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A B S T R A C T   

Ring-On-Ring (ROR) tests have been widely applied to evaluate the biaxial flexural strength of brittle materials. 
Properly designed geometry of specimens and loading configurations are essential for accurate test results. In this 
paper, the stress distribution of round glass plates subjected to loading between concentric rings was investigated 
via finite element analysis. In particular, the effects of the ratio of the ring diameter, overhang and thickness of 
plates were studied and discussed. ROR tests on aluminosilicate glass were then conducted together with nu-
merical simulations based on the smeared fixed crack method. The out-of-plane deformation of glass plates can 
be reproduced well by the numerical model. In order to mimic the observed fracture modes, numerical models 
with different mesh geometries were utilized and compared. Unstructured quadrilateral mesh and triangular 
mesh types were proven to be efficient in reproducing the fracture and failure morphology of glass specimens.   

1. Introduction 

The increased demand of glass products has created great opportu-
nities for designing strong and lightweight transparent structures. 
Aluminosilicate glass is one kind of inorganic glass widely used in mil-
itary vehicles, airplanes and electronic devices. However, the correct 
design of the glass components and structures is not straightforward. 
The strength of brittle materials such as glass and ceramics is a function 
of the specimen size and the state of applied stress [1,2], making it 
difficult to evaluate the safety of such brittle components. Glass struc-
tures are often subject to multiaxial stresses during service and hence, in 
order to assess the strength of such components, specific test methods 
are required. The Ring-On-Ring (ROR) test is a typical test method to 
measure the strength of brittle materials under biaxial flexural loading; 
and this test method has been standardized in ASTM C1499 [3]. The test 
configuration consists of a pair of concentrate rings: the outer one is used 
as the support for the disk sample and the inner ring is used to apply an 
increasing load. Both rings have rounded edges to minimize local stress 
concentrations. As for bar shape specimens used for uniaxial flexural 
tests such as three-point bending and four-point bending, the strength of 
glass specimens is sometimes sensitive to the machining and processing 
of the specimens, which can lead to chips and defects along the edges 
and decrease the measured strength. For disk specimens used in ROR 

tests, the specimen is highly stressed within the inner ring area and the 
stresses developed are lowest at the edges, thereby minimizing spurious 
failure. ROR tests on glass [4], ceramic [5], concrete [A] and composite 
plates [B] have been reported in literature. However, detailed stress 
analysis of disk specimens considering the effect of loading configura-
tion and specimen geometry is still necessary for a better understanding 
of this test method. 

As for numerical simulations, finite element method (FEM) is an 
efficient tool for deformation and stress analysis of engineering struc-
tures even if the presence of discontinuity like cracks pose some 
modeling challenges, especially if these are widely present in the ma-
terial. In brittle materials, crack initiation and propagation usually 
happen when the failure strength is reached and several approaches 
have been developed to describe cracks in solid materials. Element 
deletion can be assigned to the elements reaching the failure criteria. [C] 
This method is very simple and widely used to avoid element distortion 
problems. However, deleting elements directly from the numerical 
model is a non-physical process violating the conservation of mass and 
energy. Also, considering a brittle solid material containing one single 
crack, it can still bear a compressive load perpendicular to the crack 
surface. It is hard to mimic such a crack closure effect via an element 
erosion method. A coupled FEM and smoothed particle hydrodynamics 
(SPH) method has been developed and is used in fracture problems of 
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ceramics [9], glass [1G] and rock [11], in which eroded elements are 
replaced by SPH particles inheriting the mass and energy of solid ele-
ments. The cohesive zone method is also a very popular method for 
brittle material simulations. [12,13] Zero-thickness cohesive elements 
can be inserted into every two solid elements to represent the potential 
cracks. These cohesive elements obey the traction-separation law and 
will be deleted once the failure criteria are met. Recently, some meshless 
methods have also been developed for brittle fracture simulations, such 
as the discrete element method (EEM) [14] and the element-free 
Galerkin method (EFG) [15]. However, when meshless methods or 
cohesive element method are used, their calculation efficiency is still 
much lower than the FEM efficiency [1G]. For large engineering struc-
tures, an extremely high number of cohesive elements or particles 
should be used, taking up both a lot of time and computing resources. 
This limits the further applications of meshless methods in the analysis 
of engineering structures. Another approach for fracture simulation of 
brittle materials is the smeared fixed crack model in the FEM. [1A,1B] 
This method accounts for the effect of a crack by the reduction or even 
the elimination of the elastic stiffness of the element. Two perpendicular 
cracks can be defined in one element and the cracks can open and close 
independently, which can describe the fracture behavior of brittle ma-
terials accurately. Before the cracks initiate in the elements, the simple 
linear elastic deformation is defined for the elements, which can save 
computational costs compared to other numerical methods. Also, this 
method can be used in shell elements, which is more efficient and can be 
easily used in large thin-walled structures. 

In this paper, the stress analysis of plate specimens under ROR 
loading was conducted and is presented in section 2 via FEM simulations 
in order to investigate the effect of loading configurations on the validity 
of ROR tests. In particular, the effects of the ratio of the ring diameter, 
overhang and thickness of glass plates were studied and discussed. 
Section 3 describes the experimental tests conducted on aluminosilicate 
glass with the aid of 3E-EIC technique. In section 4, in order to analyze 
the fracture mechanism and replicate the precise fracture modes of glass 

plates, the smeared fixed crack method was used for the deformation 
and fracture simulation of glass plates and the numerical results were 
compared with experimental data in detail. Finally, section 5 provides 
the main conclusions of this work. 

2. Stress analysis of glass plates subjected to ROR loading 

2,1, Stress distri-ution of the "late s"eci#en 

A schematic of the ROR test is shown in Fig. 1(a). The theoretical 
solution for the deflection at the center point of the plate can be 
expressed as [1C] 
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where P is the applied peak load, $ and μ are the Houng’s modulus and 
Poisson’s ratio of the plate’s material. ., .S, ./ and h represent the 
radius of the specimen, the radius of support ring, the radius of loading 
ring and the thickness of specimen respectively, as shown in Fig. 1. The 
biaxial flexural strength of ROR specimens can be calculated by [19] 
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The test was originally designed for small deflections (less than one- 
fourth of the specimen’s thickness) using linear equations [2G]. Thus, 
the specimen’s thickness shouldn’t be too thin to restrict the use of linear 
geometric relations. 

In order to obtain the typical stress distribution properties of ROR 
specimens, an axisymmetric 2E FEM was built, as shown in Fig. 1(b). 
The size of the numerical specimen is the same as the real glass sample 
introduced in the following section, where . = A1 mm, t = A mm. The 
radius of the support ring was 55 mm and the radius of loading ring ./ 
was set as half of .S in this simulation. A linear elastic material property 

Fig. 1. (a) Schematic of ROR test; (b) axisymmetric finite element model.  

Fig. 2. (a) Normalized stress at the glass tensile surface; (b) radial stress field; (c) circumferential stress field.  
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was assigned to the model with an elastic modulus of B5 GPa and a 
Poisson’s ratio of G.22 for aluminosilicate glass [21]. The friction coef-
ficient between the plate and rings was set as G.G5 [1]. A fine mesh size 
of G.2 mm with 915G 4-node quadrilateral shell elements for the nu-
merical specimen was used to obtain accurate stress distribution results. 
Mesh size sensitivity analysis was conducted and this mesh size was 
proven to provide accurate stress distributions. For the boundary con-
dition, the support ring was fixed and the loading ring was given a 
vertical displacement of G.3 mm to load the specimen. This displacement 
is much lower than the specimen’s thickness, so there is no need to 
consider the geometric non-linearities in this study [22]. All subsequent 
analyses in this paper were performed in the range of the linear plate 
theory. 

The radial and circumferential stress at the lower surface of the plate 
specimen along the radius direction is shown in Fig. 2(a). It should be 
noted that the stress was normalized by the stress value at the center of 
the specimen for convenience. The radial and circumferential stress 
nephograms on the cross section of the specimen are provided in Fig. 2 
(b) and (c) respectively. Both the radial and circumferential stress on the 
tensile surface is maximum and nearly constant inside the loading ring 
area and decreases out of the loading ring area. The normalized radial 
stress at the loading ring contact area (.F.S=G.5) is a little higher than 
1, which is actually not expected during tests and this difference should 
be minimized. Theoretically, the stress distribution in the loading ring 
area of the ROR specimens is regarded as uniform and this constant 
stress can be calculated by Eq. (1). In a real loading condition, if this 
stress distribution is not uniform, the precision for the biaxial flexural 
strength calculation will be challenged. Sudden changes in the curves 
when .F.S=1 are visible. These changes are caused by the contact of the 
bottom elements in the numerical specimen with the support ring and 
won’t influence the final results. The radial stress around the edge of the 
plate is zero, however, the circumferential stress is not zero at the edge 
and should be considered during the tests. As there are always defects 
and chips present around the edge of glass plates occurring during the 
manufacturing process, these defects can be more severe than those 
inherent on the surface of the disk. As a result, failure of the plate may 
occur at the edge instead of inside of the loading ring as expected. In that 
case the measured biaxial strength should be lower than its real value. In 
order to ensure that the plates ultimately fail from the inside of the 
loading ring, the specimens should be designed so that the edge stresses 
are minimized. 

2,2, Para#eter study 

In order to investigate the effect of loading configurations and 
specimen’s geometry on the stress distribution of disk specimens, a se-
ries of numerical models were built and simulated. The diameter of the 
support ring !S was kept constant as 11G mm, but the loading ring 
diameter !/, the specimen’s diameter ! and the thickness h differed, as 
shown in Table 1. A total of 25 numerical models were utilized here to 
study the effect of the ratio of the ring diameter, overhang, and thickness 
of plates via a variable-controlling approach. The ratio of the ring 
diameter was defined as !/F!S, corresponding to G.3, G.4 and G.5 when 
!/ is equal to 33 mm, 44 mm and 55 mm. In order to study the effect of 
the overhang, the parameter (!-!S)F2 h was defined to represent 
different overhang conditions. A higher value of (!-!S)F2 h means a 

larger overhang of the glass plates. Here, (!-!S)F2 h is equal to G.5, 1, 2, 
3, 4 with different values of ! and h. For the effect of specimen thickness, 
different values of A mm, C mm and 1G mm were used. 

Table 1 
Parameters for different loading configurations.  

h (mm) !/ (mm) ! (mm) 

A 33 11AF122F134F14AF15C 
A 44 11AF122F134F14AF15C 
A 55 11AF122F134F14AF15C 
C 55 11CF12AF142F15CF1B4 
1G 55 12GF13GF15GF1BGF19G  

Fig. 3. Normalized radial stress as a function of overhang, ring diameter ratio 
and plate thickness. 

Fig. 4. Ratio of the edge to center stress as a function of overhang, ring 
diameter ratio and plate thickness. 
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Fig. 3 shows the effect of the overhang, ring diameter ratio and 
specimen thickness on the radial stress distribution inside the loading 
ring area. For each parameter studied, the other two parameters were 
kept constant for convenience of comparison. At or near the center of the 
plate, the stress is equal to its theoretical value. Inside the loading ring, 
the stress is slightly higher. It can be seen that the overhang has little 
effect on the radial stress distribution. With the increase of the ring 
diameter ratio and specimen thickness, the stress distribution is more 
uniform. However, it should be noted that even for the “worst” condi-
tions studied, the radial stress around the loading ring on the plate is 
only 2I larger than the radial stress in the center, which is acceptable 
during tests. 

The effect of the overhang, ring diameter ratio and plate thickness on 
the edge stress is shown in Fig. 4. The y-axis is set as the ratio of the edge 
circumferential stress and center stress and a smaller value for this 
parameter is always expected to avoid edge fracture during tests. It can 
be clearly seen that as the degree of the overhang increases the 
circumferential stress at the edge decreases. Furthermore, the edge 
stress decreases with the decrease of the ring diameter ratio. When (!- 
!S)F2h=G.5, the effect of the plate thickness is minimized. With the 
increase of the degree of overhang, the edge stress of thin plates is much 
higher than of thick plates. Thus, a thick plate specimen with a large 
overhang and a small ring diameter ratio is helpful to decrease the edge 
stress of the specimen. 

3. Experi!ental procedure 

A universal electronic testing machine was utilized to load the glass 
plates at a constant loading speed of G.2 mmFmin, which can be regar-
ded as a quasi-static loading condition, as shown in Fig. 5. The speci-
mens produced from A mm thick aluminosilicate glass plates are disk 
samples with a diameter of 122 mm. The diameters of the loading ring 
and support ring were 5G mm and 11G mm respectively. A special 
designed loading fixture with a 45◦ mirror was used here for conve-
nience of deformation measurement via a three-dimensional digital 

image correlation (3E-EIC) technique. Euring the experiments, random 
paint spots were sprayed onto the bottom surface of the glass specimens. 
These spots are reflected by the mirror and were captured by the two 
synchronous shooting cameras. Then the out-of-plane displacement of 
the disk specimen were calculated based on the professional EIC soft-
ware. Eetailed information about this experimental technique was 
presented in our previous work [23]. 

4. Finite ele!ent analysis 

2,1, S#eared 3xed crac4 #ethod 

The material model used in this study to represent the fracture and 
failure behavior of glass is the smeared fixed crack model, which was 
initially introduced by Hillerborg et al. [24] for concrete. This model 
uses the cohesive zone concept and was implemented in LS-EHNA as 
MAT2CGJGlass. Only shell elements can be used for this model at present 
and there have to be sufficient integration points distributed over the 
thickness of the shell elements to represent the gradient stress distri-
bution over the thickness direction. The default value of NIPF=1 
(number of failed through thickness integration points needed to fail all 
through thickness integration points) resembles the fact, that a crack in a 
glass plate immediately runs through the thickness. The term “smeared 
crack” denotes that the model does not represent a micro-crack explic-
itly, but instead the model accounts for the effect of a crack by an elastic 
stiffness reduction, or even elimination, at the integration points of an 
element. [1A] The underlying material behavior before failure is 
isotropic, small strain linear elasticity with Houng’s modulus, $, and 
Poisson’s ratio, v. Asymmetric (tension-compression dependent) failure 
happens as soon as one of the following plane stress failure criteria is 
reached. 

Fig. ". (a) Experimental set-ups for ROR tests; (b) glass specimen; (c) specially designed loading fixture with a 45◦ mirror for 3E-EIC measurement.  
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Fig. #. Failure process of one single element which can contain two orthogonal cracks.  

Fig. $. Simulation parameters calibration.  
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− σ1
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FC < 1 if σ1 < 0 and σ2 > 0

(3)  

where principal stresses σ1 and σ2 are bounded by the defined tensile 
strength 56 and compression strength 5C. This failure criteria is also 
called the Mohr-Coulomb failure criteria [25]. As soon as failure hap-
pens in the tensile regime, a crack occurs perpendicular to the maximum 
principal stress direction, as shown in Fig. A. The element can no longer 
carry any tensile load in that direction but can still bear compression 
loads due to the crack closure effect defined in this method. This 
damaged element can also carry loads parallel to the first crack and a 
second crack can occur, orthogonal to the first crack. These load car-
rying properties correspond very well with the mechanical properties of 
silicate glass. In our model, shell elements were used for simulation 
(ELFORM=2). Once the failure criteria of one element was reached, the 
element were not deleted but appropriate stress and stiffness tensor 
components (e.g., normal to the crack) were reduced to a defined small 

value. In this study, the material stiffness was reduced to G.1I in case of 
failure within 1G time-step cycles (SFSTI=G.GG1, NCHCR=1G). After 
that, a second crack orthogonal to the first crack could occur which 
could open and close independently from the first one, thus further 
reducing the element stiffness, as illustrated in Fig. A. The strength data 
obtained from ROR tests are set as 56 in the numerical simulations, 
while the quasi-static compression strength AGG MPa of aluminosilicate 
glass is used for 5C. It should be mentioned that this numerical method is 
very suitable for multi-axial loading conditions with the definition of 
orthogonal cracks. 

2,2, $ffect of #esh si7e and inte%ration "oints on 8exural stren%th 

In order to investigate the effect of mesh size and number of inte-
gration points on the simulation results, different models were built and 
compared. A powerful personal computer (CPU AME Ryzen 9–39GGK, 
3.B9 GHz, 12 cores F 24 threads, A4 GB RAM) was employed for all the 
simulations and the calculation efficiency of different models was also 
compared. The dashed lines in Fig. B represents the experimental data. 
Fig. B(a) shows the absence of an no apparent mesh size dependence at 
the simulated mesh size range (G.4 mm – 1.2 mm). With the decrease of 
mesh size, the number of elements increased remarkably, together with 
the calculation time. Fig. B(b) shows the relationship between flexural 
strength F calculation time and integration points. With the increase of 

Fig. %. Comparison between ROR test and simulation. (a) Flexural stress-displacement curve; (b) out-of-plane displacement at different stages; (c) full-field out-of- 
plane displacement from EIC and simulation. 
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integration points along the thickness direction of the shell elements, the 
simulated flexural strength decreased and finally became stable. The 
stable value is comparable to experimental results from ROR tests. The 
reason for this trend is that the integration points are far from the surface 
of the glass tile when less integration points are used, leading to the 
overestimation of the strength data. Also, with the increase of integra-
tion points, the calculation time increased. In order to balance the 
calculation efficiency and accuracy, nine integration points and the 
mesh size of G.C mm were used for the following simulations in this 
work. 

2,9, !efor#ation 3eld analysis 

The detailed out-of-plane displacement field of the plate specimens 
can be obtained from the 3E-EIC set-up described in section 3. The 
comparison between the test and simulation results is shown in Fig. C. 
The simulated flexural stress – displacement curve is linear elastic and 
comparable to the experimental curve. The deformation field of the 
specimens at different stages during the loading process is also provided 
and is fully comparable to the experimental results. It is illustrated that 

the proposed numerical model is able to mimic both the deformation 
field and failure strength of the ROR specimens. 

2,2, 5racture #ode analysis 

The typical fracture mode of aluminosilicate glass specimen under 
ROR loading is shown in Fig. 9(a). The fracture origin is located around 
the inner ring area, which is a very important feature to identify the 
effectiveness of this test [2A]. For the ROR specimen the crack originates 
from a pair of branches in the opposite directions. Following the 
occurrence of the first break, the larger remnant may still bear load from 
the inner loading ring, and the inner part of the remnant in turn breaks 
in bending, consistent with the fact that glass containing a single crack 
can still carry load parallel to this crack. Thus, cross cracks formed in the 
inner ring area. The stress distribution outside of the inner ring was 
mainly circumferential stress perpendicular to the radius direction and 
radial cracks were driven in this region. 

The simulation results are provided in Fig. 9(b). Three different mesh 
strategies, including structured quadrilateral mesh, unstructured quad-
rilateral mesh and triangular mesh were utilized for this simulation. The 

Fig. &. Comparison of the fracture mode between experimental observations and numerical simulations with different mesh strategies.  
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basic fracture mode of glass specimen shown in Fig. 9(a) was reproduced 
by all three models. However, a similar crack branching and propaga-
tion route as observed in the experiments was reproduced via the un-
structured quadrilateral mesh and the triangular mesh models mainly 
due to the randomly distributed element shapes and directions, while 
the smeared fixed crack method was very efficient for biaxial flexural 
simulations. 

As the fracture process of glass is very fast and usually timed in 
several microseconds, ultra-high-speed cameras are essential to record 
the fracture images. However, the fracture sequence of the numerical 
specimen is easy to be obtained by defining a proper data output fre-
quency in the numerical model, as shown in Fig. 1G. It can be seen in 
Fig. 1G(a) that the fracture initiates around the inner load ring and 
propagates outwards quickly. Within the load ring, the cracks form a 
radial-emitting crack front from the fracture origin, illustrated as the red 
dashed line, in consistence with the observations of dynamic fracturing 
of strengthened glass reported in [2B]. In the next frame (Fig. 1G(b)), the 
crack front propagates further away from the origin to release more 
stored elastic energy. The radial cracks emitting from the fracture origin 
intersect with the load ring induced circumferential cracks. Within the 
loading ring, the crack saturates. In the last frame shown in Fig. 1G(c), 
cross cracks form in the inner ring area and radial cracks form in the 
outer area due to different stress distributions in different areas. 

As introduced in section 4.1, the smeared fixed crack model can 
represent at most two independent orthogonal cracks in one single 
element. In order to further illustrate the crack patterns in simulation, 

the “history variable 1′′ for crack flag in LS-EHNA can be introduced, as 
shown in Fig. 11. This is the simulation result by the unstructured 
quadrilateral mesh model and different colors represent different crack 
modes for the elements. It should be noted that all the cracks were 
formed due to tensile fracture in this study because the compression 
strength of aluminosilicate glass is one order higher than its tensile 
strength. Most of the radial cracks only contain one tensile crack, as the 
stress distribution outside of the inner ring is mainly circumferential 
stress perpendicular to the radius direction. In the inner ring area, some 
elements contain two cracks, especially at the intersection region of the 
cracks. This means that the multiaxial fracture behavior of aluminosil-
icate glass can be efficiently reproduced by this numerical method. 

". 'onclusions 

ROR test generates an equibiaxial stress state for the plate specimen 
inside the loading ring. The stress distribution of an aluminosilicate glass 
plate under ROR loading is simulated and analyzed in detail. It is 
illustrated that the overhang of the specimen has little effect on the 
radial stress distribution. With the increase of the ring diameter ratio 
and specimen thickness, the stress distribution is more uniform. In order 
to avoid edge fracture of the glass specimens, a low edge stress is always 
expected during tests. It is illustrated from the numerical simulations 
that the choice of a thick plate specimen with a large overhang and 
smaller ring diameter ratio is helpful to decrease the edge stress of the 
specimen. 

Fig. 1(. Simulated failure process and fracture patterns of glass plate under ROR biaxial flexural loading.  

Fig. 11. Crack pattern analysis for the shell elements in the smeared fixed crack method simulation.  
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ROR tests and corresponding simulations were then conducted and 
compared. The proposed numerical model is based on the smeared fixed 
crack method. This numerical method can consider both the crack 
closure effect and orthogonal cracks in one element, which is very 
suitable for fracture simulation of glass. The proposed model is able to 
mimic both the deformation field and failure strength of ROR specimens. 
In order to replicate the precise fracture modes of glass plates, numerical 
models with unstructured quadrilateral and triangular meshes are 
preferential due to the heterogeneous element distributions. 
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