC (monthly basis): 60 NCS/month.

In this current configuration the quality control is made at the unloading station. This 
caused often expensive recovery, repairing or replacement activities due mainly to: 

1 the disposal of the entire product after the NC detection at the end of the line 



2 the difficulty to prevent the NC due to a not complete addressing of their causes 

3 the potential detection of an NC also by the end users. 

Different CAs were performed for NCs addressing the same cause. Internal audits to 
determine the effectiveness of each CA were scheduled on an empirical basis, without 
accomplishing some of the following basic requirements for NC management within ISO 
9001:2015: 

1 planning the activities to verify the product at different stages of the production 
process 

2 addressing the potential risk relative to NC and their control by the CAs. 

In this context, the research was carried out with a twofold objective. The first one is to 
control process outputs by determining the NC criticality. The second objective is to 
investigate how different quality aspects may impact on NC criticality and which of them 
may have more influence. These objectives are pursued by assessing QA with respect to 
the involved resources and factors by customer’s and firm’s side. 

5 Data development and results 

The research methodology was implemented by setting along the production process the 
following quality control (QC) points 

• material acceptance

• station #2

• station #7

• final quality control (end of line)

• customer.

Figure 4 The in-process QC points set on the production line (see online version for colours) 

�



QC points on the line (Figure 4) have been set at the stations where the feeding of the 
components is made (#2, #7) and at the end of the line. In the study, around 350 NC 
occurrences were detected during a production interval (PI) of six months. 

Table 1 provides a list of the most frequent NCs detected, that are classified as 
regards to the description given by the auditor. Then, the NCs are analysed through the 
risk priority number (RPN), in which the RPN encompasses the three main domains of a 
failure, namely severity, occurrence and detectability (Savino et al., 2011). 
Table 1 The NCs detected 

NC # Description 
1 Packaging cap not present 
2 Hydraulic leak 
3 Not fastened screw(s) 
4 Corteco coupling error 
5 Defective valve 
6 Gasket fastening 
7 Scratches 

In this approach we characterise an NC through P, C, G, DP values of 1. The evaluation 
of these parameters is set as follows: 

1

n j
totii

P NC NC
=

=∑ (2)

where 
j

iNC  is the number of i occurrences of the j NC 

NCtot is the total number of NCs occurred on the production lines. 

• C is the cost of the product affected by the NC.

• G is related to the perception and consequences of the non-conformity. G values can
range from 0 if the defect is not detectable by the customer to 1 if the NC causes
product disposal.

• DP gives a measure of the risk relative to NC detection. The criteria in assigning
possible DP values is consistent with Al-Khalili and Subari (2013) and with Shetwan
et al. (2011) the later the NC is detected along quality control stations, the higher is
the DP values. Table 2 reports the possible values proposed for DP within the NC
analysis of the case study.

Table 2 NC Detection points 

DP Detection point
1 Material acceptance 
2 Station #2 of the production line 
3 Station #5 of the production line 
4 Final quality control 
5 Customer 



The approach is developed within the described assembly line based on the occurrences 
of the NCs detected during the PI. 

5.1 Fuzzy inference engine 

The criticality level of each NC is expressed in [1,100] scale. It has been investigated 
through a survey on the opinions of five different quality managers [#1 to #5] over a set 
of 14 different NCs. Table 3 shows the results of this survey for the seven most frequent 
types of NCs. 
Table 3 Criticality survey results 

NC 
Quality manager 

#1 #2 #3 #4 #5

Packaging cap not present 20 15 25 20 20 

Hydraulic leak 50 60 40 50 40 

Not fastened screw(s) 65 60 60 50 65 

Corteco coupling error 70 65 75 80 75 

Defective valve 65 60 60 55 60 

Gasket fastening 75 70 80 90 80 

Scratches 15 20 25 25 20 

The inferential rules of the FE have been set (Aghaarabi et al., 2013) with the 
contribution of these results, by linking the fuzzy values of P, C, G to the criticality index 
(CI) with rules reflecting the criticality of each NC type. We adopted as value of CI the
mean of the five different values given by the auditor.

Reproducibility is the variation in measurements occurring by resorting to different 
appraisers. In order to assess the reproducibility we followed the guidelines for 
measurement system analysis developed by AIAG (AIAG, 2010) as follows. ‘Between 
appraisers variation’ (AV), is an estimation of the standard deviation of the variation due 
to reproducibility, and is calculated as follows: 

Let: 

• ⎯Xi be the average of all CI by the ith assessor;

• ⎯Xdiff be the range of all⎯Xi.

Then:

2*diffAV X K= (3)

where K2 is a constant; in case of five appraisers, k2 = 0.403 
Appraisers are not using measuring tool, hence we did not calculate the ‘equipment 

variation’. 
‘Part variation’, PV, measures the variability between the averages CI of the various 

NCs, and is an estimation of the standard deviation of the so-called part-to-part variation. 
As we are considering more than 10 parts, it is advisable to calculate the part variation 
directly as a sample standard deviation, rather than estimating it through the average 



range, since the range statistics efficiency plummets for n > 10. The total variation (TV) 
is expressed by equation (4) 

( )0.52TV PV AV= + (4)

By applying the (3) and (4) we obtained: 

1.439
26.355
26.395

AV
PV
TV

=
=
=

According to the standards in use in the automotive industry, a measurement system is 
considered acceptable when the ratio %AV = AV/TV is less than 10%. In our case,  
%AV = 5.5%, so we concluded that the judgement of appraisers does not significantly 
affect the assessment of CI values. 

Then, the final CI calculations for the most frequent types of NCs are summarised in 
Table 4. 
Table 4 Output of the data processing 

# NC Gravity 
[0,1] 

Cost 
[€] 

Occurrences – detection point Criticality index 
[1–100] DP1 DP2 DP3 DP4 DP5 

1 Packaging cap 
not present 

0.4 3.00 32 20 

2 Hydraulic leak 0.5 7.00 17 13 48 

3 Not fastened 
screw(s) 

0.3 7.00 27 60 

4 Corteco coupling 
error 

0.2 3.00 47 73 

5 Defective valve 0.9 9.95 20 60 

6 Gasket fastening 0.5 13.00 4 79 

7 Scratches 0.3 6.00 10 21 

The input values of fuzzy functions for P and C, namely P′ and C′, are as the following: 

• 
max

PP
P

′ =  where Pmax is the incidence of the most common NC in the PI 

• 
max

CC
C

′ = where Cmax is the higher production cost of all the products in the PI. 

The fuzzy process works as follows: 
Values P and C are divided by the corresponding maximum ranges. With respect to 

the case study, Pmax = 4.2% and Cmax = 13. Then, according to G, P′ and C′ it is possible 
to evaluate the MD and the corresponding membership class. As an example, for the 
NC#1: 
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• G = 0,4 → NC belongs in L class ( 1 )classNC G L′ =  with MD = 0.5 ( 1 0.5)mdNC G′ =
and to M class ( 1 )classNC G M′′ =  with MD = 0.5 ( 1 0.5)mdNC G′′ =

• P′ = 0,50 → NC belongs to M class (NC1Pclass = M) with MD = 1 (NC1Pmd = 1)

• C′ = 0,23 → NC belongs to VL class ( 1 )classNC C L′ =  with MD = 0.78
( 1 0.78)mdNC C′ =  and to L class ( 1 )classNC C L′′ =  with MD = 0.22
( 1 0.22)mdNC C′′ = .

Table 5 reports the values of four NCs detected during the PI and their costs. The results 
of the FE, with MD and classes, are shown in Table 6. 
Table 5 NC values 

# Non conformity 
description 

Gravity – 
G 

Percentage – 
P [%] 

Cost – 
C [€] P′ C′ 

1 Packaging cap not present 0.4 2,1 3 0.50 0.23 

2 Hydraulic leak 0.5 2,0 7 0.48 0.54 

3 Not fastened screw(s) 0.3 1,8 7 0.43 0.54 

4 Corteco coupling error 0.2 3,1 3 0.75 0.23 

Table 6 MD values 

NC# Gravity –
G 

MD and 
class – G P′ MD and 

class – P′ C′ MD and 
class – C′ 

1 0.4 1 0.5mdNC G′ =
1 classNC G L′ =

0.50 NC1Pclass = M 
NC1Pmd = 1 

0.23 1 0.78mdNC C′ =
1 classNC C VL′ =

1 0.5mdNC G′′ =
1 classNC G M′′ =

1 0.22mdNC C′′ =
1 classNC C L′′ =

2 0.5 NC2Gclass = M
NC2Gmd = 1 

0.48 2 classNC P L′ =
2 0.05mdNC P′ =  

0.54 2 0.77mdNC C′ =
2 classNC C M′ =

2 classNC P M′′ =
2 0.95mdNC P′′ =  

2 0.23mdNC C′′ =  
2 classNC C H′′ =

3 0.3 NC3Gclass = L 
NC3Gmd = 1 

0.43 3 classNC P L′ =
3 0.4mdNC P′ =  

0.54 3 0.77mdNC C′ =
3 classNC C M′ =

3 classNC P M′′ =
3 0.6mdNC P′′ =  

3 0.23mdNC C′′ =
3 classNC C H′′ =

4 0.2 NC4Gclass = VL
NC4Gmd = 1 

0.75 4 classNC P H′ =
4 0.5mdNC P′ =

0.23 4 0.78mdNC C′ =  
4 classNC C VL′ =

4 classNC P VH′′ =
4 0.5mdNC P′′ =

4 0.22mdNC C′′ =
4 classNC C L′′ =



Once variables P′, C′ and G have been made as fuzzy values, one of the five fuzzy classes 
is associated to RCIfuzzy, according to a set of fuzzy rules obtaining .class

fuzzyRCI  

By fixing a class for G, fuzzy rules matrixes allow to get the class assignment for 
class
fuzzyRCI  according to membership classes of C′ and P′. 

Tables from 7a to 7e report the five matrixes for gravity values from VL to VH, 
respectively 
Table 7a Fuzzy rules – G=VL 

P′ 
C′ 

VL L M H VH

VL VL VL L M H 
L VL L M M H 
M L L M M H 
H M M M H H 
VH M M H H H 

Table 7b Fuzzy rules – G=L 

P′ 
C′ 

VL L M H VH

VL L L L M H 
L L L L M H 
M L L L M H 
H M M M H H 
VH M M M H H 

Table 7c Fuzzy rules – G=M 

P′ 
C′ 

VL L M H VH

VL L M M H H 
L L M M H H 
M M M M H H 
H M M M H H 
VH H H H H H 

Table 7d Fuzzy rules – G=H 

P′ 
C′ 

VL L M H VH

VL M M H H H 
L M M H H H 
M M M H H VH 
H M H H H VH 
VH M H H VH VH 
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Table 7e Fuzzy rules – G=VH 

P′ 
C′ 

VL L M H VH

VL H H VH VH VH 
L H H VH VH VH 
M H H VH VH VH 
H H VH VH VH VH 
VH H VH VH VH VH

The rules of the FE were established with the principle of giving higher priority to those 
NCs that may generate risks toward customers’ side and that are frequent. From an 
operative point of view, we started from the above set of five master matrices of rules. 
Then, according to the results of the auditors, rules have been modified to guarantee a 
good correspondence between the NCs ranking obtained from the criticality index of 
Table 4 and through the RCI. In Figure 5 the flowchart of the tuning procedure is 
reported. 

Figure 5 FE rules tuning 



As an example, the output of such tuning provided the following implications: 

• { ; ; } class
fuzzyG VH P VL C VL RCI H′ ′ ′= = = → =

• { ; ; } class
fuzzyG VL P VH C VL RCI H′ ′ ′= = = → =

• { ; ; } .class
fuzzyG VL P VL C VH RCI M′ ′ ′= = = → =  

With reference to the NC#1 

• { 1 , 1 , 1 } 1 ;

1 0.5 1 0.78 0.39

class
class class class fuzzyNC G L NC P M NC C VL RCI L

MD

′ ′ ′= = = → =

′ = × × =

•
{ 1 , 1 , 1 } implies 1 ;

1 0.5 1 0.22 0.11

class
class class class fuzzyNC G L NC P M NC C L RCI L

MD

′ ′′ ′′= = = → =

′′ = × × =

•
{ 1 , 1 , 1 } implies 1 ;

1 0.5 1 0.78 0.39

class
class class class fuzzyNC G M NC P M NC C VL RCI M

MD

′′ ′ ′′= = = → =

′′ = × × =

• { 1 , 1 , 1 } implies 1 class
class class class fuzzyNC G M NC P M NC C L RCI M′′ ′′ ′′′′= = = → =  with a 

membership degree 1 0.5 1 0.22 0.11.MD ′′′′ = × × =  

Table 8 reports MD values and classes for RCIfuzzy for the NCs. 
Table 8 MD and classes forRCIfuzzy 

NC# MD and 
class – G 

MD and 
 class – P’ 

MD and 
class – C’ MD and class – RCIfuzzy 

1 1 0.05mdNC G′ =  
1 classNC G L′ =

NC1Pclass = M 
NC1Pmd = 1 

1 0.78mdNC C′ =
1 classNC C VL′ =

1 , 1 0.5class
fuzzyRCI L MD ′= =  

1 0.05mdNC G′′ =  
1 classNC G M′′ =

1 0.22mdNC C′′ =
1 classNC C L′′ =

1 , 1 0.5class
fuzzyRCI M MD ′′= =  

2 NC2Gclass = M 
NC2Gmd = 1 

2 classNC P L′ =
2 0.05mdNC P′ =  

2 0.77mdNC C′ =
2 classNC C M′ =

2 , 2 0.26class
fuzzyRCI M MD= =

2 classNC P M′′ =
2 0.95mdNC P′′ =  

2 0.23mdNC C′′ =
2 classNC C H′′ =

3 NC3Gclass = L 
NC3Gmd = 1 

3 classNC P L′ =  
3 0.4mdNC P′ =  

3 0.77mdNC C′ =
3 classNC C M′ =

3 , 3 0.31class
fuzzyRCI L MD ′= =  

3 classNC P M′′ =
3 0.6mdNC P′′ =  

3 0.23mdNC C′′ =
3 classNC C H′′ =

3 , 3 0.14class
fuzzyRCI M MD ′′= =

4 NC4Gclass = VL 
NC4Gmd = 1 

4 classNC P H′ =
4 0.5mdNC P′ =

4 0.78mdNC C′ =
4 classNC C VL′ =

4 , 4 0.39class
fuzzyRCI M MD ′= =

4 classNC P VH′′ =
4 0.5mdNC P′′ =

4 0.22mdNC C′′ =
4 classNC C L′′ =

4 , 4 0.11class
fuzzyRCI H MD ′′= =  



5.2 RCI evaluation 

According to the requirements of ISO 9001:2015 as regards risks analysis, the potential 
prioritisation of NCs is investigated starting with the RCI values and its classes. Based on 
previous findings, this study uses the VL, L, M, H, and VH classes defined by triangular 
MFs (Figure 6). 

Figure 6 MF for RCIfuzzy value (see online version for colours) 

Referring to the example of NC#1, the de-fuzzy process to obtain the crisp values works 
as follows 

• 1class
fuzzyRCI L=  with the membership degree of 0.5 contributes to the CI, labelled as

CI′ = 0.3

• 1class
fuzzyRCI M=  with the membership degree of 0.5 contributes to the CI, labelled as

CI″ = 0.5

• The overall priority number is obtained as the weighted average of these two
contributions with the respective membership degree:

0.5 0.3 0.5 0.5#1 0.40
0.5 0.5fuzzyNC RCI × + ×

→ = =
+

Table 9 shows the RCIfuzzy values for the four NCs of the assembly line described in 
Table 5. 

The assignment of the RCI is now made according to equation (5): 

( ) @, *fuzzy notfuzzy fuzzy occ DPRCI f RCI RCI RCI n DP= = ∑ (5)

NC#1 has been detected 32 times in material acceptance (DP = 1), generating 
RCI = 12.8. Table 10 gives the DP values and RCI for the four NCs. From that, we can 
see how NC#1 has the lowest criticality value with respect to the NC#3, even if it 
presents a higher RCIfuzzy. This is due to the detection points of NC#3, that increases the 
RCI value. 



Table 9 RCIfuzzy values 

NC# MD and class – QPNfuzzy RCIfuzzy value 
1 1 ; 1 0.5class

fuzzyQPN L MD ′= =  0.4 

1 ; 1 0.5class
fuzzyQPN M MD ′′= =

2 2 ; 2 0.26class
fuzzyRCI M MD= = 0.43 

3 3 ; 3 0.30class
fuzzyRCI L MD ′= =  0.30 

3 ; 3 0.14class
fuzzyRCI M MD ′′= =

4 4 ; 3 0.39class
fuzzyRCI M MD ′= =  0.51 

4 ; 4 0.11class
fuzzyRCI h MD ′′= =  

Table 10 RCI values 

NC RCIfuzzy 
value 

Detection points 
RCI Criticality 

index [1–100] 1 2 3 4 5 
1 0.4 32 0.4 × 32 = 12.8 20 
2 0.43 17 13 0.43 × (17 × 2 + 13 × 3) = 31.39 50 
3 0.30 27 0.30 × 27 × 4 = 32.4 60 
4 0.51 47 0.51 × 47 × 2 = 47.94 75 

From Table 10 we may see how DP values strongly impact on the overall criticality, 
modifying the final ranking of the NCs. Compared to the ranking imposed by the CI of 
the case study, we may see how this approach is able to reflect the same criticality order 
through RCI. It is worth mentioning that, differently from the [1–100] scale of the 
criticality index, RCI has not upper bound, depending on the number of occurrences of 
the NC at the different detection points. 

6 Discussion 

Table 4 and Table 5 empirically support the following answer to RQ1: The NC are now 
analysed with respect to their main elements of risk and through the use of specific 
detection points. This potentially extends the finding of Colledani and Tolio (2011) and 
of Shetwan et al (2011) toward the two statements that 

1 the occurrence of NC and its detection stage is more important than the impact of the 
same NC on product costs 

2 the propagation of the NC within the production stages impacts on NC criticality 
more than the percentage of the same NC. 

In answering to RQ1, we may argue that the DP should to be included in QA, since a 
different criticality can be assigned to a certain NC as regards to its DP, starting from 
material acceptance up to customer delivering. Table 9 and Table 10 may give an answer 
to RQ2. Through the FE, the analysis of the four NCs allowed to combine the elements of 



risk characterising a NC, obtaining a RCI that reflects its ranking. The RCI defines the 
rank for CA priorities, answering to RQ2 and being consistent with the importance of an 
effective appraisal of NC criticality. This answer potentially extends the ambiguous 
results of others (Colledani and Tolio, 2011; Sun and Liu, 2011) as regards the 
determination of priorities for NCs resolutions. The assessment method developed in this 
study can be considered as the first step towards the compliance of new ISO 9001:2015 
Standard as regards the addressing of risks related to product nonconformities. The 
output of the FE and the RCI values of Table 10 potentially extend the finding of  
Wu et al. (2006) and Chougule et al. (2013) toward the statement that a QMS should 
always have a concurrent appraisal of NC with 

1 artificial intelligence tools 

2 data mining techniques. 

An interesting aspect of the approach lies in its dynamicity and flexibility. By appropriate 
changes on the FE, it has the possibility to update and modify NCs ranking in different 
industrial environments. Such changes can have different impacts on production costs. 
By updating variables boundaries it is possible to adapt the system to the new production 
context. For example, Cmax depends on firm production mix and market conditions, which 
can modify production costs, while Pmax depends on the ability of the firm to properly 
front NC, thus measuring quality performances. 

By stressing on the importance to anticipate the detection of NCs, this  
focused-on-practice study may suggest the first way to be compliant with the 
requirements of the new ISO 9001:2015 as regards to NC management and with reactive 
QC approaches (Lou and Huang, 2003). 

In this sense, equation (3) shows that the contribution to RCI is provided by the DP 
values. As per Table 10, an NC with high cost, high percentage and high gravity but 
detected at DP = 2 will have a lower rank than a NC with a lower cost, percentage and 
gravity, but detected by the customer (DP = 5). 

Table 11 reports the incidence of NC costs on production costs (NCc/Pc) computed 
during the pilot study. 

From this table, we may note that NC #4 has quite a high incidence on production 
costs if compared with the other NCs. Without the developed system the quality manager 
would have prioritised the NC with higher severity, even if it has the lowest incidence on 
production costs. This analysis confirms that the approach developed within this study is 
able to give the correct priorities to those NC that may have a real impact on the overall 
firm’s performances. 
Table 11 Incidence of NC costs on production costs 

NC# Gravity – G P′ C′ NCc/Pc 

1 0.4 0.50 0.23 10% 

2 0.5 0.48 0.54 11.5% 

3 0.3 0.43 0.54 11% 

4 0.2 0.75 0.23 15% 



Based on the above findings, our work empirically supports the following industrial 
implications: 

1 the compliance of ISO 9001:2015 requires the evaluation of the risk of the NC along 
production and logistic chain, and this requirement is more relevant than the 
traditional element of resources of NC 

2 some new requirements of the new ISO 9001:2015 may be supported by artificial 
intelligence tools for NC control and to evaluate NC priorities. 

Based on the results of Tables 9 and 10, the following points can be made: 

1 with the ISO 9001:2015 Standard, NC may be perceived as a QMS resource, 
providing information on which can be the elements addressing the risks relative to 
product quality 

2 the FE that drives NC evaluation suggests that IT and artificial intelligence tools may 
exist among the new core resources of QMS developed according to the new ISO 
9001:2015 standards. 

7 Conclusions 

Most of the current research on QMS neither devoted a great deal of attention for NC 
addressing, nor investigated methods for driving integrations toward an efficient 
measurement of NC criticality. 

The present study intended to fill this gap by investigating which may be the main 
elements of risk for NC and how these elements may contribute to evaluate NC 
criticality. The work has been developed within an industrial case regarding the definition 
of an objective and flexible tool related to NCs characterisation and prioritisation, to align 
the QC of a production line with the requirements of the new ISO standards. 

Through the use of a FE, we contributed to bring clarity on NC management, control 
and prioritisation with a manifold approach for NC assessment towards the requirements 
of ISO 9001:2015. The main results overcome the potential subjectivities that can affect 
NCs evaluations, thus supporting the quality managers to propose the correct NC 
criticality for CA prioritisation. 

All research works, no matter how well conducted, may have limitations. In this 
study, two main limitations occurred. First, the methodology was tested within one firm 
and with a limited audit dataset. This methodology should be tested across a wider range 
of data within a variety of firms. Secondly, the QC results may be obtained from 

1 more auditors 

2 in different production and services contexts. 

Though these limitations, the approach can support quality managers to prioritize 
interventions, where CAs are now aimed mainly to anticipate detections through 
appropriate quality gates. In addition, response accuracy may be improved if measures 
are obtained from different sources. In light of these practical considerations, this study 
may suggest that the following future practical investigations are needed: 



1 an assessment of the core resources for a QMS under the perspective of risk 
management 

2 a way to measure the capability of firms to manage NCs 

3 how to measure the attitudes of firms for risk management. 
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