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In this paper a novel paradigm for Mars missions is modeled, optimized, and assessed.

This concept consists of a maneuver that combines aerocapture and ballistic capture upon

Mars arrival, labelled aero-ballistic capture. The idea is reducing the overall cost and mass

by exploiting the interaction with the planet atmosphere as well as the complex Sun–Mars

gravitational field. The aero-ballistic capture paradigm is first formulated. This is then split

into a number of phases, each of them is modelled with mathematical means. The problem

is then stated by using optimal control theory, and optimal solutions are sought. These are

specialized to four application cases. An assessment of aero-ballistic capture shows their

superiority compared to classical injection maneuvers when medium-to-high final orbits about

Mars are targeted.

Nomenclature

0 = semi-major axis, km

�� = drag coefficient

�! = lift coefficient

2? = isobaric specific heat capacity, J/(kg K)

4 = eccentricity

5 = true anomaly, rad

6 = gravity acceleration, km/s2

� = enthalpy, J

ℎ = angular momentum

�sp = specific impulse, s

�2 = first zonal term
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" = Mach number

M = transformation map

< = mass, kg

@ = heat load, J/cm2

¤@ = heating rate, W/cm2

' = planetary radius, km

A = distance, km

A1 = base radius, m

A= = nose radius, m

( = base surface, m2

) = temperature, K

+ = velocity, km/s

U = frame rotation angle, rad

W = flight path angle, rad

\ = longitude, rad

` = mass parameter

`8 = standard gravitational parameter, km3/s2

d = density, kg/m3

f = bank angle, rad

q = latitude, rad

k = heading angle, rad

Ω = planet angular velocity, rad/s

Subscripts

0 = intial time

1, � = Sun

2, ♂ = Mars

atm = atmosphere

int = interface

fin = final time

out = atmospheric exit

TPS = thermal protection system

F = surface wall
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I. Introduction
In space exploration, mass has always been a major limiting factor, imposing a very restrictive constraint on missions.

Since launch vehicles have limited capability in terms of payload, there is the need of minimizing the launch mass while

achieving the scientific goals. Deepening orbital mechanics knowledge to find less fuel-expensive maneuvers is one

possible path to fulfill this constraint. In this document, the basic idea is to merge two different approaches, aerocapture

and ballistic capture, in order to obtain less fuel consuming and safer trajectories. Mars is selected as case study in this

work due to the interest in the scientific and in the space exploration community [1]. Many probes are expected to be

sent to Mars in the near future and fuel-optimal trajectories will be needed.

Aerocapture is an orbital maneuver that allows to change the trajectory of a spacecraft from a hyperbolic to an elliptical

orbit [2]. This maneuver reduces the amount of propellant needed to go from the hyperbolic approaching up to the final

orbit exploiting the friction with the planetary atmosphere. The fuel consumption is reduced and thus, the spacecraft is

more efficient. On the other hand, aerocapture needs spacecraft with a capsule-like shape in order to yield appropriate

lift-to-drag ratios and a good control authority. A closed-loop guidance has to also be implemented. Furthermore a

dedicated thermal protection system (TPS) is required in order to manage the high heat load produced by friction. In the

last thirty years, aerocapture has been the subject of some relevant papers [3–5], even if it has never been used in a real

mission. Benefits of this technique with respect to a fully propulsive maneuver, both in terms of spacecraft mass and

costs, are clearly shown in [6]. In this study, a payload mass increase of 15% is obtained for Martian scenarios. For this

reason, this approach was studied for different bodies in the solar system, both for moons [7, 8] and for planets [9, 10].

Aerocapture was analyzed also for re-entry on the Earth [11]. Many studies focused on Mars [12], for the scientific

interest about that planet, and also due to the fact that the Mars Sample Return Orbiter, a space mission expected to

be launched in 2005 but never performed, was designed to exploit this technique [13]. Since the dynamics related to

aerocapture is well known, nowadays effort is put on finding a reliable, accurate and high-performance guidance [2].

Different algorithms were developed, most of them using the bank angle as control command, designed in order to

ensure a correct exit condition. These algorithms can be grouped in different categories: analytical predictor-corrector

[14, 15], numerical predictor-corrector [16] or terminal point controller [17]. Algorithms using a different control

variable were also investigated [18]. Recently, a closed-loop optimal aerocapture guidance was developed [2]. It

confirms theoretically what was showed numerically in previous studies [19]: if post-atmospheric Δ+ minimization is

desired, using the bank angle as control, the optimal trajectory has a bang-bang structure, with the vehicle flying nearly

full lift up, then almost full lift down.

Ballistic capture is a technique used to reduce the amount of propellant needed to acquire an orbit about a celestial body,

which exploits the gravitational accelerations provided on the spacecraft by different celestial bodies at the same time

[20]. Indeed, if a spacecraft approaches a body from outside the sphere of influence with low relative velocity, some

non-Keplerian low-energy orbits can be found; these allow the spacecraft to temporarily revolve about the planet. The
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concept of ballistic capture was first proposed by Belbruno and Miller for Earth to Moon transfer in early 90s [20] and it

was later successfully used to rescue the Japanese spacecraft Hiten. Since this technique was proven to be effective

and efficient, many studies focused their aim in this subject. A method for finding this kind of orbits was devised in

order to extend them from the Earth–Moon system to interplanetary trajectories, under the assumption of the circular

restricted three body problem (CR3BP) [21]. However the classical restricted three body problem is not capable of

accurately representing the Solar system dynamics, because the real trajectories of the planets are oversimplified. For

this reason, studies on the elliptic three body problem (ER3BP) were performed [22, 23]. The method used in these

papers to design ballistic capture was then extended to a n-body problem, accurately representing the three-dimensional

dynamics of the planetary orbits, through the ephemeris [24]. The effects of natural satellites in ballistic capture was

addressed [25]. A summary and a comparison among all these frameworks (circular three-body, elliptic three-body and

three-dimensional =-body) can be found in [26]: it is showed that the ER3BP is a good approximation of the real model

and it allows to save computational time and effort. Additionally, different studies were performed in order to better

understand the effects of planetary relative configuration on the ballistic capture [27–29]. All these different studies

produce only temporary orbits about the smaller primary. It was demonstrated that permanent capture by the smaller

primary in the R3BP is of no probability [30]. Thus, a stabilization mechanism through dissipation is required, e.g.

performing multiple passages in the high atmosphere to exploit aerobraking [31].

Ballistic capture and aerocapture were quite well investigated in previous years, because they are able to improve the

efficiency of the interplanetary missions, so reducing the propellant needed to close the orbit and thus increasing the

scientific return. These two approaches were studied separately. Firstly, because they are ontologically different and

the combination is not trivial. Then, they are possible at different conditions: in case of aerocapture, the spacecraft at

Mars arrival is on an hyperbola, with a high excess velocity; on the contrary, for ballistic capture, the vehicle is on

lower velocity trajectories. Also the models used are different, considering that a patched conics approach is adopted

for aerocapture, while ballistic capture is feasible only under a more complex multi-body problem. Nevertheless,

a combination of these two techniques can be beneficial in term of mass with respect to the two approaches taken

separately. In fact, for what concerns aerocapture, a merging will possibly reduce the heat and mechanical stresses on

the TPS, and this means lower mass for the heat shield. Moreover, the pericenter can be raised by exploiting the Sun

perturbation, allowing to perform the propulsive maneuver at the pericenter, and not at the apocenter, reducing the

amount of propellant needed thanks to the Oberth effect. On the other hand, a mix of these two different worlds can

shorten the time of flight compared to a simple ballistic capture.

In this paper, the merging of ballistic capture with aerocapture in order to obtain less fuel-expensive, cheaper and safer

trajectories is investigated. The paper is structured as follows. In Section II an overview of both aerocapture and ballistic

capture is given. The aero-ballistic capture is modeled in Section III and its optimization, maximizing the scientific

return, is discussed in Section IV. Lastly, results and comparisons between this approach and classical methods are
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presented in Section V, in order to assess aero-ballistic capture performances with respect to state-of-the-art approaches.

II. Background

A. Aerocapture

1. Vehicle Geometry

In aerocapture, the spacecraft has a capsule-like shape in order to dissipate orbital energy by converting it into thermal

energy, while having a good lift-to-drag ratio, and so a good control authority. Furthermore, the heat load is manageable

using this shape. Figure 1 shows the vehicle used in this work. The spacecraft is a typical 70-deg-sphere-cone vehicle,

commonly used for Mars entry vehicles in the past [12, 32]. Its relevant geometric parameters are the nose radius A= and

the base radius A1. For this study, the dimensions, together with the mass of the vehicle <0, are based on the Mars

Sample Return Orbiter data [15] and they are summarized in Table 1. The base surface ( = cA2
1
is taken as reference for

the aerodynamic coefficients.

r
b

r
n

δ

Fig. 1 Capsule shape with relevant parameters

Table 1 Capsule parameters

A= [m] A1 [m] ( [m2] X [deg] <0 [kg]
0.2013 1.659 8.647 70 2200
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2. Equations of motion

If an ellipsoidal rotating planet is considered, the equations of motion of the spacecraft inside the atmosphere can be

written using six coupled ODEs, three describing the kinematics and three related to the dynamics. They are [2]

¤A = + sin W (1a)

¤+ = −� − 6A sin W − 6q cos W cosk +Ω2
♂A cos q (sin W cos q − cos W sin q cosk) (1b)

¤W = 1
+

[
! cosf +

(
+2

A
− 6A

)
cos W + 6q sin W cosk + 2Ω♂+ cos q sink

+Ω2
♂A cos q (cos W cos q + sin W cosk sin q)

]
(1c)

¤\ = + cos W sink
A cos q

(1d)

¤k = 1
+

[
! sinf
cos W

+ +
2

A
cos W sink tan q + 6q

sink
cos W

−2Ω♂+ (tan W cosk cos q − sin q) +
Ω2
♂A

cos W
sink sin q cos q

]
(1e)

¤q = + cos W cosk
A

(1f)

where A is the distance from the planet center, + the velocity, W the flight path angle, \ and q the longitude and the

latitude, while k is the heading angle of the velocity vector, measured clockwise from the north in the local horizontal

plan; f is the bank angle. By definition, this is the angle of rotation of the vehicle about the velocity vector, positive

with the right wing down. ! and � are the lift and drag accelerations, i.e.,

! =
1
2
d+2(

�!

<0
(2)

� =
1
2
d+2(

��

<0
(3)

The density d is a function of A. Since the simple exponential model for the air density is not capable of giving the

desired accuracy, the model suggested by Justus [33] is implemented. It is based on the Committee on Space Research

(COSPAR) Mars Reference Atmosphere [34]: values of density, temperature and pressure are tabulated for different

altitudes; a spline interpolation with not-a-knot end conditions is used to connect the different points, in order to have a

C2-class function. The interface for Mars atmosphere is set at an altitude of 125 km. The aerodynamics coefficients �!

and �� are dependent on the angle of attack. Usually, in these problems, the angle of attack is function of the Mach

number. In aerocapture, the Mach number is high and the motion is considered fully hypersonic. For this reason, these

coefficients are considered constant. For a capsule-like vehicle, �� = 1.723 and the ratio �!/�� = 0.27[15].
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The planet angular velocity is indicated with the symbol Ω♂. The terms 6A and 6q are the gravity accelerations,

respectively in radial and lateral direction. If a planet with the zonal term �2 dominating the other ones is considered,

they can be written in an approximate form as [35]

6A =
`♂
A2

[
1 + 3

2
�2

(
'

A

)2 (
1 − 3 sin2 q

)]

6q =
`♂
A2

[
3�2

(
'

A

)2
(3 sin q cos q)

]
where `♂ is the standard gravitational parameter of Mars and ' is the equatorial radius of the planet.

The equations of motion for the atmospheric phase can be simplified making some assumptions. First of all, since the

atmospheric phase of the aerocapture maneuver lasts only few minutes, the rotation of the planet can be neglected. Also

the non-spherical gravity can be ignored due to its small magnitude, since �2 = 1.960 × 10−3.

Under these assumptions, the equations of motion become

¤A = + sin W (4a)

¤+ = −� −
`♂
A2 sin W (4b)

¤W = 1
+

[
! cosf +

(
+2 −

`♂
A

) cos W
A

]
(4c)

¤\ = + cos W sink
A cos q

(4d)

¤q = + cos W cosk
A

(4e)

¤k = 1
+

[
! sinf
cos W

+ +
2

A
cos W sink tan q

]
(4f)

Eqs. (4a), (4b), and (4c), describing the longitudinal dynamics, are decoupled from the other three equations, describing

the lateral dynamics. For this reason, the in-plane trajectory can be studied separately from the out-of-plane one.

B. Heating rates model

In aerocapture, the orbital energy is dissipated converting it into thermal energy, thanks to the interaction with

the atmosphere. For this reason, heating rates represent one of the major issues. For capsule-like vehicles, only the

stagnation heating rate is considered, both radiative and convective [36], that is

¤@ = ¤@conv + ¤@rad (5)
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The convective stagnation point heating rate is computed using the Marvin–Deiwert model [37]

¤@conv = :0

(
d

A=

) 1
2

+3.04
(
1 − ℎF

�

)
(6)

with :0 a constant, equal to 1.35 × 10−8 for Mars, ℎF the wall enthalpy, and � the total enthalpy. Assuming to have

radiative equilibrium, the latter are computed as

ℎF = 2?TPS)F with )F =

(
¤@

f(�Y

) 1
4

and

� = 2?atm)atm

(
1 + Watm − 1

2
"2

)
where f(� the Stefan–Boltzmann constant, Y the TPS surface emissivity, )atm the atmospheric temperature given by the

atmosphere model and " = +/
√
Watm'atm)atm is the Mach number.

The radiative stagnation point heating rate is computed using the Tauber–Sutton model [38]

¤@rad = �A
0
= d

1 5 (+) (7)

For the Martian environment, the constants in Eq. (7) are

� = 2.35 × 10−4, 0 = 0.526 and 1 = 1.19

Instead, 5 (+) is a tabulated value dependent on velocity [38]. Both the relations (6) and (7) give results in W/cm2.

Starting from Eq. (5) and (6), it can be seen that the total heating rate ¤@ is described by an implicit function.

In the equations describing the heat loads, thermal and optical properties of the TPS are needed. Since in the atmospheric

phase, the heating rate is expected to be the same of previous studies on Mars, an ablative TPS is chosen [32]. Among

the different ablative material, SLA-561V is selected. Produced by Lockheed Martin ∗, it is a widespread technology for

70deg sphere-cone vehicle for Mars missions. SLA-561V is characterized by 2?TPS = 1260 J kg−1 K−1 and Y = 0.97.

The last point related to TPS is the estimation of its mass. This is of paramount importance for the following mass

optimization. As shown in [39], historical data on previous NASA missions give a direct relation between the TPS mass

fraction and the integrated total heat load @ (Figure 2). Basing on this connection, the mass of the TPS is estimated
∗Lockheed-Martin, SLA-561 Product Informations, Retrieved on: 2021/05/18
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using the formula given by the fit curve in Figure 2 (in blue), whose analytic expression is

<TPS
<0

=  @V (8)

with  = 0.091 and V = 0.51575.

103 104 105

q [J/cm2]

1

10

100

T
P

S
 m

a
s
s
 f
ra

c
ti
o
n
 [
%

]

Galileo

StardustGenesis

ApolloPioneer Venus
MER

MPF

Mars Viking

Fig. 2 TPS mass fraction and total heat load for previous missions with ablative heat shield [39]

C. Ballistic capture

1. Equations of motion

If ballistic capture is considered, the two-body problem cannot is not suitable. For this reason, more complex, but

accurate models, have to be implemented. The Elliptic Restricted Three-Body problem (ER3BP) is a generalization of

the Circular Restricted Three-Body problem (CR3BP), which is deeply analyzed in literature. This problem studies

the planar motion of a third massless body %, attracted by two primaries, %1 and %2, of mass <1 and <2 respectively,

revolving one around the other in an elliptic motion.The elliptic problem describes quite accurately the dynamics of the

Solar System[26]. For this reason together with the fact that Mars orbit eccentricity is not negligible (∼ 0.1), this model

is used for the extra-atmospheric phase.

A non-uniformly rotating, barycentric, adimensional reference frame (b̂, [̂, ℎ̂), called synodic frame, is defined in order

to write the equation of motion for %. The center of this system is placed at the primaries barycenter; the b̂ axis is aligned

with the two primaries, with ℎ̂ orthogonal to the plane of motion. In this frame, %1 and %2 have fixed position (-`, 0)

and (1-`, 0) respectively, with ` = <2/(<1 + <2), being the mass parameter of the system (see Figure 3). Moreover,
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the distances are normalized accordingly to the distance between %1 and %2.

P1
P2

f

r2r1

θ2

P

(1-μ; 0)(-μ; 0)

η

ξ

e

p

Fig. 3 Rotating, pulsating, non-inertial reference frame with polar coordinates. The inertial sidereal perifocal
reference frame is drawn in gray.

Defining 4? the eccentricity of the ellipses described by the two primaries around the barycenter, the unit distance

can be defined as

Aref =
0? (1 − 42

?)
1 + 4? cos 5

where 5 is the true anomaly of the system and 0? the primary semi-major axis. Therefore, Aref varies in time according

to the mutual position of the two primaries, so creating a pulsating reference system.

The true anomaly 5 represents the independent variable of the system, playing the role of the time, making the system

non-autonomous. If the period of revolution of the system %1 − %2 is set equal to 2c and 0? is set to the unity, the link

between 5 and time can be written in differential form as

d 5
dC
=

(
1 + 4? cos 5

)2(
1 − 42

?

)3/2 (9)

In this framework, it is possible to write the equations of motion for the third body as [40]

b ′′ − 2[′ = lb

[′′ + 2b ′ = l[
(10)

with the primes representing the derivatives with respect to 5 and the subscripts the partial derivatives of

l(b, [, 5 ) = Ω(b, [)
1 + 4? cos 5

(11)
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where Ω is the potential function, defined as

Ω(b, [) = 1
2
(b2 + [2) + 1 − `

A1
+ `
A2
+ 1

2
`(1 − `) (12)

and A1 =
√
(b + `)2 + [2 and A2 =

√
(b + ` − 1)2 + [2 are the distances of % from the primaries.

For the Sun–Mars three-body problem used in this work, the main parameters are presented in Table 2. Beside the

synodic reference frame, the three body problem can be described using polar coordinates, centered at %2. If A2 is

defined as the magnitude of the vector from %2 to the third body and \2 is the angle between the b̂ axis and this vector

(see Figure 3), % moves under the dynamics described by [22]

A ′′2 − A2\
′2
2 − 2A2\

′
2 =

1
1 + 4? cos 5

[
A2

(
1 − 1 − `

A3
1

)
− `

A2
2
+ (1 − `) cos \2

(
1 − 1

A3
1

)]
A2\
′′
2 + 2A ′2\

′
2 + 2A ′2 =

(1 − `) sin \2
1 + 4? cos 5

(
1
A3

1
− 1

) (13)

with A1 =
√
A2

2 + 2A2 cos \2 + 1. Since these equations involve trigonometric functions, they are computational expensive,

but they allow easier writing of terminal conditions and they are able to provide a smooth function for \2 = \2 ( 5 ).

Table 2 Sun–Mars Three-Body problem parameters

` [-] 0? [AU] 4? [-]
3.226208 × 10−7 1.523688 0.093418

2. Sun gravitational assist

In order to better understand the dynamics of the spacecraft when it is subjected to natural dynamics, the effects of

the Solar gravity field near to Mars are investigated. At first, the solar gravity gradient field near Mars is analyzed,

without taking into account the presence of the planet. Referring to Figure 4, the definition of the gravity acceleration is

g� =
`�

R� − r2



3


(
R� − r2

)
· Ĝ(

R� − r2
)
· Ĥ

 (14)

then neglecting the higher order terms, the gradient can be defined as [27]

∇g� =


m
mG
(g� · Ĝ)

m
mH
(g� · Ĥ)

 =
`�
'3
�


(
3'̂2
�G − 1

)
G(

3'̂2
�H − 1

)
H

 (15)
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where '̂�G = (R� · Ĝ)/


R�

 and '̂�H = (R� · Ĥ)/

R�

.

The Sun gravity gradient vector field is showed in Figure 5(a), where the length of the arrows is proportional to its

strength. It is shown that the further the third body is from the planet, the strongest is the effect of the Sun, but for

different angular positions with respect to Mars, a diverse effect is attained, since the field lines change direction. For

exemple, considering prograde orbits, if the apocenter is in the second or fourth quadrant, an increase in orbital energy

or angular momentum is obtained, since the tangential component of the gravity force and the tangential velocity point

to the same direction; otherwise, in the first and third quadrant, the Sun gravity slows down the vehicle, dissipating its

orbital energy (Figure 5(b)).

Mars

Sun

S/C

x

y

R

r2

Fig. 4 Solar gravity gradient reference figure.

For the ER3BP, the distance of Mars with respect to the Sun varies in time, so '� is not a constant. It is

'� =
0?

(
1 − 42

?

)
1 + 4? cos 5

(16)

and a dependence from true anomaly appears. Since this quantity is at the denominator, the solar influence is the

strongest when (1 + 4? cos 5 ) is the highest. Thus, the solar gravitational assist is more effective across the pericenter of

the Sun–Mars orbit, when the cosine function has its maximum.

The same effect can be studied by analyzing the change in angular momentum, as showed in [29]. Indeed, it is possible

to write the position and the velocity of a body in non-inertial %2-centered frame as

r =


A b

A[

 =

A2 cos (\2)

A2 sin (\2)

 (17)
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To Sun
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(b)

Fig. 5 (a) Solar gravity gradient field lines near Mars. The dot indicates Mars position. (b) Solar gravity
gradient field effect on orbits near Mars.

v =


E b

E[

 =

A ′2 cos (\2) − A2\

′
2 sin (\2)

A ′2 sin (\2) + A2\
′
2 cos (\2)

 (18)

Now, two rotation matrices and two reference quantities can be described. They are, respectively,

) 5 =


cos 5 − sin 5

sin 5 cos 5

 , ) ′5 =


− sin 5 − cos 5

cos 5 − sin 5


and

A 5 =
1 − 42

?

1 + 4? cos 5
, A ′5 =

(1 − 42
?)4? sin 5

(1 + 4? cos 5 )2

Recalling the link between time and true anomaly given by Eq. (9), it is possible to define the state in inertial %2-centered

reference frame computing

R = A 5 ) 5 r (19)

V =
d 5
dC

[
A 5 ) 5 v +

(
A ′5 ) 5 + A 5 )

′
5

)
r
]

(20)

In conclusion, the angular momentum respect to %2, expressed as a scalar, since a planar motion is considered can be

evaluated through

ℎ%2 = ‖R × V‖ (21)
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and so, for the elliptic problem, it reads

ℎ%2 =

√(
1 − 42

?

) (
A2

2 + A
2
2\
′
2

)
(22)

It is possible to compute the variation of ℎ%2 deriving it with respect to time, finding that

¤ℎ%2 =
dℎ
d 5

d 5
dC
=

√(
1 − 42

?

) (
2A2A

′
2 + 2A2A

′
2\
′
2 + A

2
2\
′′
2

) d 5
dC

(23)

Using Eq. (13) together with Eq. (9), it can be written that

¤ℎ%2 = A2 (1 − `) sin \2

[
1(

A2
2 + 2A2 cos \2 + 1

)3/2 − 1

]
1 + 4? cos 5

1 − 42
?

(24)

In Figure 6, the adimensional angular momentum variation is plotted with 4? = 0. Also in this case, an increase in

angular momentum can be found in the second and in the fourth quadrant. In those locations, ℎ%2 increases, which

means that the semi-major axis with respect to the smaller primary increases, or equivalently the eccentricity is reduced.

If orbits close to %2 are considered, only the second effect has a major importance. Thus, if the apocenter of an orbit

around %2 is in the second or in the fourth quadrant, a raising in the pericenter is expected. Instead, considering the

relative positions of the primaries, the angular momentum has its maximum when 5 = 0 and the solar gravity assist is

the strongest when the two primaries are as close as possible.
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III. The Aero-Ballistic Capture

A. Aero-Ballistic Capture Paradigm

With reference to Figure 7, the strategy used to merge aerocapture with ballistic capture is defined as:

1) Initially, the spacecraft approaches Mars with an hyperbolic trajectory with pericenter inside the atmosphere;

2) The probe passes through the atmosphere and some orbital energy is dissipated by aerodynamic drag and

converted into heat;

3) At the exit, at the atmospheric interface, the vehicle is on a closed orbit, but with a high apocenter, such that the

effects of solar gravity cannot be neglected;

4) The Sun gravity field accelerates the probe when it is far from Mars and, thus, the pericenter is naturally raised

and taken out from the atmosphere, at the desired altitude, if the geometrical conditions are verified;

5) Finally, at the pericenter of this intermediate orbit, a propelled impulse is applied in order to reduce the velocity

and thus lowering the apocenter to a prescribed value.

Figure 7 shows the different phases of the aero-ballistic capture. It can be divided into four phases:

1) Approaching phase: the spacecraft arrives at target planet on an incoming hyperbola;

2) Atmospheric phase: the spacecraft is on a controlled trajectory inside the atmosphere;

3) Ballistic phase: the spacecraft is on a ballistic, low-energy orbit with a high apocenter;

4) Final orbit: the spacecraft is on its target orbit.

Hyperbola

Transfer orbit
Final orbit

ΔV

Atm
osphere

Sun Gravity
Gradient

1

2

3

4

Fig. 7 The four phases of aero-ballistic capture.

In principle, this strategy may allow potential mass savings, since the passage through the atmosphere dissipates less

energy than aerocapture, thus, the TPS is lighter. Moreover, the propelled maneuver is performed at the pericenter,

and not at the apocenter, and this reduces the fuel consumption thanks to the Oberth effect. On the other hand, this
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maneuver reduces the time-of-flight with respect to the ballistic capture and provides a simple stabilization mechanism.

B. Modeling

1. Approaching phase

In this leg, high-energy orbits are involved, so the decomposition of the Solar System in two-body problems is

possible. The spacecraft is on an hyperbola that is described using state variables at the atmospheric boundary. Taking

as reference previous studies about aerocapture at Mars [12], a +0 = 5900 m s−1 and a W0 = −9.7 deg are chosen, where

the subscript 0 is used to indicate the interface conditions with Mars atmosphere.

2. Atmospheric phase

Right after the interface, the atmospheric phase begins and it ends when A (Cout) = Aint. During this leg, the only

controlled one, the dynamics of the vehicle is described by the differential equations (4a)–(4c). In this study, the lateral

dynamics is not considered and no orbital inclination target is implemented. Also no guidance algorithm is considered

since it is beyond the scopes of this work. The spacecraft is assumed to be always on the Mars orbital plane at the exit

from the atmosphere and the bank reversal is considered to occur instantaneously.

For this problem, thermal loads should be accounted and, for this reason, the heating rate, described by the implicit

equation (Eqs. (5)–(7))

¤@ = :0

(
d

A=

) 1
2

+3.04
©­­­«1 −

2?) %(

(
¤@

f(� Y

) 1
4

�

ª®®®¬ + �A
0
= d

1 5 (+) (25)

is added to the ODEs system (4a)–(4c). This equation depends on position and velocity inside the atmosphere, but

does not influence the other variables. Thus, in principles, it can be integrated a-posteriori. For this phase to define an

augmented state vector x = [A, +, W, @] is defined.

3. Ballistic phase

In the ballistic phase, after the passage through the atmosphere, the spacecraft is on an orbit under natural dynamics.

Since the probe follows a low energy trajectory, the two-body problem no longer represent correctly the equations

of motion. For this reason, the ER3BP, given by Eq. (13), is used to describe the dynamics, with the Sun and Mars

as primaries. The initial conditions for the ballistic phase are the final conditions of the atmospheric phase and a

conversion between them is required. From now on, capital letters are associated to perifocal dimensional reference

frame. Conversely lower case letters indicate quantities in non-inertial reference frame.

First of all, position and velocity have to be placed in a Mars-centered inertial frame, since from the first integration

only the magnitude of this quantities are computed. Defining U as the angle between the ER3BP perifocal axis and the
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spacecraft position vector at the end of the atmospheric phase (see Figure 8), the state of the probe can be defined as

R =


'4′

'?′

 =

A (Cout) cosU

A (Cout) sinU

 , V =


+4′

+?′

 =

+ (Cout) cos (U + W(Cout) − c/2)

+ (Cout) sin (U + W(Cout) − c/2)

 (26)

with A, + and W the state variables in the previous phase and Cout the time at the exit from the atmosphere. The final

conditions for the ballistic phase is the pericenter of the intermediate orbit, i.e.,


A ′2 ( 5fin) = −

A24? sin 5fin
1+4? cos 5fin

A ′′2 ( 5fin) < 0
(27)

with 5fin that is the final true anomaly for the primaries. The first final condition represents the condition at an apsis,

while the second one allows to select the pericenter (and not the apocenter).

Then a scaling is performed, dividing the positions by 0? and the velocities by
√
`�/0? , that is the first cosmic velocity

P1

P2

r2

Pη

ξ

e

p

p’

e’

α
θ2

f0

V

γ

Fig. 8 Definition of U and initial true anomaly 50. Synodic (in black) and perifocal (in grey) frames are reported.

for an orbit of radius 0? around the Sun. Defining 50 as the true anomaly when the spacecraft exits the atmosphere, the

conversion from the Mars-centered inertial perifocal reference frame to the synodic frame requires two rotation matrices

and two reference quantities, the firsts for the positions and the others for the velocities. They are, respectively

) 5 =


cos 50 − sin 50

sin 50 cos 50

 , ) ′5 =


− sin 50 − cos 50

cos 50 − sin 50



17



and

A 5 =
1 − 42

?

1 + 4? cos 50
, A ′5 =

(1 − 42
?)4? sin 50

(1 + 4? cos 50)2

Recalling the link between time and true anomaly given by Eq. (9), the state in synodic frame can be computed as

r =


A b

A[

 =
1
A 5
))5 R −


` − 1

0

 (28)

v =


E b

E[

 =
1
A 5
))5


(
d 5
dC

)−1
V −

(
) 5 A

′
5 + )

′
5 A 5

) ©­­­«r +


` − 1

0


ª®®®¬
 (29)

As last point, conversion form Cartesian coordinates to polar coordinates is needed. Thus, in conclusion, the initial

conditions for ER3BP for ballistic phase are retrieved from the final conditions of atmospheric phase writing

A2 ( 50) =
√
(A b + ` − 1)2 + A2

[

\2 ( 50) = atan2
(
A[

A2
,

A b + ` − 1
A2

)
A ′2 ( 50) = E b cos \2 + E[ sin \2

\ ′2 ( 50) =
1
A2

(
E[ cos \2 − E b sin \2

)
(30)

Since the spacecraft is subjected to pure natural dynamics, the vehicle follows a predetermined path, given the initial

conditions. For this reason, it can be convenient to describe the conversions and the integration associated to this leg

using a mapM. This function takes as inputs the atmosphere exit conditions (A, +, W) plus the parameters 50 and

U; uses them to find the state in Mars-centered polar coordinates in synodic reference frame; then integrates from

50 up to the true anomaly 5fin when the conditions in Eq. (27) are found; so, the pericenter velocity conditions are

directly implemented in the map. Using backward this algorithm, the outputs, that are position and velocity at the end of

integration in Mars-centered inertial coordinates, are retrieved. A wrap-up scheme for this map is:



A

+

W

 Cout

U↦−−−−−−→


R

V

 Cout

50↦−−−−−−→


r

v

 50
↦−→



A2

A ′2

\2

\ ′2

 50

∫
↦−−−−−−→



A2

A ′2

\2

\ ′2

 5fin

↦−→


r

v

 5fin

5fin↦−−−−−−−→


R

V

 Cfin
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In conclusion, it is possible to write 
R

V

 Cfin

=MU, 50 (A, +, W)Cout (31)

whereMU, 50 is the map between the conditions at atmospheric interface and the perifocal dimensional state.

4. Circularization maneuver

After the maneuver at pericenter, a desired closed orbit around the planet is obtained. Since this orbit has a high

energy and it is relatively close to Mars, a simple two-body problem, with Mars as primary, is considered. This means

that it is possible to compute the pericenter velocity of this final orbit writing

E∗? =
√

2`♂

√
1
A∗?
− 1
A∗? + A∗0

(32)

where A∗? is the desired final pericenter and A∗0 is the desired final apocenter.

Starting from this, since V(C 5 8=) is tangential to the orbit by construction, the needed maneuver impulse is

Δ+ = E∗? − ‖V (Cfin)‖ (33)

IV. Optimization of Aero-Ballistic Capture

A. Objective function

The optimal problem for the aero-ballistic capture maximizes the mass delivered in the final orbit, <fin. The objective

function whose minimum is sought is then

� = −<fin (34)

Two discrete events contribute to change in the mass value: 1) Ejection of the TPS; 2) Engine burn needed to go to the

final orbit. Thus, defining <out as the mass of the spacecraft when the heat shield is jettisoned, it is possible to write

<fin = <0
<out
<0

<fin
<out

(35)

where <0 is the initial mass. Recalling Eq. (8) and Tsiolkovsky rocket equation, since <out = <0
(
1 − <TPS

<

)
,

� = −<fin = <0
[
1 −  @V (Cout)

]
4
− Δ+
�sp60 . (36)
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B. Statement of the problem

Since the state is x = [A, +, W, @], for aero-ballistic capture, the optimal problem is to minimize the cost function

� = � (x(Cout), U, 50)

described by Eq. (36), such that

‖R (Cfin)‖ = A∗? (37)

and with where Δ+ = E∗? − ‖V (Cfin)‖ and [R, V])Cfin
=MU, 50 (A, +, W)Cout , and E

∗
? is the velocity at the pericenter of

the final orbit. State is subjected to the dynamics system ¤x = f (x) given by Eqs. (4a)–(4c) and (25) with the bank-angle

f as control variable, subjected to magnitude constraints 0 ≤ f<8= ≤ |f | ≤ f<0G ≤ c.

In [41], Pontryagin describes how to deal with problems with the cost function dependent not only on the state, but also

on some constant parameters. In this case, a conversion from the Problem of Mayer to the Problem of Lagrange is

needed [42]. That is

� = i (x(Cout), U, 50) → � =

∫ Cout

C0

di
dC

dC with i (x(C0), U, 50) = 0 (38)

An augmented state vector is then defined as

x̃ = [i, x]) (39)

allowing to define the Hamiltonian of the problem as

� = _0 ¤i + ,) f (40)

Therefore, by Maximum Principle the optimal bank angle can be found solving

f = arg max
[
_0

di
dC
+ _A+ sin W + _+

(
−� −

`♂ sin W
A2

)
+

+_W
(
!

+
cosf +

(
+2 −

`♂
A

) cos W
A+

)
+ _@ 5@

] (41)

with 5@ the local explicit function associated to the heat load dynamics. It cannot be written explicitly, but its existence

can be proven using the implicit function theorem.

Since !/+ is always positive and cosf has a monotonic behavior in the interval [fmin, fmax] ∈ [0, c], the optimal
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bank angle is determined only by the sign of _W; so

f∗ =



fmin if _W > 0

fmax if _W < 0

∈ [fmin, fmax] if _W = 0 in [C1, C2]

(42)

The last case in Eq. (42) is called singular optimal control. If that condition is verified, the bank angle can assume a

time-varying value in the interval [fmin, fmax]. Otherwise, the control variable can be only fmax or fmin alternatively

and so the control has a bang-bang structure. However, it is possible to prove that the singular optimal control is not

possible for aero-ballistic capture (see Appendix).

C. Implementation

Starting from these conclusions, the optimal control has always a bang-bang structure. Numerical simulations in

[19] show that for a classical aerocapture problem with Δ+ minimization the vehicle flies nearly full lift up, then almost

full lift down. Extending this result to this work, the control profile is

f =


f0 when C0 < C ≤ CB

f3 when CB < C < Cout

so from C0 up to a switching time CB the bank angle is small and equal to f0; then, from CB to the atmosphere exit the

control variable is equal to f3 (Figure 9). Of course, a full-lift down trajectory is possible, if a switching time equal to 0

is obtained in the optimization process. Conversely, full-lift up cases can be found when CB is higher with respect to the

atmospheric exit time. As showed in [2], performances are not affected by the value of f0. For this reason, a fixed value

of 5deg is selected for the initial bank angle.

|σ|

σd

σ0

ts
tout

t

Fig. 9 Optimal bank angle profile
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In conclusion, the aim is to find f3 , CB , U and 50 that minimize the cost function

� = i (x (Cout) , U, 50) = −<0
[
1 −  @V (Cout)

]
4
− Δ+
�sp60 (43)

with

Δ+ = E∗? − ‖V (Cfin)‖ (44)

such that

¤x =



¤A

¤+

¤W

¤@


=



+ sin W

−� −
`♂
A2 sin W

1
+

[
! cosf +

(
+2 −

`♂
A

)
cos W
A

]
5@ (A,+)


(45)

where 5@ is the explicit function describing the heat flux and with the bank angle

f =


f0 when C0 < C ≤ CB

f3 when CB < C < Cout

where C>DC is the time when A = Aint, subjected to the final constraint

‖R (Cfin)‖ = A∗? (46)

where 
R

V

 Cfin

=MU, 50 (A, +, W)Cout (47)

with Cfin the time when the conditions 
V (Cfin) · R (Cfin) = 0

d
dC (V (Cfin) · R (Cfin)) < 0

(48)

already contained inM, are attained. Eqs. (48) are the translation in P2-centered reference frame of the Eq. (27).

In addition, some inequality path constraints are included both on the load factor and on the dynamic pressure, in order
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to avoid too high stresses on the structure, and also on the heating rate and the total heat load. These are

= =
√
!2 + �2 ≤=max

@̄ =
1
2
d+2 ≤@̄max

¤@ ≤ ¤@max

@ (Cout) ≤@max (Cout)

(49)

with =max = 2.3 g, @̄max = 4600 Pa, ¤@max = 460 W cm−2 and @max (Cout) = 70 kJ cm−2, as in [15].

Since the cost function has multiple basins of attraction, this problem is solved using a MultiStart algorithm, adopting

as local solver an interior point method. Ordinary differential equations are solved using an explicit 7th/8th-order

Runge-Kutta integration scheme with regula falsi as event function handler.

Eq. (25), describing the heat flux, is an implicit equation and its integration can be an issue, since at each step its root

has to be found. However, it does not depend directly on the control variable and it is decoupled from the other three

equations describing the dynamics. Hence, they can be solved separately and Eq. (25) can be integrated a-posteriori.

Starting from this observation, the RK8 algorithm is used only to solve the ODEs related to A, + and W; then for each

computed couple (Ã , +̃) describing the trajectory, the equation

¤@ − :0

(
d

A=

) 1
2

+̃3.04
©­­­«1 −

2?TPS

(
¤@
fY

) 1
4

�

ª®®®¬ + �A
0
= d

1 5 (+̃) = 0 (50)

is solved, allowing to compute ¤̃@ for each integration time. Then it is integrated using the trapezoidal rule. In conclusion,

a wrap-up is needed in order to clearly represent how the optimization problem is solved. The block scheme in Figure

10 schematizes the logic flow followed in the optimization algorithm.

V. Results
Some reference final orbits are defined in order to show results and make comparisons. Sample final orbits around

Mars with direct scientific interest have been chosen. They are shown in Table 3.

Table 3 Reference final orbits (A radius, ℎ altitude, ) period)

TAG Target orbit A [km] ℎ [km] ) [h] Rationale
LMO Low Mars Orbit 3690 300 1.89 Science
Ph Phobos 9375 5985 7.66 Exploration
AS Areostationary 20427 17037 24.62 TC/Weather
De Deimos 23458 20068 30.30 Exploration
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Interface conditions
[Aint, +0, W0])

Atmospheric phase

¤x =

¤A
¤+
¤W

 =


+ sin W
−� −

`♂
A2 sin W

1
+

[
! cosf +

(
+2 −

`♂
A

)
cos W
A

]


f3CB

Exit conditions
[Aint, +out, Wout])

Ballistic phase map
MU, 50 (A, +, W)Cout

U

50

Final constraint
‖R (Cfin)‖ = A∗?
(see Eq. (46))

Cost function
� = −<

[
1 −  @V (Cout)

]
4
− Δ+
�sp60

(see Eq. (43))

Integration
Trapezoidal rule

¤@ = 5@

A (Cout) = Aint

Fig. 10 Block scheme of the logic flow for solving the nonlinear programming problem.

A. Aero-ballistic capture solutions

Solutions related to aero-ballistic capture are shown first. Both the atmospheric phase and the ballistic phase are

analyzed and presented in Table 4. CBAL indicates the time of the ballistic phase, from the atmospheric exit up to the final

orbit. The variables related to the atmospheric phase (CB , f3) are similar even changing the final orbit radius. There is

evidence that the atmospheric flight does not play a significant role, but the final state is attained due to a diverse ballistic

trajectory. If the final orbit altitude is increased, the initial true anomaly decreases, because a stronger solar effect is

needed. For the same reason, the transfer orbit apocenter has to be higher and so the ballistic time. Furthermore, the

higher is the final orbit, the higher is the final mass, and so the aero-ballistic capture is more efficient for further orbits.
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Table 4 Aero-ballistic capture solutions

TAG CB [s] f3 [deg] U [deg] 50 [deg] Cout [s] CBAL [d] @ [J/cm2] ΔV [km/s] <fin [kg]
LMO 13.4 64.4 199.2 51.56 338.4 10.33 9097 1.384 1274
Ph 6.68 61.41 346.58 1.51 334.78 41.21 8973 0.855 1509
AS 14.26 61 347.11 0.46 334.31 58.29 8955 0.564 1655
De 23.47 60.99 359.37 0.06 334.28 63.94 8955 0.523 1677

The aerostationary solution is taken as an example to make some observations. Figures 11(a)–11(d) illustrate the

atmospheric path of the spacecraft in this solution. For what concerns velocity (Figure 11(b)), it is possible to notice

that in the first seconds the spacecraft accelerates. Indeed, at the beginning of this phase the vehicle is approaching the

pericenter of its orbit, so the velocity tends to increase, while at the same time the density of the atmosphere is still

too low, and it is not able to counteract this phenomenon. Then, passing through denser layers of the atmosphere, the

spacecraft slows down and it exits the atmosphere with a velocity of 4.92 km/s. Figure 12(a) shows the trajectory in

synodic frame: it is a figure of eight and it has the apocenter in the II quadrant, as expected, because a raise in pericenter

is sought. The orbit in inertial Mars-centered frame is depicted in Figure 12(b) and clearly shows this effect. The altitude

profile in Figure 12(c) shows that the maximum distance reached by the spacecraft is 174 Martian radii. This distance is

at the boundary of the Mars sphere of influence. In the Figure 12(d), the Mars-relative energy is plotted. At the end of

the maneuver, the spacecraft has a higher orbital energy with respect to the initial time. This means that, remembering

that the final point is the new pericenter by construction, an higher value for the pericenter distance is attained.

B. Aerocapture reference solutions

In order to understand if the aero-ballistic capture has some advantages on already known techniques, purely

aerocapture solutions are derived for the study cases as well. These are taken as reference for comparison.

It can be proven that also for the standard aerocapture the optimal problem has a bang-bang control structure, but with

only CB and f3 as parameters [2]. Table 5 summarizes relevant data for aerocapture. In this case, increasing the target

orbit radius, the final bank angle, the atmospheric time and @ (C>DC ) decrease, because less orbital energy has to be

removed and converted into heat. Conversely, ΔV tends to increase, and so a lower final mass is obtained. In conclusion,

it is possible to deduce that for final orbit close to the Mars surface, the aerocapture has better performances, but the

further the spacecraft has to go, the more convenient the aero-ballistic capture becomes.

C. Fully propulsive maneuvers

A last analysis has to be done on trajectories using only propulsive maneuvers, in order to show their low efficiency

with respect to aero-assisted methods [6]. Two different strategies of this kind are implemented:

1) Direct insertion: this is the typical method used today for Martian missions; the spacecraft is injected in the final
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(d) Mars-relative orbital energy

Fig. 11 Relevant quantities for the atmospheric phase of an aero-ballistic capture to an areostationary orbit.
Asterisk indicates the switching time point.

Table 5 Aerocapture solutions

TAG CB [s] f3 [deg] Cout [s] CBAL [h] Cfin [h] @ (Cout) [J/cm2] ΔV [km/s] <fin [kg]
LMO 123.86 179 1427 0.44 0.83 17526 0.038 1868
Ph 1.71 98.06 454.49 2.08 2.2 11753 0.572 1624
AS 0 86.89 386.97 5.43 5.53 10472 0.671 1585
De 2.62 84.84 379.28 6.51 6.61 10299 0.668 1588

orbit directly from the hyperbolic trajectory, with a single impulse at the pericenter (Figure 13);

2) Two-impulse maneuver: this exploits both the Oberth effect and the solar gravity gradient. It is similar to the

aero-ballistic capture, but instead of performing an atmospheric passage, the spacecraft is inserted on a transfer
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(c) Altitude profile during ballistic phase
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(d) Mars-relative orbital energy

Fig. 12 Relevant quantities for the ballistic phase of an aero-ballistic capture to an areostationary orbit.

orbit with a high apocenter using a propulsive maneuver (Figure 14). Thus, this technique is defined as follows:

1) At the initial time, the spacecraft approaches Mars with an hyperbolic trajectory with the pericenter at a

fixed altitude, outside the atmosphere. A conservative value of 200 km is selected;

2) At the pericenter of the hyperbolic trajectory, a first impulsive maneuvers is performed, in order to bring

the spacecraft on a closed transfer orbit with a high apocenter;

3) The Sun gravity field accelerates the probe when it is far from Mars and, thus, the pericenter is naturally

raised at the desired altitude;

4) Finally, a second propelled impulse is given a the pericenter in order to reduce the velocity and bring the

apocenter to a prescribed value.
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Fig. 13 Direct insertion: the spacecraft arrives on a hyperbola and a single impulse at its pericenter moves the
probe to the final orbit.
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Fig. 14 The different phases of two-impulse maneuver: the spacecraft arrives on a hyperbola; then a first
impulse at the pericenter brings the vehicle on a high elliptic transfer orbit; during the ballistic phase the solar
gravity gradient raises the pericenter (dotted arrows); a second impulse is performed moving the probe to the
final orbit.

Direct insertion was simply solved by evaluating the 2-body problem formulas. For the two-impulse maneuver an

optimization problem similar to the aero-ballistic capture one is solved, with the velocity pericenter of the transfer orbit

+? , instead of the atmospheric phase parameters. Results for this two techniques are shown in Table 6. The two-impulse

technique has always advantages in term of mass with respect to the direct insertion. However, both approaches have

worse performances compared to the aero-assisted solutions.

D. General comparison

In order to understand when aero-ballistic capture is convenient with respect to aerocapture, a general comparison

has to be performed. For this reason, some solutions are sought for both the aero-assisted problems for final circular

orbits with altitudes from 200 km to 25000 km. In addition, solutions are computed also for fully propulsive maneuvers.
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Direct insertion Two-impulse maneuver

TAG ΔV [km/s] <fin [kg] U [deg] 50 [deg] +? [km/s] ΔV1 [km/s] ΔV2 [km/s] <fin [kg]

LMO 2.394 1030 138.11 355.19 4.829 1.027 1.355 1030
Ph 2.287 1062 115.26 341.27 4.876 0.989 0.856 1222
AS 2.378 1032 113.15 318.36 4.879 0.986 0.564 1343
De 2.403 1023 127.58 329.84 4.48 0.986 0.522 1361

Table 6 Fully propulsive maneuvers solutions

Results can be found in Figure 15. For lower orbits aerocapture is more efficient and the final mass is higher; but above

10000 km of altitude, aero-ballistic capture becomes the optimal solution in terms of mass delivered to the final orbit.

The higher is the orbit, the more covenient is aero-ballistic capture. This result is achieved because both the total head

load in the atmospheric phase and the needed propellant for the final orbit injection are lower. As already observed,

fully propulsive solutions are very inefficient. It is important to notice that the diamond line solution, representing the

single impulse maneuver, is actually the technique most used nowadays to close orbits about Mars.
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Fig. 15 Comparison of between aero-ballistic capture and aerocapture. Study cases orbits are reported in
dashed lines.

VI. Conclusions
This paper elaborates a method which merges aerocapture and ballistic capture. This technique, called aero-ballistic

capture, exploits the interaction of a spacecraft with the atmosphere, in order to remove energy thanks to friction. At the
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exit from the atmosphere, the vehicle is on an elliptic orbit and the interaction with the solar gravity raises the pericenter

of this transfer orbit up to a prescribed value. At the end, a propelled maneuver is performed in order to move the probe

to its final orbit. It is shown that the optimal control for this problem has a bang-bang structure, allowing to solve it as a

non-linear programming problem. Some study cases about Mars are analyzed, showing that trajectory is driven more by

the ballistic phase than the atmospheric phase and the final mass increases, increasing the altitude of the final orbit.

Comparison with aerocapture and fully propulsive maneuvers shows that aero-assisted maneuvers are always more

efficient than fully propulsive approaches and aero-ballistic capture gives advantages in terms of final mass for high

altitude orbits, when a final orbit with a radius bigger than 13400 km is targeted.

Appendix: Nonexistence of Singular optimal control
Here the nonexistence of the singular optimal control is proven. The Hamiltonian of the system in expanded form is

� = _0 ¤i + _A+ sin W + _+
(
−� −

`♂ sin W
A2

)
+ +_W

(
!

+
cosf +

(
+2 −

`♂
A

) cos W
A+

)
+ _@ 5@ (51)

and the costate variables have to satisfy the equations
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m�

mA
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(
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−
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)
− _W

m 5W

mA
− _@

m 5@
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m�

m+
= −_A sin W + _+

m�

m+
− _W

m 5W
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− _@

m 5@
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(53)

¤_W = −
m�

mW
= −_A+ cos W + _+

`♂ cos W
A2 − _W

m 5W

mW
(54)

¤_@ = −
m�

m@
= 0 (55)

¤_0 = −
m�

mi
= −_0

m ¤i
mi

= 0 (56)

where 5W is the right-hand side of the Eq. (4c).

Since the cost function depends on some parameters, i.e., U and 50, two additional transversal conditions are added [41]

,(Cout))
∫ Cout

C0

mf
mU

dC = 0 (57)

,(Cout))
∫ Cout

C0

mf
m 50

dC = 0 (58)
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Since only the objective function depends on these parameters, Eq. (57) becomes

_0 (Cout)
∫ Cout

C0

m ¤i
mU

dC = 0 → _0 (Cout)
m

mU

∫ Cout

C0

di
dC

dC = 0 → _0 (Cout)
mi(Cout)
mU

= 0 (59)

where the property that U is constant and does not depend on time is used. Similarly Eq. (58) becomes

_0 (Cout)
mi(Cout)
m 50

= 0 (60)

The only condition satisfying Eqs. 59 and 60 is _0 (Cout) = 0 and due to Eq. (56)

_0 ≡ 0 ∀C ∈ [C1, C2] (61)

Now, assuming by contradiction that the singular control exists, this means that _W = 0 and ¤_W = 0 in the time interval

[C1, C2] ⊂ [C0, Cout]. Simplifying Eq. (54) using these last assumptions, assuming that cos W ≠ 0, it is found that

_A =
`♂
A2+

_+ (62)

Then, by Maximum Principle, the relation

� = 0 ∀C ∈ [C0, Cout] (63)

has to hold on the optimal trajectory. This means, recalling that _0 = 0 and _W = 0, that Eq. (51) becomes

_A+ sin W − _+ � − _+
`♂ sin W
A2 + _@ 5@ = 0 (64)

Inserting the Eq. (62) in this last expression, the result is

− _+ � + _@ 5@ = 0 (65)

Assuming that _@ ≠ 0, it is possible to write that

5@ =
_+

_@
� (66)
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Using this in Eqs. (52) and (53), the costate dynamics becomes

¤_A = −
2`♂ sin W

A3 _+ (67)

¤_+ = −_A sin W (68)

Now, starting from Eq. (62), the expression

_+ =
A2+

`♂
_A (69)

can be retrieved and, differentiating it with respect to the time, yields to

¤_+ =
1
`♂

(
2A ¤A+_A + A2 ¤+_A + ¤_AA2+

)
(70)

Putting Eq. (67) and the dynamics equations inside this equation, the result is

¤_+ =
1
`♂

[
2A+2 sin W_A + A2

(
−� −

`♂ sin W
A2

)
_A −

2`♂ sin W
A3 A2+_+

]
(71)

that can be simplified using Eq. (62), becoming

¤_+ =
(
−�A

2

`♂
− sin W

)
_A (72)

This last equation has an extra non-null term with respect to Eq. (68) . The only way to have Eq. (68) consistent with

Eq. (72) is that _A = 0. This means that also _+ = 0. And, consequentially, 5@ = 0; but this is a non-sense.

Otherwise, if _@ = 0, Eq. (65) is simply

− _+ � = 0→ _+ = 0 (73)

since � ≠ 0 always in the trajectory. But _+ = 0 together with Eq. (62) indicates that _A = 0. Therefore, the costate

vector , = [_0, _A , _+ , _W , _@]) = 0 in [C1, C2]. Since that the costate equations are affine in , and , is continuous in

[C0, Cout], it follows that , = 0, ∀C ∈ [C0, Cout]; but this is not possible because it is in contradiction with the Maximum

Principle that states that the costate vector cannot be null. Thus, the possibility to have a singular optimal control in the

optimal aero-ballistic capture problem is ruled out.
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