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Abstract: We prove existence and multiplicity results for periodic solutions of Hamiltonian systems, by the
use of a higher dimensional version of the Poincaré–Birkho� fixed point theorem. The first part of the paper
deals with periodic perturbations of a completely integrable system, while in the second part we focus on
some suitable global conditions, so to deal with weakly coupled systems.
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1 Introduction
This paper provides some results on the existence of periodic solutions for Hamiltonian systems which may
be considered as time-periodic perturbations of an autonomous system of the type

Jż = ∇H(z). (HS)

Here,H : ℝ2N → ℝ is a continuously di�erentiable function and J is the standard symplectic matrix, i.e.,

J = (
0 −IN
IN 0

) .

There is a large bibliography on this problem,mainlymotivated bymodels from classicalmechanics. Remark-
ably, we observe that the literature on this issue can be split into two quite disjoint streams.

One of the two currents has a more topological spirit, and aims at minimal regularity assumptions.
This kind of results finds a fertile ground mainly in the planar case, where, among others, a powerful tool,
the Poincaré–Birkho� fixed point theorem, can be used to prove the existence of periodic solutions of the
perturbed system. Indeed, the case N = 1 is privileged by the fact that, for an autonomous planar system
like (HS), any periodic orbit is always surrounded by an annulus of periodic orbits. Then, assuming that
the periods of the corresponding solutions do not remain the same, the needed twist condition is naturally
obtained, and the Poincaré–Birkho� theorem applies (see, e.g., [29] and the references therein).

On the other hand, when N ≥ 2, a more analytical approach has usually been followed, requiring some
additional structural assumptions on the unperturbed system (HS). Usually, the system is assumed to be com-
pletely integrable, andmore regularity is asked for theHamiltonian function.Moreover, some rather restrictive
nondegeneracy conditions are needed so to obtain the existence of periodic solutions of the perturbed system
(see, e.g., [4, 9]).
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The aim of this paper is to provide a common framework for the two kinds of approach depicted above.
Using a recent result by the first author and Ureña [31], where an extension of the Poincaré–Birkho� theo-
rem to higher dimensional Hamiltonian systems has been proposed, we will be able, on one hand, to relax
the usual structural assumptions on the Hamiltonian function and, on the other hand, to extend to higher
dimensions some existence results already established in the planar case.

Before entering into details, we will now spend a fewwords on the framework where our results are to be
settled.

The general framework

A classical approach to the study of the Hamiltonian system (HS) is the search for constants of motion, since
they can be used for suitably transforming the system into a simpler one. The most remarkable case occurs
when (HS) has N constants of motion which are independent and in involution: In this case, the system is
said to be completely integrable, and one has a foliation of the space in N-dimensional surfaces, which are
invariant for the flow.

The Liouville–Arnold theorem then assures that, when one of these surfaces is bounded and con-
nected, it has to be an N-dimensional torus. Moreover, for any such invariant torus Γ, there exists an open
neighborhood A of Γ and a canonical transformation z = (x, y) Ü→ (φ, I), mapping A onto TN × D (where
T = ℝ/2πℤ and D is an open subset of ℝN), and reducing the Hamiltonian function to the simpler form
H(φ, I) = K (I). The coordinates I = (I1, . . . , IN) ∈ D are usually known as action variables, whereas the
coordinates φ = (φ1, . . . , φN) ∈ TN are called angle variables.

Each value I = I0 is associatedwith an invariant torus Γ0 = TN × {I0}, where the dynamics of the system is
completely describedby the frequency vectorω0 = ∇K (I0).When the componentsω0

1, . . . , ω
0
N are rationally

independent, the solutions are quasiperiodic and each orbit is a dense subset of the N-torus Γ0. Such tori are
called nonresonant. Otherwise, we have a foliation in M-dimensional tori, where M < N is the rational rank
of the components of ω0, and the orbits will be quasiperiodic with respect to these lower dimensional tori.
A special case occurs when the components of ω0 are all pairwise commensurable. Then, all the solutions
on the torus are periodic with the same period, and the N-torus Γ0 admits a foliation in invariant 1-tori, each
one defined by the orbit of a solution.

Since for every general Hamiltonian system (HS) a constant of motion is always given by the Hamiltonian
functionH, we immediately deduce that every planar Hamiltonian system is completely integrable. In higher
dimensions, a classical example of a completely integrable system comes from the Kepler two-body problem,
or even from every central force field [38]. On the contrary, if more than two bodies are involved, the system
is not completely integrable any more. However, assuming the masses of the “planets” to be small compared
to the mass of the “Sun”, the system may be seen as being decomposed in n independent two-body systems,
with the addition of a small perturbative termaccounting for the other interactions (cf. [18, 19] and references
therein). Such problems of Celestial Mechanics have probably been the main stimulus in the development of
integrability and of Hamiltonian perturbation theory.

As a matter of fact, completely integrable Hamiltonian systems are rare, and most often the Hamiltonian
function is their unique constant of motion [8, 50]. Yet, generic Hamiltonian systems may be considered as
perturbations of completely integrable systems [42, 47], usually called nearly integrable systems. A glance of
this scenariowas already grasped byHenri Poincaré [46], who referred toHamiltonian perturbation theory as
theProblème général de laDynamique. The e�ortsmadebyPoincaré and, amongmanyothers, byBirkho�, led
to abroaddevelopment of the theory.We suggest [5, 7] for adetailed introduction toHamiltonianperturbation
theory and [26] for a friendly overview.

As we have seen, complete integrability reveals strong properties of the dynamics. A natural question is:
Howmuch of this structure is preserved under a small perturbation? In particular, one couldwonderwhether,
near an invariant torus of the unperturbed system, it is possible to find periodic or quasiperiodic solutions
for the perturbed system with the same frequency.
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A series of positive results are known for a large family of nonresonant tori, those with a Diophantine
frequency. These results are usually collected under the name of KAM theory, recalling its main contributors
Kolmogorov, Arnold and Moser. We remark that, beyond a nondegeneracy assumption on the torus, strong
smoothness of theperturbation is alwaysneeded, cf. [2, 35, 48].While these stronglynonresonant tori survive
under small perturbations, the same is not true for the other tori [11, 41, 51] and, in particular, for thosemade
of periodic solutions. Still, some traces of these tori can be found.

For instance, in theplanar case, after thepioneeringpapers [39, 40], the survival of twoperiodic solutions
was obtained as a consequence of the Poincaré–Birkho� theorem (see, e.g., [17] and [29], where an overview
on the use of the Poincaré–Birkho� theorem for this kind of problems can be found). The required twist
condition is satisfied, in this case, under some rather weak nondegeneracy assumptions. A fainter kind of
traces of an invariant torus is provided by the so called Aubry–Mather theory (cf. [43] and the references
therein), showing the existence of a Cantor set, called cantorus, that preserves, in a generalized sense, the
rotational properties of the original torus.

For higher dimensional Hamiltonian systems, a local approach to the problem has been proposed by
Bernstein and Katok [9], who showed the survival under small perturbations of N + 1 periodic solutions,
requiring a convexity assumption on the Hamiltonian function (see also [4, 27, 52]). This result has been
later refined by Chen [21], who replaced the convexity by a classical nondegeneracy assumption.

A rather di�erent type of problem arises when one looks for the existence andmultiplicity of periodic so-
lutions when only the global behavior of the nonlinearity is assumed to be known. In this case, the approach
is no longer perturbative, and it usually combines topological and variational methods.

In this respect, there is a large literature in the planar case, mainly motivated by some models involving
scalar second order di�erential equations, where the Poincaré–Birkho� theorem has been successfully ap-
plied (see, e.g., [15, 25, 30, 34, 36], or again the review in [29]). The twist condition is generated by assuming
a di�erence between the growth of the nonlinearity near a given periodic solution and at infinity, producing a
gap in the rotation numbers of the corresponding solutions in the phase plane. A sharp use of the Poincaré–
Birkho� theorem then ensures that the larger this gap, the larger the number of solutions found. Furthermore,
the same strategy applies also to the search for subharmonic solutions (see, for instance, [14, 25]).

Incidentally, the twist geometry has sometimes been recovered by detecting, in the unperturbed system,
an annulus of periodic orbits displaying a gap between the periods of the boundary orbits. This picture dis-
plays the same features already discussed when considering completely integrable systems. A quite common
way of producing this geometry is to require the strict monotonicity of the period function associated with
system (HS), a feature which has been studied by many authors (see, e.g., [22, 33, 45]) and which ensures
its nondegeneracy.

The firstmultiplicity results extending the Poincaré–Birkho� philosophy to higher dimensions are due to
Amann and Zehnder [3], who introduced a twist condition between zero and infinity. A di�erent perspective
was followed by Conley and Zehnder [24], where the existence of N + 1 periodic solutions was proved for
systems whose Hamiltonian function is 2π-periodic in the first N variables, and asymptotically quadratic in
the other N ones. These pioneering results have been generalized in several directions, in a long series of
papers (cf. [1, 20] and the references therein). See also [16, 44], where a further extension of the Poincaré–
Birkho� theorem in higher dimensions involving a monotone twist has been exploited.

The main tool and an overview of our results

Let us now recall the result in [31], which will be our main tool in the search for periodic solutions. Consider
the Hamiltonian system

J ̇ζ = ∇ζH (t, ζ), (1.1)

where the continuous functionH : ℝ × ℝN × ℝN → ℝ is also continuously di�erentiable in ζ = (ξ, η) ∈ ℝ2N .
Writing ξ = (ξ1, . . . , ξN) and η = (η1, . . . , ηN), the Hamiltonian functionH is assumed to be T-periodic in t,
and 2π-periodic in each variable ξ1, . . . , ξN . Let D ⊂ ℝN be a convex body, i.e., a compact, convex set with
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nonempty interior. For every ȳ ∈ ∂D, we denote the normal cone by

ND(ȳ) = {v ∈ ℝN : ⟨v, y − ȳ⟩ ≤ 0 for every y ∈ D}.

Moreover, let B be an invertible symmetric matrix.

Theorem 1.1 ([31]). If every solution ζ(t) = (ξ(t), η(t)) of (1.1) departing with η(0) ∈ ∂D is defined for every
t ∈ [0, T] and satisfies

⟨ξ(T) − ξ(0),Bv⟩ > 0 for every v ∈ ND(η(0)) \ {0}, (1.2)
then system (1.1) has at least N + 1 geometrically distinct T-periodic solutions

ζ 1(t) = (ξ1(t), η1(t)), . . . , ζ N+1(t) = (ξN+1(t), ηN+1(t))

such that ηk(0) ∈ D for every k = 1, . . . , N + 1.

We recall that two solutions of system (1.1) are geometrically distinct if one of them cannot be obtained just
by adding suitable integer multiples of 2π to some components ξi(t) of the other one.

We now briefly describe the main results of this paper, obtained by the use of Theorem 1.1.
The first part deals with small time-dependent perturbations of completely integrable systems. In Sec-

tion 2, taking an invariant torusmade of periodic solutions of the unperturbed system, and assuming a rather
weak nondegeneracy condition, we prove the survival of N + 1 periodic solutions for the perturbed system.
Our main theorem thus improves some previous results of Bernstein and Katok [9] and Chen [21] in two di-
rections: First, the Hamiltonian function is assumed to be only once continuously di�erentiable and, second,
our nondegeneracy assumption does not even imply the invertibility of the frequency function. Moreover, it
is shown that the nondegeneracy extends also to nearby tori, so that other families of periodic solutions can
coappear.

In Section 3, still dealing with completely integrable systems, we gradually abandon the local point of
viewandmove to a large scale perspective.Assuminga twist-type conditionon theproduct ofN planar annuli,
which is shown to persist for small perturbations, we thus obtain the survival of N + 1 periodic solutions,
generalizing the planar result in [29].

In Section 4, we deal with weakly coupled systems with a T-periodic forcing term, depending on some
parameters. We impose suitable conditions at zero and infinity for each of the N equations, producing a gap
in the rotation numbers of the uncoupled systems. Using Theorem 1.1, we then prove the existence of N + 1
periodic solutions having period T, and a number of subharmonic solutions which increases with the width
of the gap. As an application, we can deal with weakly coupled systems of pendulum-like equations, gener-
alizing the main result in [32].

Notation. In all the paper, ⟨ ⋅ , ⋅ ⟩ denotes the Euclidean scalar product in ℝN , with its associated norm ‖ ⋅ ‖.
We write B(x0, r) for the open ball centered at x0 with radius r > 0, and B[x0, r] for the closed ball.

2 Periodic perturbations of completely integrable systems
Let us consider a completely integrable Hamiltonian system on TN × D , where TN is the N-dimensional
torus (ℝ/2πℤ)N , and D is an open subset of ℝN . The continuously di�erentiable Hamiltonian function
H : TN × D → ℝ can be written in the formH(φ, I) = K (I). We recall that I = (I1, . . . , IN) ∈ D are the action
variables, while φ = (φ1, . . . , φN) ∈ TN are the angle variables.

For every I∗ ∈ D , the torusT ∗ = TN × {I∗} is invariant for the flow, and its evolution in time is determined
by the associated frequency vector

ω∗ = (ω∗
1 , . . . , ω∗

N) = ∇K (I∗).

We are interested in the case when the dynamics on the torus T ∗ consists of a family of periodic orbits with
minimal period T∗. This happens if and only if there exist N integers a1, . . . , aN such that

T∗ω∗
i = 2πai for every i = 1, . . . , N,
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and T∗ is the minimum positive real number with such a property. The integers ai count the number of ro-
tations made by each periodic solution around the i-th component of the torus in a period T∗; the sign of ai
describes the sense of rotation.

A standard approach to study sucha system,definedonTN × D , is to consider its canonical lift toℝN × D .
The Hamiltonian system then becomes

{
̇ξ = ∇K (η),
η̇ = 0,

(CI)

where ξ = (ξ1, . . . , ξN) ∈ ℝN and η = (η1, . . . , ηN) ∈ D . To be more precise, denoting by IN the identity on
ℝN and by PN : ℝN → TN the standard projection on the torus, the map (PN , IN) : ℝN × ℝN → TN × ℝN is a
local change of variables which transforms (ξ, η) into (φ, I). Each translation of 2π in the ξi coordinate for
system (CI) corresponds to a single rotation in the φi coordinate for the original system.

Let us now consider a general nearly integrable Hamiltonian system on TN × D , with time-dependent
Hamiltonian functionK : ℝ × TN × D → ℝ, su�ciently close toK . The canonical lift then leads to theHamil-
tonian system onℝN × D given by

{
̇ξ = ∇ηK(t, ξ, η),
η̇ = −∇ξK(t, ξ, η).

(CIper)

The Hamiltonian function K : ℝ × ℝN × D → ℝ is assumed to be continuous, T-periodic in the first variable,
2π-periodic in each variable ξi, and continuously di�erentiable in ζ = (ξ, η).

Wenowfix an I0 ∈ D and introduce some kind of nondegeneracy condition at I0. Usually, in the literature
(see, e.g., [4, 9, 21]), it is assumed that K is twice continuously di�erentiable, and that

det(K ��(I0)) ̸= 0. (2.1)

Here, we only ask K to be once continuously di�erentiable, and that there exists an invertible symmetric
N × N matrix B such that

0 ∈ cl{ρ ∈ ]0, +∞[ : min
‖I−I0‖=ρ

⟨∇K (I) − ∇K (I0),B(I − I0)⟩ > 0}, (2.2)

where cl A denotes the closure of a set A. Notice that (2.1) implies (2.2), taking B = K ��(I0). On the other
hand, the function K (I) = ‖I − I0‖α satisfies (2.2) with B = I, but not (2.1) if α > 2. Moreover, we observe
that (2.2) does not even require the local invertibility of ∇K . An easy example, with N = 1, is provided by
the function K (I) = ∫

I
0 f(s)ds with

f(s) =
{
{
{

ω0 + |s| sin(1s ) if s ̸= 0,

ω0 if s = 0.

Clearly, this function K is only once continuously di�erentiable at I0 = 0, and ∇K = f is not invertible, but
our nondegeneracy condition (2.2) is still satisfied, with B being the identity onℝ.

We will show that the nondegeneracy condition (2.2) extends by continuity to a neighborhood U of I0.
As a consequence, we will prove that for every I∗ ∈ U as above, if there exist two positive integers m∗ and n∗
satisfying

T∗ =
m∗T
n∗

, (2.3)

then the perturbed system (CIper) has at least N + 1 geometrically distinct m∗T-periodic solutions. These so-
lutions stay near the corresponding solutions of the unperturbed problem, and their projections on TN × D

will maintain the same rotational properties of T ∗.
Here is our main result.

Theorem 2.1. Suppose that there exist I0 ∈ D andan invertible symmetric N × N matrixB such that (2.2) holds.
Then, for every σ > 0 there exists an open neighborhood U ⊆ D of I0, with the following property: Given any
positive integer m, there exists ε > 0 such that if

‖∇ξK(t, ξ, η)‖ + ‖∇ηK(t, ξ, η) − ∇K (η)‖ < ε for every (t, ξ, η) ∈ [0, T] × [0, 2π]N × D , (2.4)
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then for every I∗ ∈ U being associated with an invariant torus of periodic solutions for (CI) with frequency vec-
tor ω∗ = (ω∗

1 , . . . , ω∗
N) and minimal period T∗ satisfying (2.3) for suitable positive integers m∗ ≤ m and n∗,

system (CIper) has at least N + 1 geometrically distinct m∗T-periodic solutions

(ξ1(t), η1(t)), . . . , (ξN+1(t), ηN+1(t))

with
‖ξ k(t) − ξ k(0) − t∇K (I∗)‖ + ‖ηk(t) − I∗‖ ≤ σ (2.5)

for every t ∈ [0,m∗T] and k = 1, . . . , N + 1. Moreover, for each solution (ξ k(t), ηk(t)), its projection onTN × D

makes exactly (ω∗
i /2π)m∗T rotations around the i-th component of the torus in a period m∗T for every

i = 1, . . . , N.

Proof. We can assume, without loss of generality, the function K to be defined on the whole space ℝN .
Indeed, after replacing the setD by a smaller open set, containing I0, whereK is bounded, we can construct
a continuously di�erentiable extension of K on ℝN . The solutions we are interested in will nevertheless be
contained in the smaller set, where K has not been modified. Similarly, for our purposes we can assume
without loss of generality that the Hamiltonian system (CIper) is defined onℝ × ℝN × ℝN .

Let us fix any σ > 0 such that B[I0, σ] ⊆ D . By assumption (2.2), there exist ℓ > 0 and ρ1 ∈ ]0, σ/4] such
that

‖η − I0‖ = ρ1 ⇒ ⟨∇K (η) − ∇K (I0),B(η − I0)⟩ ≥ 4ℓ.

By continuity, there is an open neighborhood U of I0, contained in B[I0, ρ1], such that for every I∗ ∈ U,

‖η − I∗‖ = ρ1 ⇒ ⟨∇K (η) − ∇K (I∗),B(η − I∗)⟩ ≥ 2ℓ. (2.6)

For any arbitrary I∗ ∈ U, with frequency vector ω∗ = (ω∗
1 , . . . , ω∗

N) = ∇K (I∗), let us define

K∗(t, ξ, η) = K(t, ξ + ω∗t, η) − ⟨ω∗, η⟩,

and consider the Hamiltonian system
J ̇ζ = ∇ζK∗(t, ζ). (2.7)

Claim. For any fixed positive real numbers m and c̄, there exists ε > 0 such that if (2.4) holds, then for every
I∗ ∈ U, every solution ζ(t) = (ξ(t), η(t)) of (2.7) with initial point satisfying ‖η(0) − I∗‖ ≤ ρ1 will be such that

‖ξ(t) − ξ(0) − t[∇K (η(0)) − ω∗]‖ + ‖η(t) − η(0)‖ ≤ c̄ for every t ∈ [0,mT]. (2.8)

Proof of the claim. Arguing by contradiction, assume that there is a sequence (I∗λ )λ ∈ U with ω∗
λ = ∇K (I∗λ ),

and a sequence (Kλ)λ of Hamiltonian functions as above (in particular, they are T-periodic in t), such that,
writing

K∗
λ (t, ξ, η) = Kλ(t, ξ + ω

∗
λ t, η) − ⟨ω∗

λ , η⟩,

one has that

‖∇ξK∗
λ (t, ξ, η)‖ + ‖∇ηK∗

λ (t, ξ, η) − ∇K (η) + ω∗
λ ‖ ≤

1
λ

for every (t, ξ, η) ∈ ℝ × ℝN × D ,

and, accordingly, a sequence (ζ λ)λ with ζ λ = (ξ λ , ηλ), solving J ̇ζ λ = ∇ζK∗
λ (t, ζ

λ), such that ‖ηλ(0) − I∗λ ‖ ≤ ρ1,
while (2.8) does not hold, i.e., for every λ there exists tλ ∈ [0,mT] for which

‖ξ λ(tλ) − ξ λ(0) − tλ[∇K (ηλ(0)) − ω∗
λ ]‖ + ‖ηλ(tλ) − ηλ(0)‖ > c̄. (2.9)

Since the Hamiltonians K∗
λ are 2π-periodic in the variables ξ1, . . . , ξN , we can assume that ξ λ(0) ∈ [0, 2π]N .

Hence, passing to a subsequence, ζ λ(0) converges to some point ζ ♯ ∈ [0, 2π]N × B[I0, 2ρ1]. Moreover, for
a subsequence, I∗λ converges to some I♯, and ω∗

λ = ∇K (I∗λ ) converges to ω♯ = ∇K (I♯). Finally, for a subse-
quence, tλ will converge to some t♯ ∈ [0,mT]. By a lemma of Kamke (cf. [49]), for a further subsequence (ζ λl )l
we have uniform convergence on [0,mT] to the solution of

{
̇ξ = ∇K (η) − ω♯,
η̇ = 0,
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given by

{
ξ(t) = ξ(0) + t(∇K (η(0)) − ω♯),
η(t) = η(0).

On the other hand, passing to the limit in (2.9) yields

‖ξ(t♯) − ξ(0) − t♯[∇K (η(0)) − ω♯]‖ + ‖η(t♯) − η(0)‖ ≥ c̄ > 0,

which is a contradiction, since the left-hand side is equal to zero. The claim is thus proved.

We can now conclude the proof of Theorem 2.1. Let m be a fixed positive integer, and choose c̄ such that

c̄ ≤ min{ Tℓ
‖B‖ρ1

, σ4}.

We now focus our attention on those I∗ ∈ U whose associated invariant torus is composed of periodic solu-
tions for (CI) with minimal period T∗, such that there exist two positive integersm∗ and n∗ withm∗ ≤ m and
T∗ = m∗T/n∗. We observe that every m∗T-periodic solution of (2.7) corresponds to an m∗T-periodic solu-
tion (ξ(t), η(t)) of (CIper), such that every ξi(t)makes exactly (ω∗

i /2π)m∗T turns around the origin in the time
m∗T. We will apply Theorem 1.1 to system (2.7).

Let D = B[I∗, ρ1], and let ζ(t) = (ξ(t), η(t)) be a solution of (2.7) with η(0) ∈ ∂D, i.e., ‖η(0) − I∗‖ = ρ1.
Then, by (2.6) and (2.8), we get

⟨ξ(m∗T) − ξ(0),B(η(0) − I∗)⟩ = ⟨ξ(m∗T) − ξ(0) − m∗T[∇K (η(0)) − ∇K (I∗)],B(η(0) − I∗)⟩
+ ⟨m∗T[∇K (η(0)) − ∇K (I∗)],B(η(0) − I∗)⟩

≥ −
Tℓ

‖B‖ρ1
‖B‖ρ1 + 2m∗Tℓ ≥ m∗Tℓ > 0.

We can therefore apply Theorem 1.1, so to get N + 1 geometrically distinct m∗T-periodic solutions of (2.7),

ζ 1(t) = (ξ1(t), η1(t)), . . . , ζ N+1(t) = (ξN+1(t), ηN+1(t)),

such that ηk(0) ∈ D for every k = 1, . . . , N + 1. Moreover, by (2.8), we have that ‖ηk(t) − I∗‖ ≤ c̄ ≤ σ/2 for
every t ∈ [0,m∗T]. On the other hand, a continuity argument can be used, taking smaller values for c̄ and ε,
to infer that ‖ξ k(t) − ξ k(0) − t∇K (I∗)‖ ≤ σ/2 for every t ∈ [0,m∗T]. So, (2.5) holds, as well, and the proof is
thus completed.

Notice that, taking m su�ciently large, it is possible to find an arbitrarily large number of values I∗ ∈ U for
which the assumptions of Theorem 2.1 are satisfied, thus assuring the survival of N + 1 subharmonic solu-
tions from each of the corresponding invariant tori. This scenario may be compared with Birkho�–Lewis type
results [10, 13, 23], showing the existence of a family of periodic solutions with large period, accumulating
towards an elliptic equilibrium. Such behavior has been observed also in the framework of Hamiltonian PDEs
[6, 12].

A simple case is given by the choice I∗ = I0, when I0 is associated with an invariant torus T 0 of periodic
solutions for (CI) with frequency vector ω0 and minimal period T0.

Corollary 2.2. Suppose that there exists I0 ∈ D and an invertible symmetric N × N matrix B such that (2.2)
holds, and that there exist two positive integers m0 and n0 satisfying T0 = m0T/n0. Then, for every σ > 0 there
exists ε > 0 such that if

‖∇ξK(t, ξ, η)‖ + ‖∇ηK(t, ξ, η) − ∇K (η)‖ < ε for every (t, ξ, η) ∈ [0, T] × [0, 2π]N × D ,

then system (CIper) has at least N + 1 geometrically distinct m0T-periodic solutions

(ξ1(t), η1(t)), . . . , (ξN+1(t), ηN+1(t))

with the same rotational properties of the torus T 0 and such that

‖ξ k(t) − ξ k(0) − t∇K (I0)‖ + ‖ηk(t) − I0‖ ≤ σ

for every t ∈ [0,m0T] and k = 1, . . . , N + 1.
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3 Twist conditions for weakly coupled period annuli
In the previous section, we have described the local phenomenon of the survival of some periodic solutions of
system (CI) for the perturbed system (CIper). We now turn our attention to finding some conditions at a larger
scale which guarantee the existence of multiple periodic solutions.

We still consider system (CIper) as a perturbation of system (CI), but we now look for periodic solutions
(ξ(t), η(t)) starting with η(0) in some rectangle

D = [α1, β1] × ⋅ ⋅ ⋅ × [αN , βN],

contained in D . We denote the faces of this rectangle by

F−
i = {η ∈ D : ηi = αi}, F+

i = {η ∈ D : ηi = βi}.

Theorem 3.1. Suppose that there exist N couples of real numbers ω−
i < ω+

i such that for every i = 1, . . . , N,
either

∂K
∂ηi

(η)
{
{
{

≥ ω+
i for every η ∈ F−

i ,
≤ ω−

i for every η ∈ F+
i ,

(3.1)

or

∂K
∂ηi

(η)
{
{
{

≤ ω−
i for every η ∈ F−

i ,
≥ ω+

i for every η ∈ F+
i .

(3.2)

Let ω∗ = (ω∗
1 , . . . , ω∗

N) be the frequency vector associated with a torus T ∗ of periodic solutions of system (CI),
with minimal period T∗. If

ω∗ ∈ Ω = ]ω−
1 , ω

+
1[ × ⋅ ⋅ ⋅ × ]ω−

N , ω
+
N[,

and there exist two positive integers m∗ and n∗ such that (2.3) holds, then there exists ε > 0 such that every
perturbed system (CIper) satisfying (2.4) has at least N + 1 geometrically distinct m∗T-periodic solutions

(ξ1(t), η1(t)), . . . , (ξN+1(t), ηN+1(t)),

preserving the same rotational properties of T ∗.

Proof. By thePoincaré–Miranda theorem (cf. [28, 37]), there exists an I∗ ∈ D such thatω∗ = ∇K (I∗).We con-
sider the Hamiltonian system

J ̇ζ = ∇ζK∗(t, ζ) (3.3)

with K∗(t, ξ, η) = K(t, ξ + ω∗t, η) − ⟨ω∗, η⟩.
Let us pick any ρ > 0 such that

ρ < dist(D,ℝN \ D) and ρ < m∗T dist(ω∗,ℝN \ Ω).

By the same argument used in the claimwithin the proof of Theorem 2.1, there exists ε1 > 0 such that if (2.4)
holds with ε ∈ ]0, ε1[, then every solution ζ(t) = (ξ(t), η(t)) of (3.3) with initial point η(0) ∈ D remains in
ℝN × D for t ∈ [0,m∗T], and satisfies

‖ξ(t) − ξ(0) − t[∇K (η(0)) − ω∗]‖ + ‖η(t) − η(0)‖ < ρ

for every t ∈ [0,m∗T]. Assume that η(0) ∈ ∂D; we analyze four di�erent cases.
If ηi(0) = αi for some i ∈ {1, . . . , N}, and condition (3.1) holds, then

ξi(m∗T) − ξi(0) > m∗T[ω+
i − ω

∗
i ] − ρ > 0.

The same is true if ηi(0) = βi and (3.2) holds.
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If ηi(0) = αi and condition (3.2) holds, then

ξi(m∗T) − ξi(0) < m∗T[ω−
i − ω

∗
i ] + ρ < 0,

and the same is true if ηi(0) = βi and (3.1) holds.
Let us define the N × N diagonal matrix B with, for each i = 1, . . . , N, Bii = −1 when (3.1) holds, and

Bii = +1 when (3.2) is true. The estimates above ensure us that system (3.3) satisfies all the assumptions of
Theorem 1.1, and the conclusion easily follows.

Let us now describe a particular situation when Theorem 3.1 can be applied, generalizing the planar setting
studied in [29]. We start by considering the autonomous Hamiltonian system

Jż = ∇H(z), (3.4)

whereH : ℝ2N → ℝ is a continuously di�erentiable function of the special form

H(x, y) = H1(x1, y1) + ⋅ ⋅ ⋅ +HN(xN , yN)

with x = (x1, . . . , xN) ∈ ℝN and y = (y1, . . . , yN) ∈ ℝN . Here we have used the notation z = (x, y).
Hence, for every i = 1, . . . , N, the functionsHi : ℝ2 → ℝ are planar Hamiltonians, and we can consider

the corresponding Hamiltonian systems

ẋi =
∂
∂yi

Hi(xi , yi), ẏi = −
∂
∂xi

Hi(xi , yi), (HSi)

for each of which we assume the following:
∙ The planar system (HSi) has a periodic solution (x̄i(t), ȳi(t)), which is non-constant and has minimal

period T i > 0.
∙ Each of such solutions has a corresponding planar open tubular neighborhoodAi such that all the solu-

tions of (HSi) with initial point inAi are periodic, and their orbits are not contractible inAi.
∙ There exist two positive real numbers T−

i , T
+
i , with T−

i < T i < T+
i , such that the periods of the solutions

inAi cover the interval [T−
i , T

+
i ].

Let us define the set

A = {(x, y) ∈ ℝ2N : (xi , yi) ∈ Ai for every i = 1, . . . , N},

and consider the Hamiltonian system

Jż = ∇zH(t, z), (HSper)

where H : ℝ ×A → ℝ is continuous, T-periodic in its first variable for some T > 0, and has a continuous
gradient with respect to its second variable z = (x, y).

For every i = 1, . . . , N, let us pick Ti ∈ ]T−
i , T

+
i [ for which there exist two positive integersmi , ni such that

Ti =
miT
ni

.

Denoting by a1, . . . , aN the minimal positive integers such that

a1
m1
n1

= ⋅ ⋅ ⋅ = aN
mN
nN

,

we set

T∗ = a1T1 = ⋅ ⋅ ⋅ = aNTN ,

and define the frequency vector

ω∗ =
2π
T∗ (a1, . . . , aN).
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Moreover, we choose the two least positive integers m∗, n∗ such that

T∗ =
m∗T
n∗

.

Theorem 3.2. In the above setting, there exists ε > 0 such that every perturbed system (HSper), satisfying

‖∇zH(t, z) − ∇H(z)‖ < ε for every (t, z) ∈ [0, T] ×A, (3.5)

has at least N + 1 distinct m∗T-periodic solutions

z1(t), . . . , zN+1(t),

whose orbits lie inA. Moreover, for each solution zk(t), the number of rotations of the i-th component zki (t) along
the annulusAi in a period m∗T is exactly equal to n∗ai for every i = 1, . . . , N.

Proof. By standard arguments (cf. [29]), each of the systems (HSi) admits a canonical transformation in
action-angle coordinates (φi , Ii). Without loss of generality we can assume that φ̇i(t) > 0 for every t. The
product of all such transformations is canonical, it reduces system (3.4) to the form (CI), and maps the setA
onto TN × D , where D ⊆ ℝN is a product of open intervals.

For each i = 1, . . . , N, we define αi and βi as the values of the Ii-coordinate associatedwith two solutions
of (HSi) having periods T−

i and T+
i , in such a way that αi < βi, and we set

ω−
i =

2π
T+
i
, ω+

i =
2π
T−
i
.

Theorem 3.1 then applies, and the proof is readily completed.

4 Weakly coupled pendulum-like systems
In this section, we consider a weakly coupled system of the type

{{{{
{{{{
{

Jż1 = A1∇H1(z1) + R1(t, z1, . . . , zN),
...

JżN = AN∇HN(zN) + RN(t, z1, . . . , zN),

(P)

where J is the 2 × 2 standard symplectic matrix, namely

J = (
0 −1
1 0

) ,

and A1, . . . , AN are positive real parameters. For every i = 1, . . . , N, we assume that Hi : ℝ2 → ℝ is continu-
ously di�erentiable, and Ri : ℝ × ℝ2N → ℝ is continuous, T-periodic in t and continuously di�erentiable in
(z1, . . . , zN).

We assume that system (P) can be reduced to a Hamiltonian system by a linear change of variables. More
precisely, there exist N invertible 2 × 2 matrices M1, . . . ,MN , having positive determinant, such that the
linear operator L : ℝ2N → ℝ2N , defined as

L : (z1, . . . , zN) Ü→ (M1z1, . . . ,MNzN), (4.1)

transforms system (P) into a Hamiltonian system. With such an assumption, we will say that (P) is a positive
transformation of a Hamiltonian system.

Let us introduce the following notation for a closed cone inℝ2 determined by two angles ϑ1 < ϑ2:

Θ(ϑ1, ϑ2) = {(ρ cos ϑ, ρ sin ϑ) : ρ ≥ 0, ϑ1 ≤ ϑ ≤ ϑ2}.

We are now ready to state the main theorem of this section.
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Theorem 4.1. Let (P) be a positive transformation of a Hamiltonian system. For every i = 1, . . . , N, let the fol-
lowing assumptions hold:
(A1) There exists Ci > 0 such that

‖∇Hi(w)‖ ≤ Ci(‖w‖ + 1) for every w ∈ ℝ2.

(A2) There exist ri > 0 and mi > 0 such that

⟨∇Hi(w), w⟩ ≥ mi‖w‖2 for every w ∈ B[0, ri].

(A3) For every σ > 0, there exist Ri > 0 and ϑi1 < ϑi2, with ϑi2 − ϑ
i
1 ≤ 2π, such that

sup{⟨∇Hi(w), w⟩
‖w‖2

: w ∈ Θ(ϑi1, ϑ
i
2) \ B(0, Ri)} ≤ σ(ϑi2 − ϑ

i
1). (4.2)

Then, for every fixed positive integers ν1, . . . , νN , there exist A > 0 and ε > 0 such that if Ai ≥ A and

‖Ri(t, w1, . . . , wN)‖ ≤ ε for every t ∈ [0, T] and w1, . . . , wN ∈ ℝ2 (4.3)

for every i = 1, . . . , N, then system (P) has at least N + 1 distinct T-periodic solutions

zk(t) = (zk1(t), . . . , z
k
N(t))

such that for every k = 1, . . . , N + 1, each planar component zki (t), with i = 1, . . . , N, makes exactly νi clock-
wise rotations around the origin in the time interval [0, T[.

Some comments on the hypotheses of Theorem 4.1 are in order. Assumption (A1) is needed to ensure the
global existence of the solutions to the Cauchy problems associated with (P). Concerning (A2), it will guaran-
tee that the small amplitude planar components of the solutions do rotate around the origin, clockwise, with
a least positive angular speed. Our hypothesis (A3), on the contrary, will ensure a small rotation number for
large amplitude components. It could be compared with assumption (H�

∞) in [14, Theorem 4.1].
We now start the proof of Theorem 4.1. For a solution z(t) of system (P), whose i-th component is such

that zi(t) = (xi(t), yi(t)) ∈ ℝ2 \ {0} for every t ∈ [0, T], we denote by Rot(zi(t); [0, T]) the standard clockwise
winding number of the path t Ü→ zi(t) around the origin, namely

Rot(zi(t); [0, T]) =
1
2π

T

∫
0

⟨Jżi(t), zi(t)⟩
‖zi(t)‖2

dt.

Our first lemma concerns solutions z(t)whose i-th component zi(t) is small. We assume without loss of gen-
erality that Hi(0) = 0, and consider the level set

Γhi = {w ∈ ℝ2 : Hi(w) = h}.

By (A2), if h > 0 is su�ciently small, then Γhi is a strictly star-shaped Jordan curve around the origin. We will
denote by Dhi the bounded, closed and connected region ofℝ2 with ∂Dhi = Γhi .

Lemma 4.2. For any i = 1, . . . , N and every positive integer νi, if (A1) and (A2) hold, there exist three positive
constants Āi, ε̄i and h̄i such that, if Ai ≥ Āi, h ∈ ]0, h̄i] and

‖Ri(t, w1, . . . , wN)‖ ≤ ε̄i for every t ∈ [0, T] and w1, . . . , wN ∈ ℝ2, (4.4)

then any solution z(t) of (P) with zi(0) ∈ Γhi satisfies

Rot(zi(t); [0, T]) > νi .

Proof. Let i ∈ {1, . . . , N} and νi befixed.We can choose h > 0and ̂r ∈ ]0, ri[, where ri is as in assumption (A2),
in such a way that

B(0, ̂r) ⊂ Dhi ⊂ D2h
i ⊂ D3h

i ⊂ B(0, ri). (4.5)
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Wenow claim that if (4.4) holds with a suitable choice of ̄εi, then for every solution z(t) of (P) with zi(0) ∈ Γ2hi
one has

h < Hi(zi(t)) < 3h for every t ∈ [0, T].

Indeed, set
C = max{‖∇Hi(w)‖ : w ∈ B[0, ri]}, ε̄i =

h
2CT ,

and assume by contradiction that zi(0) ∈ Γ2hi and there exists t1 ∈ [0, T] such that h < Hi(zi(t)) < 3h for every
t ∈ [0, t1[, and either Hi(zi(t1)) = h or Hi(zi(t1)) = 3h. In view of (4.5),

!!!!!!!
d
dt Hi(zi(t))

!!!!!!!
= !!!!⟨J∇Hi(zi(t)), Ai∇Hi(zi(t)) + Ri(t, z1, . . . , zN)⟩!!!!

= !!!!⟨J∇Hi(zi(t)),Ri(t, z1, . . . , zN)⟩
!!!! ≤ C ̄εi =

h
2T

for every t ∈ [0, t1], so that
|Hi(zi(t1)) − Hi(zi(0))| ≤

h
2T t1 < h,

a contradiction.
Consequently, if zi(0) ∈ Γ2hi , we have that

̂r < ‖zi(t)‖ ≤ ri for every t ∈ [0, T],

so that the rotationnumber of zi(t) around the origin iswell defined.Writing zi(t) in polar coordinates, namely

zi(t) = (ρi(t) cos ϑi(t), ρi(t) sin ϑi(t)),

using (A2) and (4.4), we thus have

−ϑ�i (t) =
⟨Jżi(t), zi(t)⟩

‖zi(t)‖2
=

⟨Ai∇Hi(zi(t)) + Ri(t, z1, . . . , zN), zi(t)⟩
‖zi(t)‖2

≥ Aimi −
̄εi
̂r
.

Choosing finally

Āi =
2π ̂rνi + ̄εiT
mi ̂rT

,

we easily conclude the proof.

Now we need a control on the rotation number of the large planar components of the solutions.

Lemma 4.3. For any i = 1, . . . , N, let Āi and ̄εi be as in Lemma 4.2, and assume that Ai ≥ Āi and (4.4) holds.
Then, there exists Ri > 0 such that any solution z(t) of (P) with ‖zi(0)‖ ≥ Ri satisfies

Rot(zi(t); [0, T]) < 1.

Proof. Fix σ = 1/(2AiT) and let Ri > 0 and ϑi1 < ϑi2, with ϑi2 − ϑ
i
1 ≤ 2π, be as in (A3). Choose R̂i ≥ Ri such that

R̂i >
2 ̄εiT
ϑi2 − ϑ

i
1
.

In view of assumption (A1), there exists Ri ≥ R̂i such that if ‖zi(0)‖ ≥ Ri, then ‖zi(t)‖ ≥ R̂i for every t ∈ [0, T].
In particular, the rotation number of zi(t) is well defined. Let us assume, by contradiction, that ‖zi(0)‖ ≥ Ri
and Rot(zi(t); [0, T]) ≥ 1. Then, writing

zi(t) = (ρi(t) cos ϑi(t), ρi(t) sin ϑi(t)),

as long as ϑi(t) ∈ Θ(ϑi1, ϑ
i
2), since ρi(t) ≥ R̂i ≥ Ri, we can use (4.2) and (4.4) to obtain

−ϑ�i (t) =
⟨Ai∇Hi(zi(t)) + Ri(t, z1, . . . , zN), zi(t)⟩

‖zi(t)‖2

≤ Ai
1

2AiT
(ϑi2 − ϑ

i
1) +

̄εi
R̂i

<
ϑi2 − ϑ

i
1

T
.

Consequently, the time needed to clockwise cross the sector Θ(ϑi1, ϑ
i
2) is greater than T, a contradiction.
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Proof of Theorem 4.1. For any i ∈ {1, . . . , N}, let Āi > 0 and ̄εi > 0 be as in Lemma 4.2, and set

A = max{Āi : i = 1, . . . , N}, ε = min{ ̄εi : i = 1, . . . , N}.

Take Ai ≥ A and assume that (4.3) holds. Then, take Ri as in Lemma 4.3 for every i = 1, . . . , N, and consider
the annulusAi = B(0, Ri) \ Dh̄ii . Recall that, taking h̄i > 0 su�ciently small, the inner boundary ofAi is star-
shaped. Then, by Lemmas 4.2 and 4.3, for every solution z(t) of (P), if zi(0) belongs to the inner boundary
ofAi, then zi(t)makes more than νi clockwise rotations around the origin in the time T, while if ‖zi(0)‖ = Ri,
it makes less than one clockwise turn in the same time.

We now use the fact that (P) is a positive transformation of a Hamiltonian system, and consider the linear
transformation L defined in (4.1). Being all the matricesMi invertible with positive determinant, the set

A = L(A1 × ⋅ ⋅ ⋅ ×AN)

is thus of the type Ã1 × ⋅ ⋅ ⋅ × ÃN , where each Ãi is a planar annulus with star-shaped boundaries with respect
to the origin. Since the change of variables preserves the above described rotational properties of the solu-
tions, we can apply [31, Theorem 8.2] to the Hamiltonian system obtained from (P) through the change of
variables given by L. We thus obtain at least N + 1 distinct T-periodic solutions

z̃k(t) = (z̃k1(t), . . . , z̃
k
N(t))

such that for every k = 1, . . . , N + 1, each component z̃ki (t), with i = 1, . . . , N, makes exactly νi clockwise
rotations around the origin in the time interval [0, T[. Setting

zk(t) = (M−1
1 z̃

k
1(t), . . . ,M

−1
N z̃

k
N(t)),

we obtain the solutions of (P) we are looking for, and the proof is thus completed.

Remark 4.4. Theorem4.1 exploits a gap between the rotation numbers of the solutions at zero and at infinity.
With reference to the assumption at infinity, another possibility could be to replace (A3) with the requirement
that for some i ∈ {1, . . . , N}, the system Jżi = ∇Hi(zi) has a homoclinic orbit surrounding the origin (in the
spirit of [32, Theorem 3.3]). Indeed, by continuity, small perturbations of trajectories next to the homoclinic
would have small rotation number, since the homoclinic spends an infinite time to rotate around the origin.
In this setting, assuming moreover (A2), it would then be possible to construct the gap which allows to ap-
ply [31, Theorem 8.2], taking a level curve of Hi su�ciently near the homoclinic orbit as outer boundary of
the required annulus in the i-th planar component. The same line of thought can be also adapted when the
homoclinic is replaced by heteroclinics. One could also combine assumptions at infinity like (A3) for some
indices i1, . . . , ir ∈ {1, . . . , N} and existence of homoclinics for the other indices i ∈ {1, . . . , N} \ {i1, . . . , ir}.
We omit the details for briefness.

As a particular case, we can deal with a system of scalar second order equations like

{{{{{{{
{{{{{{{
{

ẍ1 + A21f1(x1) =
∂W
∂x1

(t, x1, . . . , xN),

...

ẍN + A2N fN(xN) =
∂W
∂xN

(t, x1, . . . , xN),

(4.6)

where the continuous function W : ℝ × ℝN → ℝ is T-periodic in t, and continuously di�erentiable with re-
spect to (x1, . . . , xN). Indeed, we can write the equivalent system

{{
{{
{

−ẏi = Ai fi(xi) −
1
Ai
∂W
∂xi

(t, x1, . . . , xn),

ẋi = Ai yi ,
i = 1, . . . , N,

which is in the form (P), with zi = (xi , yi), taking

Hi(xi , yi) =
1
2 y

2
i + Fi(xi),
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where Fi is a primitive of fi and

Ri(t, x1, y1, . . . , xN , yN) = −
1
Ai

(
∂W
∂xi (t, x1, . . . , xn)

0
) .

Notice that (4.6) is a positive transformation of a Hamiltonian system, with the linear functionL in (4.1) given
by

Mi = (
1 0
0 Ai

) , i = 1, . . . , N.

As a consequence, we have the following statement, where, for simplicity, we only consider the case
ν1 = ⋅ ⋅ ⋅ = νN = 1.

Corollary 4.5. Assume that the continuous functions fi : ℝ → ℝ satisfy

lim inf
s→0

fi(s)
s

> 0, lim
s→+∞

fi(s)
s

= 0.

Moreover, for every i = 1, . . . , N, let Ki > 0 be such that

!!!!!!!
∂W
∂xi

(t, x1, . . . , xn)
!!!!!!!
≤ Ki for every t ∈ [0, T] and x1, . . . , xN ∈ ℝ. (4.7)

Then, there exists Ā > 0 such that if Ai ≥ Ā for every i = 1, . . . , N, system (4.6) has at least N + 1 distinct peri-
odic solutions

xk(t) = (xk1(t), . . . , x
k
N(t))

with minimal period T. Moreover, for every k = 1, . . . , N + 1, each component xki (t), with i = 1, . . . , N, has ex-
actly two simple zeros in the interval [0, T[.

Proof. First, we notice that (A1) is fulfilled, in view of the growth assumption on the nonlinearities. Let us
now check (A2). We know that there exist αi > 0 and βi > 0 such that

0 < |s| < βi ⇒
fi(s)
s

≥ αi .

Then, if ‖(xi , yi)‖ ≤ βi,

⟨∇Hi(xi , yi), (xi , yi)⟩
‖(xi , yi)‖2

=
xi fi(xi) + y2i
x2i + y

2
i

≥ min{αi , 1} > 0,

as desired.
We now verify (A3). Fix σ ∈ ]0, π[, and take ϑi1 = 0, ϑi2 = σ/2. Writing

zi = (xi , yi) = (ρi cos ϑi , ρi sin ϑi),

we have that if zi ∈ Θ(0, σ/2), then

⟨∇Hi(zi), zi⟩
‖zi‖2

=
(ρi cos ϑi)fi(ρi cos ϑi) + (ρi sin ϑi)2

ρ2i

≤ sin2 ϑi +
!!!!!!!
fi(ρi cos ϑi)
ρi cos ϑi

!!!!!!!
≤
σ2

4 +
!!!!!!!
fi(ρi cos ϑi)
ρi cos ϑi

!!!!!!!
.

Taking Ri > 0 large enough, if zi ∈ Θ(0, σ/2) \ B(0, Ri), then

⟨∇Hi(zi), zi⟩
‖zi‖2

≤
σ2

4 +
σ2

4 = σ(ϑi2 − ϑ
i
1).

The proof is thus completed, noticing that it su�ces to choose Ai large enough in order to make
Ri(t, z1, . . . , zN) as small as desired.
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As an example, Corollary 4.5 directly applies to the following system of N coupled pendulums,

{{{{{{{
{{{{{{{
{

ẍ1 + A21 sin x1 =
∂W
∂x1

(t, x1, . . . , xN),

...

ẍN + A2N sin xN =
∂W
∂xN

(t, x1, . . . , xN),

where ∂W
∂xi (t, x1, . . . , xN) is continuous andbounded for i = 1, . . . , N, and the constantsA1, . . . , AN are large

enough.We are thus able to recover the results obtained in [32], by the use of the Poincaré–Birkho� theorem,
for a single equation modeling a forced pendulum having a very small length.
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