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ABSTRACT In recent years, fractional-order differential operators, and the dynamic models constructed
based on these generalized operators have been widely considered in design and practical implementation
of electrical circuits and systems. Simultaneously, facing with fractional-order dynamics and the nonlinear
ones in electrical circuits and systems enforces us to use more advanced tools (in comparison to those
commonly used in design and analysis of linear fractional-order/nonlinear integer-order circuits and
systems) for their analysis, design, and implementation. Discussing on such a motivation, this tutorial
paper aims to provide an overview on the recent achievements in proposing effective tools for analysis
and design of nonlinear fractional-order circuits and systems. Moreover, some open problems, which can
specify future directions for continuing research works on the aforementioned subject, are discussed.

INDEX TERMS Fractional-order circuits and systems, nonlinear circuits and systems, fractional-order
electrical elements, stability analysis, dynamical behavior analysis.

I. INTRODUCTION

THE POSSIBILITY of the appearance of fractional-order
differential operators in the dynamic models of electri-

cal circuits is a very long-known fact (e.g., the appearance
of the fractional-order operator 1/

√
s in the impedance func-

tion of an infinite RC network). Even though, the first
coherent attempts to recognize the applicability of fractional-
order dynamics to the circuits and systems society were
devoted to proposing the innovative methods for approxi-
mating the fractional-order operators by rational filters (see
for instance [1], [2], and [3]). The need to approximate the
fractional-order differential operators by rational filters, for
using them in circuit implementation had caused that such
operators were marginally considered in design of electri-
cal networks, in a relatively long period of time. But the
recent advances in fabrication of fractional-order electrical

elements, such as fractional-order capacitors and inductors,
and also proposing effective techniques for successful emula-
tion of these electrical elements, lead to significant attention
for profiting from the great potential of fractional-order
dynamics in circuits and systems design [4]. On the other
hand, nonlinear behaviors cannot be ignored in many real-
world circuits and systems. Motivated by these facts, this
article provides an overview on nonlinear fractional-order
circuits and systems. In this overview, some recent rele-
vant research works are reviewed. Also, on the basis of the
reviewed topics, some challenges, which can specify future
directions for continuing the research on the aforementioned
topic and invite further research works, are discussed.
The paper is organized as follows. In Section II,

some related mathematical concepts are briefly introduced.
Section III is devoted to discussing on fractional-order
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electrical elements and their fabrication methods. In
Section IV, it is explained why study on nonlinear fractional-
order circuits and systems is necessary from the viewpoint of
electrical engineering perspective. Sections V and VI respec-
tively deal with reviewing the recent works on stability study
and oscillatory behavior analysis in nonlinear fractional-
order circuits and systems. Also, Section VII is devoted
to control systems modeled by nonlinear fractional-order
dynamics. Moreover, some challenges and open problems on
the topics reviewed in the previous sections are described in
Section VIII. Finally, the paper is closed by conclusions in
Section IX.

II. A BRIEF MATHEMATICAL BACKGROUND
Fractional calculus [5], as a sub-branch of mathematical
analysis, is a generalization for the well-known traditional
calculus. The convenience and ease of use of traditional cal-
culus had caused that the fractional calculus was marginally
considered in engineering applications over the long years
from introducing the basic foundations of this mathemati-
cal tool [6]. Even though, in recent decades by revealing
the great potential of fractional calculus to provide more
effective solutions for various engineering problems, con-
siderable efforts have been done to apply this mathematical
tool in different engineering fields [7]. The key-point in
the generalization offered by fractional calculus is to extend
the differential operators such that they exhibit non-integer
orders. For instance, inspired by the Cauchy formula for
the repeated integrals, the integral of function f (t) of order
α ∈ R

+ (with the lower terminal 0 and the upper terminal
t) is defined as

0I
α
t f (t)

�= 1

�(α)

∫ t

0
(t − τ)α−1f (τ )dτ , (1)

where

�(α)
�=

∫ ∞

0
e−ttα−1dt. (2)

The interpretation of this generalized operator in the Laplace
domain is similar to that of ordinary integral operators, i.e.,
it can be shown that

L
{

0I
α
t f (t)

} = 1

sα
L{f (t)}. (3)

On the basis of the fractional-order integral operator, fractional
derivative can be defined in two forms. The first form for
defining the fractional derivative operator of order α ∈ R

+,
known as the Riemann–Liouville derivative, is given by

RL
0D

α
t f (t)

�= dm

dtm
{

0I
m−α
t f (t)

}
, (4)

where m = �α� (�α� denotes the smallest integer, which is
not less than α). The Caputo derivative is the second form
of fractional derivative operators, and it is directly defined
through the fractional-order integral operator. The Caputo
derivative of order α ∈ R

+ − N is defined as

C
0D

α
t f (t)

�= 0I
m−α
t

{
dm

dtm
f (t)

}
, (5)

where m = �α�. In the rest of the paper, for briefness in
the notations, C0D

α
t with α = m ∈ N denotes the traditional

operator dm
dtm . Also, the general notation 0Dα

t specifies either
Riemann–Liouville or Caputo derivative operators.
The Mittag-Leffler functions, as a general form of the

exponential ones, play a fundamental role in describing the
eigenfunctions of fractional derivative operators. The two-
parameter Mittag-Leffler function is defined as

Eα,β(z)
�=

∞∑
k=0

zk

�(αk + β)
, (6)

where α, β > 0. In the special case α = β = 1, (6) converts
to the exponential function ez.

III. FRACTIONAL-ORDER ELECTRICAL ELEMENTS
A. FRACTIONAL-ORDER CAPACITORS AND INDUCTORS
The current-voltage relation in electrical capacitors, as the
most common electrical passive energy-storage element, is
simply described by using a first-order derivative operator.
In fractional-order capacitors, as generalized elements in the
viewpoint of using fractional calculus concepts, such a rela-
tion is described by a fractional-order derivative operator.
Namely, if i(t) and v(t) respectively denote the current and
voltage of a fractional capacitor, then

i(t) = Cα 0D
α
t v(t), (7)

where α > 0 is the order of the capacitor and Cα > 0
denotes its pseudo-capacitance (with unit Fs1−α). Also, the
current-voltage relation in a fractional-order inductor with
the pseudo-inductance Lβ (unit: Hs1−β ) and order β > 0 is
described by

v(t) = Lβ 0D
β
t i(t). (8)

In a more general framework, fractional-order capac-
itors and inductors can be considered as constant
phase elements (CPEs) [8], i.e., the components whose
impedance/admittance functions possess a constant phase
in the frequency domain. A special case of CPEs is the
Warburg impedance element [9], which is originally appeared
in modeling of semi-infinite diffusion processes1 and exhibits
the constant phase 45◦ in the frequency domain.

Up to now, different techniques have been proposed for
fabrication of fractional capacitors. Solid-state fractional
capacitors fabricated by nanocomposite materials [11], [12],
solid-state fractional capacitors constructed by ferroelec-
tric polymers and reduced graphene structures [13], frac-
tional capacitors constructed by electrolyte processes [14],
fractional capacitors developed by using resistive-dielectric-
conductive structures [15], and fractional capacitors fab-
ricated by using copper silicon electrodes and porous
film [16], [17], or by using platinized silicon electrodes
and porous film [18] are some experimentally implemented

1. In the case of modeling finite-length diffusion processes [9], irra-
tional forms [10] such as tanh(

√
τ s)/

√
τ s and coth(

√
τ s)/

√
τ s (τ > 0) are

appeared to describe the corresponding impedance/admittance functions.
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types of this fractional-order element. In addition, some
effective methods have been also proposed for the emu-
lation of fractional-order capacitors and inductors (e.g.,
emulation of these elements on the basis of using RC/RL
networks [19], [20], MOS transistors [21], generalized
immittance converters [22], operational transconductance
amplifiers [23], [24], and power converters [25]).

B. FRACTIONAL-ORDER MEMRISTORS
In 1971, Chua introduced the memristor, as the fourth fun-
damental two-terminal passive circuit element (along with
electrical resistor, inductor, and capacitor), which relates
magnetic flux linkage and electric charge [26], [27]. The
existence of such a component, as a nonlinear circuit
element, in electrical networks implies that applying non-
linear tools for analysis of these networks is unavoidable.
Considering the generalization property achieved by using
the fractional-order operators, fractionalized versions of the
memristor element have been also introduced in literature.
For example, in [28] a non-ideal fractional-order memristor
described by the current-voltage relation

v(t) = Rα(q) i(t), (9)

where

Rα(q) = RP + 0.5(RAP − RP)(sgn(q+ Q0) − sgn(q− Q0)),

(10)

q(t) = 0I
α
t i(t), (11)

and RP, RAP, and Q0 are some constant parameters, has
been introduced. As another example, in [29] it has been
introduced a fractional-order memristor modeled by

i(t) =
(
a0 +

r∑
i=1

ai 0I
αi
t v(t)

)
v(t), (12)

in which ai (i = 1, . . . , r) are constants and the constants
αi (i = 1, . . . , r) are between zero and one. Some other
models for the fractional-order memristor elements can be
found in [30], [31], [32], and [33]. Also, successful analog
implementations of these elements have been reported in [29]
and [34].

IV. CIRCUITS AND SYSTEMS MODELED BY NONLINEAR
FRACTIONAL-ORDER DYNAMICS
In the previous section, the electrical elements with
fractional-order differential current-voltage relations have
been introduced. Up to now, different electrical struc-
tures containing these fractional-order elements have
been designed and implemented, e.g., fractional-order
low/band/high-pass filters [35], [36], [37], fractional-order
oscillators [38], fractional-order passive impedances [39],
[40], fractional-order resonators [41], [42] (see Fig. 1), and
fractional-order phase-locked loops [43]. For the analysis of
an electrical network containing these elements, fractional

FIGURE 1. A fractional-order electrical network used in [41] as a resonator with the
resonance frequency ωr = (LC)−1/(α+β).

calculus based tools should be used. Furthermore, consider-
ing the nonlinear behavior of such elements (e.g., the nonlin-
ear nature of the fractional-order memristor) or the presence
of other nonlinear components in the under-study electrical
networks yield in facing a nonlinear fractional-order circuit.
For the effective analysis, design, and implementation of
such circuits, the theoretical tools developed in the field of
nonlinear fractional-order circuits and systems can be useful.
Besides this motivation, originated from using fractional-
order elements in electrical circuit design and practice,
another main motivation can be also mentioned for the study
on nonlinear fractional-order circuits and systems in the
viewpoint of electrical engineering perspective. This motiva-
tion is induced from modeling the involved components by
fractional-order dynamics with the aim of achieving a more
accurate model. As a simple sample, we can refer to the
interesting works of Westerlund in the early 1990s [44], [45].
In these works, with the concluding remark “dead mat-
ter has memory!” it has been claimed and experimentally
verified that the widespread electrical capacitors have a
degree of fractionality. This means that a more precise model
for an electrical capacitor may be in the form (7) (some
interesting cases, in which using this more precised model
yields in offering the better justifications for the relevant phe-
nomena observed in practice, have been discussed in [45]
and [46]). Nevertheless, due to insignificance of fractional-
ity nature in common capacitors, i.e., possessing fractional
orders very near to 1 (see [45, Tab. 1] and [46, Tab. 3]),
the straightforward current-voltage relation i(t) = Cdv(t)/dt
has been simply used for describing their dynamical behav-
ior. Some more advanced samples of benefiting from
fractional-order dynamics in modeling of electrical com-
ponents are modeling of on-chip inductors constructed by
the Siliconbenzocyclobutene technology [47], voltammetric
sensors [48], on-chip interconnects in nanoscale CMOS cir-
cuits [49], CMOS metamaterial transmission lines [50], [51],
and large three-dimensional RC networks [52].

V. STABILITY ANALYSIS
This section deals with an overview of the achievements on
stability analysis of fractional-order systems. Section V-A
focuses on the special case of linear time invariant (LTI)
fractional-order systems. Also, the Lyapunov indirect and
direct methods for stability analysis of nonlinear fractional-
order systems are reviewed in Sections V-B and V-C.
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A. LINEAR TIME-INVARIANT CASE
The Lyapunov indirect method for stability analysis of the
equilibrium points of nonlinear systems has been constructed
based on the linearization of these systems at the equilibrium
points, and then applying the stability analysis tools for lin-
ear systems to the obtained linearized models. Consequently,
the tools primarily obtained for stability analysis of linear
systems may be also useful in stability analysis of the non-
linear ones. A basic theorem on stability analysis of LTI
fractional-order systems, which can be used as foundation
for the Lyapunov indirect method in fractional-order systems,
is as the following.
Theorem 1 [53]: The equilibrium point x = 0− in the LTI

system C
0D

α
t x(t) = Ax(t), where α ∈ (0, 1) and A ∈ R

n×n,
is asymptotically stable if and only if each eigenvalue λi of
matrix A satisfies condition |arg(λi)| > απ/2.

B. STABILITY ANALYSIS BASED ON LYAPUNOV
INDIRECT METHOD
Due to the simplicity and variety of the tools introduced for
stability analysis of fractional-order systems, using lineariza-
tion techniques for stability analysis of equilibrium points
in nonlinear fractional-order systems is a common approach.
Such an approach has been initially proposed for nonlin-
ear commensurate order systems and incommensurate order
ones, in [54, Sec. 3] and [55, Sec. 3], respectively. In this
subsection, some more advanced tools in the linearization of
nonlinear fractional-order systems are reviewed.
Theorem 2 [56]: Consider the nonlinear fractional-order

system

C
0D

α
t x(t) = Ax(t) + f (x(t)), (13)

where α ∈ (0, 1), A ∈ R
n×n, and the continuous function

f : R
n → R

n is locally Lipschitz with condition f (0−) = 0−.

Define

lf (r)
�= sup

‖f (x) − f (y)‖
‖x− y‖ , (14)

where the supremum is taken over all non-equal x and y in
a closed ball of radius r and center 0− in R

n. If

lim
r→0

lf (r) = 0, (15)

then the equilibrium point x = 0− of system (13) is asymptot-

ically stable, provided that the condition |arg(λi)| > απ/2
is met for any eigenvalue λi of matrix A.
Special forms of the above-mentioned result have been

presented in [57] and [58] with the aim of suppression of
the chaotic oscillation by stabilization of the equilibrium
points in chaotic fractional-order systems. Considering the
assumptions on function f in Theorem 2, x = 0− is called a

hyperbolic equilibrium point for system (13) if all eigenval-
ues of matrix A are non-zero and do not lie on the half-lines
arg(z) = απ/2 in the complex plane [59]. In [59, Th. 3],

the topological equivalence of the behaviors of the trajecto-
ries of the nonlinear system (13) and its linearization, i.e.,
C
0D

α
t x(t) = Ax(t), in the neighborhood of the origin is shown.
An extension for Theorem 2, which deals with lin-

earization based stability analysis in time-delay nonlinear
fractional-order systems, is as follows.
Theorem 3 [60]: Consider the time-delay system

C
0D

α
t x(t) = Ax(t − τ) + g(x(t), x(t − τ)), (16)

where α ∈ (0, 1), τ > 0, A ∈ R
n×n, g : R

n × R
n → R

n,
and g(0−, 0−) = 0−. Assume that function g is continuous and

locally Lipschitz. Define

dg(r)
�= sup

‖g(x, y) − g(x̃, ỹ)‖
‖x− x̃‖ + ‖y− ỹ‖ , (17)

where the supremum is over all x, x̃, y, ỹ ∈ R
n satisfying

||x||, ||x̃||, ||y||, ||ỹ|| ≤ r and (x, y) �= (x̃, ỹ). In this case,
the equilibrium point x = 0− is asymptotically stable if

limr→0 dg(r) = 0 and all of the eigenvalues of matrix A
are in the region

	 =
{
z ∈ C|z �= 0, |z| <

( | arg(z)| − απ/2

τ

)α

,

&| arg(z)| > απ/2

}
.

C. STABILITY ANALYSIS BASED ON LYAPUNOV DIRECT
METHOD
The Lyapunov direct method (also known as the second
Lyapunov method) grounds on finding/constructing scalar
Lyapunov functions for stability analysis of the equilibrium
points. A primary theorem on the Lyapunov direct method
in fractional-order systems is as follows.
Theorem 4 [61]: Assume that x = 0− is an equilibrium

point for the fractional-order system

C
0D

α
t x(t) = f (x(t)), (18)

where α ∈ (0, 1) and the continuous function f : R
n →

R
n is locally Lipschitz around the origin. The equilibrium

point x = 0− in this system is asymptotically stable if the

differentiable convex function V : R
n → R with condition

V(0−) = 0 is found such that

k1‖x‖a ≤ V(x) ≤ k2‖x‖b (19)

and

〈∇V, f (x)〉 ≤ −k3‖x‖b, (20)

hold in a neighborhood of the origin for some positive con-
stants a, b, k1, k2, and k3, where 〈., .〉 denotes the inner
product operator in R

n. If condition (20) is replaced by

〈∇V, f (x)〉 ≤ −k3‖x‖c, (21)
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where c > b > 0 and k3 > 0, then the equilibrium point
x = 0− is weakly asymptotically stable.2

Similar theorems for guaranteeing asymptotic stability,
which are based on fractional-order derivative of Lyapunov
functions (instead of integer-order derivative of such func-
tions), can be found in [62, Th. 11] and [63, Ths. 5.4
and 6.2].
Generally speaking, exponential stability, as a special form

of asymptotic stability, guarantees that the decay rate of the
system response is no less than that of a decaying exponen-
tial function. Due to the very nature of the eigenfunctions
of fractional-order differentiation operators, we deal with
Mittag-Leffler stability in fractional-order systems rather than
with the concept of exponential stability (this means that
for fractional-order systems, in comparison to their integer-
order counterparts, a slower rate of convergence is expected,
e.g., the decay rate similar to t−α in asymptotically sta-
ble fractional-order LTI systems of order α [64]). Definition
of Mittag-Leffler stability, as a special form of asymptotic
stability [63, Remark 4.4], is as follows.
Definition 1 (Mittag-Leffler Stability)3 [62]: The equilib-

rium point x = 0− of system (18) is called Mittag-Leffler

stable if the positive constants λ, b, and r and the positive
function m : Rn → R, which is locally Lipschitz around the
origin and satisfies m(0−) = 0, exist such that

‖x(t)‖ ≤ (
m(x(0)) Eα,1

(−λ
(
tα

)))b
, (22)

for all ‖x(0)‖ < r.
The Lyapunov based theorems, introducing sufficient

conditions to guarantee the Mittag-Leffler stability of an
equilibrium point, can be found in [62, Th. 5], [63, Th. 5.1],
and [65, Th. 8]. The general conditions in these theorems,
similar to those of Theorem 4, are on the basis of finding
Lyapunov functions, whose fractional-order derivatives are
negative definite. Nevertheless, this task, due to innovative
nature of finding suitable Lyapunov function candidates and
the difficulties of working with fractional-order differential
operators in the viewpoint of obtaining a closed form for the
derivative of typical Lyapunov functions, may not be straight-
forward. Even though, in some research works, systematic
approaches are proposed to construct Lyapunov function can-
didates for fractional-order systems (see for instance [66]).
An effective trick to overcome the aforementioned difficul-
ties is to use the inequalities on fractional-order derivatives
of the Lyapunov function candidates that specify the upper
bounds for these derivatives with respect to the fractional
derivatives of the pseudo-state vector of the system (this idea
has been originally proposed in [67], and then extended in
other research works). An example for such inequalities is

2. For definition of a weakly asymptotically stable equilibrium point,
see [61, Definition 1-(ii)].

3. For a more generalized definition, known as generalized Mittag-Leffler
stability, see [63, Definition 4.2] and [65, Definition 7].

described by

C
0D

α
t V(x(t)) ≤

(
∂V

∂x

)T
C
0D

α
t x(t), (23)

where α ∈ (0, 1), x(t) : R
≥0 → R

n and V : R
n → R are

continuous and differentiable functions, and V(x) is con-
vex over R

n [68]. In the case α = 1, (23) reduces to
equality dv/dx = ( ∂V

∂x )T ẋ. The special forms of inequal-
ity (23) have been introduced in [67, Lemma 1] (the special
case V(x) = x2, where x ∈ R), [69, Lemma 4] (the spe-
cial case V(x) = xTPx, where x ∈ R

n and P ∈ R
n×n is

a symmetric positive-definite matrix), and [70, Lemma 1]
(the special case V(x) = x2p , where p ∈ N and x ∈ R).
Such inequalities have been considerately used for facil-
itating Lyapunov based stability analysis (e.g., in global
stability analysis in fractional-order neural networks [71] and
in time-delay systems [72]) and introducing Lyapunov based
control methods (for example, in design of stabilizing static
controllers [73] and adaptive ones [74], [75] for nonlinear
fractional-order systems). It is worth noting that for using
the inequalities in the form (23), the assumption on differ-
entiability of x(t) is required, whereas in the general case
the solution of system (18) may be not differentiable (for
more details, see [76]). In such a general case, the following
inequality

C
0D

α
t V(x(t)) ≤

〈
∇V, C0D

α
t x(t)

〉
, (24)

where V : R
n → R satisfying V(0−) = 0 is a continu-

ous, differentiable, and convex function on R
n, can be used

(See [61, Th. 2]). Another popular approach for construct-
ing Lyapunov functions for fractional-order systems is based
on rewriting the system’s equations in an equivalent form,
which is obtained by considering the frequency distributed
model of fractional integrators. For more details about this
approach and some of its applications in control systems
design, see [77] and [78], [79], respectively.
Stability analysis of incommensurate order systems, in

comparison with that of commensurate order ones, is gener-
ally more complicated.4 For instance, considering Theorem 1
and performing a simple linearization based analysis, asymp-
totic stability of an equilibrium point of the integer-order
system ẋ(t) = f (x(t)) yields in asymptotic stability of such
an equilibrium point in the commensurate order system (18)
with order α ∈ (0, 1), whereas this conclusion is not valid for
incommensurate order counterparts of system ẋ(t) = f (x(t))
(for a counterexample, see [80, Eq. (2)]). In [80], it has been
studied under which conditions the stability of an incom-
mensurate order system can be inherited from that of its
integer-order counterpart. Through this study done by bene-
fiting from the Lyapunov direct method, it has been proved

4. A fractional-order system defined in the pseudo-state space form is
called a commensurate order system if all orders involved in the pseudo-state
space form of the system are equal (e.g., as that seen in the model (18)).
Otherwise, it is called an incommensurate order system.
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that the equilibrium point x = 0− ∈ R
n in system

C
0D

αj
t x̂j(t) = fj(x(t)), j = 1, . . . ,m, (25)

where αj ∈ (0, 1], x̂j ∈ R
nj , x = [x̂T1 , . . . , x̂Tm]T , fj : R

n →
R
nj , and

∑m
j=1 nj = n, and also in the system ẋ(t) = f (x(t))

with f = [f T1 , . . . , f Tm ]T is asymptotic stable if the convex
functions Vj : Rnj → R (j = 1, . . . ,m), satisfying

m∑
j=1

(
∂Vj(x̂j)/∂ x̂j

)T
fj(x) < 0 (26)

for x �= 0−, are found.

Some effective methods have been also proposed for
stability analysis of time-delay nonlinear fractional-order
systems, e.g., using generalized versions of the Gronwall
inequality [81], [82], benefiting from the comparison tech-
niques [83], [84], using fractional-order version of the
Razumikhin Theorem [85], applying Lyapunov–Krasovskii
functionals containing a fractional-order integral part [86],
and using Laplace transform based approaches [87].

VI. OSCILLATORY FRACTIONAL-ORDER CIRCUITS AND
SYSTEMS
Almost four decades passed from introducing the primary
ideas to take the advantage of fractional-order operators in
design of linear oscillators [88]. On the basis of marginally
stable linear fractional-order dynamics, sinusoidal oscilla-
tors [89], [90], [91] and multi-frequency ones [92], [93],
which are electrically implementable by using fractional-
order inductors and capacitors, have been designed. Also,
various forms of nonlinear fractional-order systems gener-
ating regular oscillations or irregular (chaotic) ones have
been studied in literature. A remarkable distinction exists
among regular oscillations generated by a fractional-order
system in the form (18) and those generated by the integer-
order counterpart ẋ(t) = f (x(t)). The oscillations generated
by the former cannot be periodic [94], [95], [96], whereas
the existence of non-constant solutions meeting condition
x(t) = x(t+ T) (T: a positive constant) for all t ≥ 0 is quite
prevalent in the latter. Nevertheless, in the steady state (after
transient time) the oscillatory responses of (18) can behave
similarity to periodic signals (i.e., T > 0 may be found such
that these solutions satisfy condition x(t) ≈ x(t + T) where
t → ∞) [97]. Considering this point, steady-state oscilla-
tory behaviors of fractional-order systems generating regular
oscillations have been analyzed via applying various tools,
such as using numerical based methods [98], [99], stabil-
ity region based analysis approaches [100], [101], harmonic
balance techniques [102], homotopy analysis methods [103],
[104], and averaging techniques [105].
For a survey on fractional-order systems generating irreg-

ular oscillations and their applications, we refer the reader
to [106].

FIGURE 2. A control system in a unity negative feedback structure (The highlighted
cases specify the ones in which the closed loop system is described by a nonlinear
fractional-order model).

VII. NONLINEAR FRACTIONAL-ORDER CONTROL
SYSTEMS
A simple control system structure is shown in Fig. 2.
Considering the nonlinearity and/or fractionality nature in
modeling of the process in control system of Fig. 2 and/or
benefiting from the potential of nonlinear and/or fractional
operators in controller design in this control system may
cause that the closed loop system of Fig. 2 is a non-
linear fractional-order one. According to different choices
for modeling of the process and choosing the controller
structure among linear/nonlinear and integer/fractional-order
dynamics, i.e., considering the different choices of lin-
ear(L)/nonlinear(NL) integer(I)/fractional(F) order process
and linear(L)/nonlinear(NL) integer(I)/fractional(F) order
controller, 16 distinct combinations result, and there are
9 of them (the highlighted cases in the table of Fig. 2)
in which the corresponding control system is described by
a nonlinear fractional-order model. Among these 9 cases,
control system analysis and design in the case of NLF pro-
cess and NLF controller, as the most general case, has
received more attention than the other ones (some sam-
ples of the methods proposed in this case for control of
nonlinear fractional-order systems are nonlinear fractional
PI control [107], predictive control [108], adaptive sliding
mode control [109], adaptive backstepping control [110],
adaptive neuro-fuzzy control [111], and adaptive iterative
learning control [112]). Nevertheless, the other cases yield-
ing a nonlinear fractional-order control system have been
also considered in literature, e.g., LI process and NLF con-
troller in [113], LF process and NLI controller in [114],
[115], LF process and NLF controller in [116], NLI process
and LF controller in [117], [118], NLI process and NLF
controller in [119], NLF process and LI controller in [120],
NLF process and LF controller in [121], and NLF process
and NLI controller in [122].
Motivated by the fact that fractional-order dynamics can

provide a more realistic framework for modeling of the
agents and coordinated behavior of them in some situations
(to find out some typical situations, see [123, Sec. 1.2]) and
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also considering the nonlinear behaviors naturally exist in
real-world phenomena and processes [124, Ch. 8], nonlinear
fractional-order dynamics have been extensively considered
in the context of multi-agent systems. Distributed control of
nonlinear fractional-order multi-agent systems in different
scenarios, such as leader–follower consensus control [125],
[126], [127] and leaderless consensus control [128], [129],
[130] has been a hot research topic in recent years.

VIII. SOME CHALLENGES INVITING FUTURE RESEARCH
WORKS
A. THE NONLINEAR EFFECT OF INTERNAL AND
ENVIRONMENTAL FACTORS ON FRACTIONALITY
DEGREE OF THE ELECTRICAL ELEMENTS
Dependency of the specifications of the fabricated electri-
cal elements on internal and environmental factors, such as
self-heating [131], ambient temperature [132], working volt-
age [133], and electrical stresses [134], is unavoidable. Such
a dependency may be an undesirable phenomenon, when a
constancy in behavior is expected from the electrical ele-
ment. Consequently, in this case effective solution is needed
to decrease the sensitivity to the variations of the element
specifications. On the other hand, the aforementioned depen-
dency can be beneficial in some cases (especially, in design
of electrical sensors). Standing on either side of the issue
(reducing the effects of dependency or benefiting from it),
awareness of how the element specifications are affected
by influential factors is necessary. Motivated by this neces-
sity, various studies have been performed on variation of
the specifications of the classic electrical elements with
respect to internal and environmental changes. The need
to extend such studies to fractional-order elements, due to
growing interest for using these elements in circuit design
and practice, is inevitable. One of the main aspects, which
should be noticed in the future studies, is to investigate the
dependency of the fractionality degree of the element (may
be quantitatively evaluated by the fractional value of the
order of the element) to internal and environmental factors
(for a sample research work on fractionality degree of the
fractional-order integrators emulated by ladder/nested ladder
networks, see [135]).

B. TRAJECTORIES’ BEHAVIOR IN THE PSEUDO-STATE
PLANE
Investigating the behavior of the trajectories of the second-
order systems in the state plane is an effective approach
for qualitative analysis of such systems. Consider the well-
behaved second-order system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2). (27)

It is known that two different trajectories of this system in
the state plane x1 − x2 either have no intersection point or
completely coincide. Consequently, if a non-trivial trajec-
tory of (27) intersects itself, it is a periodic orbit for this

FIGURE 3. A trajectory of system (28) where α1 = α2 = 0.6,
f1(x1, x2) = √

2( cos (0.3π)x1 + sin (0.3π)x2), and
f2(x1, x2) = √

2( − sin (0.3π)x1 + cos (0.3π)x2), which begins from the initial point
(x1(0), x2(0)) = (1, 1).

system. But due to the non-locality property of fractional-
order derivative operators (in contrast to locality feature of
the integer-order ones), this result is not generally valid for
the fractional-order system

C
0D

α1
t x1 = f1(x1, x2)

C
0D

α2
t x2 = f2(x1, x2), (28)

where α1 ∈ (0, 1) and α2 ∈ (0, 1], i.e., a trajectory of
system (28) may interest itself, while it is not a periodic orbit
for this system (for a sample trajectory, see Fig. 3). For more
clarifying the point, notice that the solutions of system (28)
satisfy the following Volterra integral equation [136].

x1(t) = x1(0) + 1

�(α1)

∫ t

0
(t − τ)α1−1f1(x1(τ ), x2(τ ))dτ

x2(t) = x2(0) + 1

�(α2)

∫ t

0
(t − τ)α2−1f2(x1(τ ), x2(τ ))dτ

(29)

If a trajectory of system (28) intersects itself, and the self-
intersection point is related to times t = t0 and t = t0 + T
(i.e., xi(t0) = xi(t0 + T) for i = 1, 2), then from (29) the
equality∫ t0

0
(t0 − τ)αi−1fi(x1(τ ), x2(τ ))dτ

=
∫ t0+T

0
(t0 + T − τ)αi−1fi(x1(τ ), x2(τ ))dτ (30)

should hold for i = 1, 2. In the special case (α1, α2) = (1, 1)

(integer-order system), (30) is reduced to∫ T

0
fi(x1(τ ), x2(τ ))dτ = 0, (31)

which yields in xi(t) = xi(t + T) (i = 1, 2) for all t ≥ 0
(periodicity of the solution). But such a deduction is not
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valid in the case (α1, α2) �= (1, 1) (fractional-order system),
because of the effectiveness of the terms (t0 − τ)αi−1 and
(t0 + T − τ)αi−1 in the integrals of (30) as a consequence
of the non-locality property of fractional-order derivative
operators appeared in (28). In fact, considering the existing
related literature, our knowledge on behavior analysis of the
trajectories of (28) in the pseudo-state5 plane x1 − x2 in the
viewpoint of the existence/nonexistence of self-intersection
points is still incomplete. For example, the conditions on
orders α1 and α2 and functions f1 and f2 yielding in the
intersection/non-intersection of a trajectory by itself are not
known (For a research work investigating a related problem,
see [138]). As another example, the existence of an upper
bound on the number of self-intersection points of the trajec-
tories of system (28) in the pseudo-state plane x1 − x2 is not
clear. These two open problems focus on intersection of a
trajectory of (28) with itself in the pseudo-state plane. Let us
describe another problem focusing on the long-term behavior
of trajectories of system (28). According to the Poincaré-
Bendixson theorem [139], it is known that the oscillatory
trajectories of system (27) either are periodic orbits them-
selves or tend to such orbits in the steady state. But, from the
results of [94], [95], [96], the fractional-order system (28)
cannot have any periodic orbit. This means that the limit
set of an oscillatory trajectory of system (28), unlike that
happens in system (27), is not itself a system solution. As
a consequence for this fact, the lack of non-uniqueness of
the limit set for the trajectories of fractional-order systems,
whose integer-order counterparts have unique limit cycles, is
demonstrated in numerical simulation results. For instance,
such an observation has been reported for the fractionalized
Van der Pol oscillator in [140] (See Fig. 4). Study on the
limit sets of the trajectories of system (28) and investigat-
ing whether such limit sets are unique or not are interesting
topics for future research works.

C. ORDER-DEPENDENT LYAPUNOV BASED
CONDITIONS GUARANTEEING STABILITY OF THE
EQUILIBRIUM POINTS
As discussed in Section V-C, applying the inequalities in
the forms (23), (24), and (26) is a common approach to
prove stability of an equilibrium point in fractional-order
systems. These forms of inequalities are inherently order-
independent ones. This means that if an inequality in such
forms is satisfied, not only the stability of the equilibrium
point in the under-study fractional-order system is proved for
all orders between zero and one, but also the stability of this
equilibrium point in the integer-order counterpart system is
deduced. With the aim of reducing the conservatism induced
by order-independent stability analysis approaches, finding
order-dependent conditions, whose meeting results in sta-
bility of the equilibrium points in nonlinear fractional-order
systems, on the basis of the Lyapunov direct method can

5. The vector x = [x1 x2]T is called the pseudo-state vector of
system (28). For more details on this point, see [137, Sec. 2].

FIGURE 4. Two trajectories of system (28), where α1 = 0.6, α2 = 1, f1(x1, x2) = x2,
and f2(x1, x2) = −x1 − 0.6x2(x2

1 − 1) (a fractionalized version of the Van der Pol
oscillator [140]). The trajectories not only intersect each other, but also tend to
different limit sets (unlike that happens for the traditional Van der Pol oscillator, i.e., in
the case α1 = α2 = 1).

be considered as a future direction in research on stabil-
ity analysis of fractional-order systems. It is worth noting
that order-dependent conditions for stability analysis of LTI
fractional-order system has been previously derived. For
instance, according to [141, Th. 9], the necessary and suf-
ficient condition for asymptotic stability of the LTI system
C
0D

α
t x = Ax, where α ∈ (0, 1) and x ∈ R

n, is the existence
of the symmetric positive definite matrix P ∈ R

n×n which
satisfies the following matrix inequality(

−(−A)
1

2−α

)T
P+ P

(
−(−A)

1
2−α

)
≺ 0. (32)

Considering the available tools for stability analysis of LTI
fractional-order systems, obtaining order-dependent stability
conditions based on linearization techniques (Section V-B)
is not a difficult task (For a sample, see [142]).

D. REGION OF ATTRACTION IN NONLINEAR
FRACTIONAL-ORDER SYSTEMS
Assume that x = x∗ is a stable equilibrium point for the
integer-order system ẋ(t) = f (x(t)), where x ∈ R

2. The
region of attraction of the equilibrium point x = x∗ is an
open invariant set [139, Lemma 8.1]. But, there is no assur-
ance about possessing of these properties for the region of
attraction of this equilibrium point in the fractional-order
system C

0D
α
t x(t) = f (x(t)) (the invarianceness of the regions

of attraction in system C
0D

α
t x(t) = f (x(t)) is doubted by notic-

ing the short-term behavior of the trajectories of this system
(Section VIII-B)). To eliminate this ambiguity by analyti-
cally investigating the properties of regions of attractions
in fractional-order systems can be a challenging problem,
which invites further research works. Also, it is known that
the boundary of the region of attraction of the equilibrium
point x = x∗ in integer-order systems (if exists) is specified
by the limit cycles and stable manifolds of unstable equi-
librium points of the system [143, Sec. 5.1.5]. The absence
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of limit cycles in system C
0D

α
t x(t) = f (x(t)) [94], [95], [96]

obscures the specifiers of the boundary of the regions of
attractions in fractional-order systems. For more clarifying
the point, consider the system

C
0D

α
t x1 = x2 + x1

(
x2

1 + x2
2 − 1

)

C
0D

α
t x2 = −x1 + x2

(
x2

1 + x2
2 − 1

)
, (33)

where α ∈ (0, 1]. The origin is the unique equilibrium point
of this system. Linearizing system (33) around (x1, x2) =
(0, 0) reveals that this equilibrium point is stable. If α = 1
(integer-order system), a simple analysis in polar coordinates
allows to derive that x2

1 + x2
2 = 1 is an unstable limit cycle

for system (33) [144, Ex. 2.7]. This limit cycle specifies the
boundary of the region of attraction of the equilibrium point
(x1, x2) = (0, 0), where α = 1. For α ∈ (0, 1), system (33)
has no limit cycle. Hence, we have no exact information
about the boundary of the region of attraction of the origin
in this case. Note that such a boundary is not specified by two
specifier forms of boundaries in integer-order systems (i.e.,
unstable limit cycles and stable manifolds of unstable equi-
librium points). This example revealed that further analysis
for finding specifications which can potentially determine the
boundary of regions of attraction in fractional-order systems
should be developed. This achievement will be helpful to
propose the effective methods for estimation/approximation
of the regions of attraction in nonlinear fractional-order
systems.

E. CONVERSE LYAPUNOV THEOREMS FOR NONLINEAR
FRACTIONAL-ORDER SYSTEMS
The subject of converse of the Lyaounov direct method
includes various theorems guaranteeing the existence of
Lyapunov functions for stable equilibrium points (for an
interesting survey on converse Lyapunov theorems in integer-
order systems, see [145]). One of the main applications of
these converse theorems is their applicability in stability
analysis of perturbed nonlinear systems [146], [147] and
design of robust stabilizing controllers [30]. Considering
such an applicability, it seems that presenting the converse
Lyapunov theorems for fractional-order dynamics can result
in significant progresses in robust stability analysis of uncer-
tain nonlinear fractional-order systems and design of robust
controller for these systems. Even though initial steps have
been taken in this regard [149], further research efforts are
still needed to provide a powerful diverse set of converse
Lyapunov theorems for nonlinear fractional-order systems.

IX. CONCLUSION
In this article, the motivation of considering nonlinear
fractional-order dynamics in the context of electrical cir-
cuits and systems was discussed. Also, a brief overview on
the studies done on nonlinear fractional-order circuits and
systems with focus on stability and oscillatory behavior anal-
ysis was presented. Clearly, overview on the works done on
the subject of nonlinear fractional-order circuits and systems

is not closed by this article, and to prepare more detailed
overviews focusing on the other aspects related to this subject
can be considered as future review works. Finally, some rel-
evant challenging problems, which can specify some future
directions in research on the aforementioned subject, were
introduced.
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