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Abstract. Blast loading represents a critical dynamic condition for both metal and composite 

structures. The blast response of metal materials has been extensively dealt with by researchers 

through experimental, analytical and numerical analyses, while composite materials appear to 

have been investigated in less detail. In this work, the blast response of a composite plate is 

numerically investigated employing the pure Lagrangian and the fully coupled Eulerian-

Lagrangian (CEL) approaches using the LS-DYNA® software package. The latter 

methodology is set up to describe the effects determined by close-range explosions, such as the 

strongly non-uniform pressure distribution on the plate exposed area. Moreover, this work 

focuses on the characterisation of the influence of the boundary conditions on the plate 

response. The numerical methodology established in this work is set up and validated 

according to similar studies present in the literature. 

1.  Introduction 

Composite structures are widely used in the structural engineering field and have several applications 

ranging from civil infrastructures, such as bridges and buildings, to mechanical systems, such as 

aircraft, ships and vehicles in general. Composite materials are also widespread in the military field, 

where they are commonly used both as part of high-performance protections, such as in protective 

panels for armoured vehicles, and for lightweight structures. Moreover, future trends in transportations 

are likely to move toward a larger use of this type of materials even for primary structures. Given the 

wide variety of applications, it is worth investigating the response of composite plate-like structures 

subjected to dynamic loading conditions, such as blast loading. 

In the past fifty years many experimental tests have been performed to study the dynamic response 

of blast loaded plates with the purpose of formulating analytical and empirical predictive methods [1–

5] or validating numerical models and methodological approaches [6–8]. The large number of studies 

published in the literature highlights that it is hard to accurately predict the dynamic response of plates 

subjected to blast loading, since it is determined by several multi-physics properties, such as the 

explosive material involved and its chemical composition and behaviour, the charge mass, the distance 

of the plate from the detonation point, the dimensions of the structure and the material it is made of. 

Traditionally, most of the published works have only investigated the blast response of flat metallic 

monolithic plates. However, more recently, thanks to the increasing interest in advanced structural 

layouts and composite materials, experimental campaigns involving complex structures such as multi-

layered plates [9] and structures made of composite materials [10–13] have been conducted. Similarly, 
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also analytical methods to predict the blast response of composite plate-like structures have been 

recently propounded in the literature [14–17]. However, so far, the available analytical theories can 

only deal with simple boundary conditions and geometries and do not consider complex physical 

phenomena, such as the extremely non-linear effects rising in case of failure of composite plates. 

Hence, finite element (FE) techniques are usually employed to deal with complex structures 

subjected to dynamic loading from nearby explosions [17]. This type of numerical simulations can 

also take into account the non-linear post-failure behaviour of composite materials, that reveals to be 

paramount to satisfactorily reproduce the blast loaded plate response [12,18,19]. However, to date, a 

limited number of numerical models employed to simulate composite plates under blast loading have 

been validated with experimental observations [17]. An exception is represented by the works in 

[12,13], that present a validated FE model of carbon fibre-polymer laminates and of woven 

glass/epoxy composite plates subjected to blast loading, respectively. Moreover, almost all the works 

present in the literature characterise the blast wave-structure interaction using the pure Lagrangian 

approach, that is known not to be accurate enough in close-range scenarios [20] and cannot predict 

eventual fluid-structure interaction (FSI) effects [21]. 

In this work, two methodological approaches to simulate the blast wave propagation and interaction 

with the target structure, i.e, the pure Lagrangian approach and the fully coupled Eulerian-Lagrangian 

(CEL) approach, are presented and the potentialities of each method are investigated by means of a 

case study taken from the experimental campaign presented in the work in [12], that involves carbon 

fibre-polymer laminates under blast loading. Moreover, the influence of the technique employed to 

model the plate boundary conditions on the structural response is investigated. This work is organised 

as follows. Section 2 presents and discusses the methodological approaches employed in this work to 

simulate the dynamic response of blast loaded composite plates. Section 3 presents a case study to 

investigate the potentialities of the two approaches and to characterise the influence of the modelling 

technique adopted to simulate the plate boundary conditions on the structural response. Finally, 

Section 4 discusses the main results of the case study and Section 5 draws out the conclusions from 

this work. 

2.  Methodological approach 

Two approaches to the numerical simulation of blast loaded structures are investigated in this work, 

i.e., the pure Lagrangian approach and the fully coupled Eulerian-Lagrangian technique. 

In this Section, the two approaches mentioned above are briefly described, along with the 

methodology set up to model the target structure. No mention to the specific solver used in this work 

is made in this Section, since all the information about the case study and the modelling procedure 

involved are reported in detail in Section 3. 

2.1.  Pure Lagrangian approach 

A pure Lagrangian analysis consists of modelling the structure with Lagrangian elements and 

predicting the blast pressure time history exploiting empirical equations. The blast pressure is exerted 

on the structure as an analytical pressure load resorting to the specific equations implemented in the 

software package employed for the analysis. In particular, in this work the Kingery-Bulmash equations 

are exploited to predict the blast loading properties due to the explosion of some high explosive (HE) 

material [22]. Such equations, which were obtained via model fitting to experimental results, only 

require as input value the scaled distance Z, which is defined according to Equation 1 [23,24]: 

 

Z=
R

WTNT
1/3

(1) 
(1) 

 

where R is the standoff distance, i.e., the distance from the centre of the HE spherical charge to a 

specific point of interest, while WTNT is the TNT equivalent weight of the explosive material 

considered. The Kingery-Bulmash relationships employed in this work are valid at scaled distance 
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values 0.147 m/kg1/3<Z<40 m/kg1/3,  below this limit the predicted blast parameters may be inaccurate 

[25]. 

Instead, the analytical pressure applied to the target structure is typically computed according to 

Equation 2 [26]: 

 

P =PR⋅ cos2 θ +PI⋅(1+ cos2 θ -2⋅ cos θ )  (2) 

 

where PR and PI are the reflected and the incident pressure values estimated by the Kingery-Bulmash 

equations, respectively, while θ is the angle of incidence. Note that Equation 2 is not valid for negative 

values of cosθ, i.e., for points on the surface not facing the explosion. In such a case, the simplified 

relationship P=PI is considered. The value of P is computed at each iteration of the solution for each 

loaded element, since (i) the variable θ varies during the structural deformation process and (ii) the 

values of PR and PI depend both on the spatial position of the target element with respect to the 

detonation point and on the time passed from the detonation of the HE material. No more information 

is reported in this work on the analytical prediction of blast loading. The interested reader is referred to 

the work in [27] to go deeper into the topic and for a critical discussion of Equation 2. 

The blast loading prediction in the pure Lagrangian approach is not a computationally critical 

operation, since only empirical and analytical equations are involved, but no fluid structure interaction 

effects can be evaluated using this method, i.e., the effect of the deformation rate of the structure on 

the pressure loading is neglected. 

2.2.  Fully coupled Eulerian-Lagrangian approach 

A CEL analysis consists of modelling both the target structure, exploiting the Lagrangian elements 

formulation, and the HE charge and the surrounding material, resorting to the Eulerian elements 

formulation. The thermodynamic state evolution of the HE material after the detonation event is 

determined employing the Jones-Wilkins-Lee (JWL) equation of state shown in Equation 3 [28]: 

 

P(V,e)=A [1-
ω⋅V0

V⋅R1

] ⋅e
-
V⋅R1
V0 +B [1-

ω⋅V0

V⋅R2

] ⋅e
-
V⋅R2
V0 +ωρe 

(3) 

 

where V is the inverse of density ρ, e the internal energy, A and B parameters with the units of 

pressure, ω the Grüneisen coefficient and R1 and R2 dimensionless parameters. The shock wave 

produced by the detonation of the explosive charge propagates in the surrounding material and reaches 

the target structure exerting on it a pressure loading. Hence, the surrounding material, i.e., the air in 

this work, needs to be modelled as well. In particular, the ideal gas equation of state shown in 

Equation 4 is typically assigned to the air domain [29]: 

 

P=ρ⋅(Cp-Cv)⋅T (4) 

 

where Cp and Cv are the specific heat at constant pressure and at constant volume, respectively, while 

T is the temperature. 

The thermodynamic state evolution of the HE material, the shock wave development and 

propagation in air and the prediction of the pressure load exerted on the structure are computationally 

expensive operations and usually represent the bottleneck of the CEL approach. Despite this issue, 

complex phenomena such as fluid structure interaction effects can be evaluated employing the fully 

coupled Eulerian-Lagrangian approach. 

In this work, a hybrid modelling technique is presented that makes the CEL approach less 

computationally expensive. In particular, the explosive charge is not explicitly modelled, but only the 

air domain surrounding the target structure is considered. The shock wave is introduced in the 

simulation by loading the air domain with an analytical pressure time history determined resorting to 
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the Kingery-Bulmash equations referred to in Section 2.1. This technique allows analytically 

propagating the blast wave to a region close to the target structure, saving the time required to 

numerically simulate the HE material detonation and the formation and propagation of the shock wave 

far from the region of interest. The proposed CEL methodology is shown in Figure 1. Note that this 

hybrid technique may inaccurately characterise the blast loading if the scaled distance value Z 

evaluated considering as standoff distance R the distance REUL (Figure 1) from the detonation point to 

the closest air domain point, i.e., ZEUL=REUL/WTNT
1/3 , does not meet the requirement 

0.147 m/kg1/3<ZEUL<40 m/kg1/3. 

 

 
Figure 1. Proposed solution to speed up the CEL approach. 

2.3.  Target structure modelling approach 

The target structure is modelled exploiting the Lagrangian elements formulation. Solid elements are 

preferred to shell elements in this work. This choice is made since the authors verified that the fully 

coupled Eulerian-Lagrangian approach works better with structures modelled as solid entities, even 

though shell elements would speed up the computations. The simulations proving this statement are 

not reported here for the sake of brevity. The composite material is modelled with a macro-

homogeneous discretisation, i.e., each ply is modelled with a layer of solid elements. The intra-laminar 

and inter-laminar properties of the composite material are both retained in the analyses. The former is 

assigned to the solid elements representing each ply, while the latter is implemented as contact 

interaction between adjacent layers. More information about the specific properties of the structural 

elements is reported in the next Section with reference to the case study. 

3.  Case Study 

The methodological approaches described in Section 2 are herein employed to simulate one of the 

experimental scenarios presented in the work in [12]. In this Section, the case study setup is briefly 

introduced and the numerical simulations are described in terms of main modelling parameters and 

results. Moreover, within the subsection dedicated to the CEL analysis, the influence of the modelling 

technique employed to apply the boundary conditions of the blast loaded structure is investigated. All 

the numerical simulations are performed employing the LS-DYNA® software package. 

3.1.  Description of the scenario under assessment 

The scenario considered in this work involves the detonation of a 100g spherical Type 4 plastic 

explosive charge at 0.4m standoff distance from a flat quadrangular plate. The blast loaded plate is a 

Carbon-Polyester laminate composed of seven plies with thickness 0.6mm each and has dimensions 
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275x275mm2. Each ply is made of plain-woven fabric. The plate is fixed to a support structure by 

means of a steel window frame leaving an exposed area of 250x250mm2. Soft EPDM 414 foam is 

placed between the steel frame and the plate to create a simply supported-like boundary condition for 

the blast loaded structure. The scenario considered in this case study is shown in Figure 2. 

 

 
Figure 2. Scenario considered in the case study. 

Note that the scenario described above is taken from the work in [12], where the experimental 

campaign is presented along with the numerical simulation performed employing the pure Lagrangian 

approach in the Abaqus® software package. 

3.2.  Modelling of the structural elements 

In this subsection the modelling technique and parameters employed to model the steel window frame, 

the foam and the composite plate are presented. 

The steel window frame is modelled using solid hexahedral elements with characteristic dimension 

2.45mm and fully integrated formulation (elform=-1). Steel is modelled resorting to the elastic 

isotropic constitutive law implemented in LS-DYNA® with MAT_001 (*MAT_ELASTIC) using the 

parameters shown in Table 1, where RO identifies the material density, E the elastic modulus and PR 

the Poisson ratio. 

 

Table 1. Parameters of the material of the steel frame [12]. 

Steel - MAT_001 

RO 7800 kg⋅m-3 

E 203 GPa 

PR 0.3 

 

The foam placed between the steel clamp and the composite plate is the soft EPDM 414 foam. 

However, in the work in [12] the material parameters employed in the constitutive law are not 

reported. Hence, since to the authors’ best knowledge no information is present in the literature about 

the specific foam employed in the experimental setup, a different foam taken from the work in [30] is 

modelled in this case study. This choice is not considered to be critical for the numerical simulations 

since the foam is only employed to simulate simply supported-like boundary conditions and the stress 

state of this component is not investigated. Solid hexahedral elements with characteristic dimension 

2.5mm are employed to model the foam material. Since this component is expected to undergo large 
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deformations, a reduced integration element formulation (elform=1) is chosen to avoid possible 

negative volume errors preventing the normal termination of the numerical simulations. Moreover, to 

the same purpose, erosion is added to the material constitutive law to delete excessively distorted 

elements using the material card MAT_000 (*MAT_ADD_EROSION), setting the maximum 

effective strain at failure EFFEPS value to 5. The material constitutive law is implemented resorting to 

the LS-DYNA keyword MAT_057 (*MAT_LOW_DENSITY_FOAM), that is a law dedicated to 

highly compressible low density foams. The main material parameters are shown in Table 2, where E 

identifies the Young’s modulus used in tension, LCID the ID of the curve of the nominal stress versus 

strain, HU the hysteretic unloading factor, BETA the decay constant to model creep in unloading, 

DAMP the viscous coefficient to model damping effects, SHAPE the shape factor for unloading and 

KCON the stiffness coefficient for contact interface stiffness. The fields left to the default value are 

not shown in Table 2, the interested reader is referred to the LS-DYNA® keyword user’s manual (Vol. 

II) to go deeper into the topic [29]. 

 

Table 2. Parameters of the material of the foam [30,31]. 

Foam - MAT_057 

RO 63 kg⋅m-3 

E 8.4 MPa 

LCID Curve taken from [30] 

HU 0.25 

BETA 5.0 

DAMP 0.5 

SHAPE 5.0 

KCON 1150 MPa 

 

Each ply of the composite plate is modelled with solid hexahedral elements with characteristic 

dimension 2mm, as suggested in the work in [12], using one element in the thickness. A fully 

integrated element formulation (elform=-1) is employed to avoid hourglass effects. The intra-laminar 

properties are defined describing the composite material constitutive law employing the LS-DYNA® 

keyword MAT_054 (*MAT_ENHANCED_COMPOSITE_DAMAGE), that represents a built-in 

material model based on the Hashin failure criteria [32]. The main non-default material properties 

considered in this work are reported in Table 3, where EA, EB and EC are the Young’s moduli in the 

three principal directions, PRBA is the in-plane Poisson ratio and GAB, GBC and GCA are the shear 

moduli in the three principal planes. Moreover, the parameter 2WAY=1 represents a flag to turn on the 

2-way fibre action, DFAILT and DFAILC are the maximum strain values for fibre tension and 

compression, respectively, that are intentionally set to large values to avoid element deletion and to 

replicate the same conditions considered in the work in [12]. Finally, XC, XT, YC and YT are the 

strength values for the in-plane compressive (C) and tensile (T) modes and SC is the shear strength, 

that is intentionally set to a large value to neglect its contribution to the material failure [12].  

 

Table 3. Material properties of the Carbon-Polyester laminate plies [12]. 

Carbon-Polyester laminate ply - MAT_054 

RO 1600 kg⋅m-3 

EA 55 GPa 

EB 55 GPa 

EC 7 GPa 

PRBA 0.25 

GAB 4.5 GPa 

GBC 1.8 GPa 
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GCA 1.8 GPa 

2WAY 1 

DFAILT 1 

DFAILC -1 

XC 240 MPa 

XT 680 MPa 

YC 240 MPa 

YT 680 MPa 

SC 1000 MPa 

 

The inter-laminar properties are modelled employing the Cohesive Zone Model (CZM) approach 

using the keyword *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK. This 

contact algorithm keeps the corresponding nodes between adjacent layers connected until failure 

occurs; after that, the interaction is turned into a simple surface-to-surface contact between the plies. 

Failure is accounted for by means of a quadratic criterion that considers both the normal and the shear 

interlaminar stresses. The maximum normal (NFLS) and shear (SFLS) stress values considered in this 

work are reported in Table 4. 

 

Table 4. Properties of the contact interaction between adjacent plies [12]. 

NFLS 60 MPa 

SFLS 60 MPa 

 

The finite element model of the structural components is shown in Figure 3, where the reference 

system considered in the analysis is also presented. The plate surface facing the blast loading lies in 

the xy plane characterised by z=0m and the plate central point on the same surface is at coordinates 

x=y=0m. Note that only a quarter of the model is considered to speed up the computations, 

accordingly introducing symmetry constraints on the x and y negative faces. 

 

 
Figure 3. Finite element model of the structural components. 

Contact algorithms are employed to consider in the numerical simulations the eventual interaction 

between the structural components. The foam is glued to the steel frame to reproduce the foam lined 

frame configuration referred to in the work in [12]. This is achieved introducing in the numerical 

analysis the keyword *CONTACT_TIED_SURFACE_TO_SURFACE with pinball segment based 

contact (SOFT=2) option. The contact between the foam and the plate is described using the algorithm 

*CONTACT_ERODING_SURFACE_TO_SURFACE with pinball segment based contact (SOFT=2) 

option and static and dynamic coefficients of friction FS=1 and FD=1, respectively [33,34]. This 
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contact algorithm allows tracking the contact between the involved parts even if they undergo erosion, 

as it might happen to the foam elements as discussed above. 

Boundary conditions are introduced to reproduce the effect of the experimental support structure. 

Two different models are set up to evaluate the effect of the modelling of the boundary conditions on 

the blast loaded plate response. The first model is hereinafter referred to as CBC (Complete Boundary 

Conditions) model, it consists of the whole setup shown in Figure 3 to which an encastre boundary 

condition is applied on the steel frame face opposite to the explosive charge. Instead, the second 

model, which is hereinafter referred to as SBC (Simplified Boundary Conditions) model, only includes 

the plate exposed area and the encastre boundary condition is applied to the edges of the plate. The 

two models are compared in Figure 4. 

 

 
Figure 4. Boundary conditions modelling strategies. 

 

3.3.  Pure Lagrangian analysis 

In the pure Lagrangian analysis the blast loading is applied on the plate exposed area facing the 

explosive charge according to the approach described in Section 2.1. The blast pressure loading is 

determined employing the keyword *LOAD_BLAST_ENHANCED with the parameters shown in 

Table 5, where M is the TNT equivalent weight of the explosive material (referred to as WTNT  in 

Section 2.1), XBO, YBO and ZBO the coordinates of the explosive charge in the reference system 

shown in Figure 4, TBO the time of detonation, BLAST=2 the flag to specify that the explosion is a 

spherical free-air burst and NEGPHS=0 the flag to retain the blast pressure negative phase in the 

analysis.   
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Table 5. Parameters to compute the blast loading in the pure Lagrangian approach. 

*LOAD_BLAST_ENHANCED 

M 168 g 

XBO 0 m 

YBO 0 m 

ZBO 0.4 m 

TBO -0.13 ms 

BLAST 2 

NEGPHS 0 

 

Looking at the data reported in Table 5, the explosive charge is placed at a standoff distance of 

0.4m from the plate surface facing the blast load and the equivalent TNT weight of the 100g spherical 

Type 4 plastic explosive charge is M=168g. This TNT equivalent weight value is determined 

employing the equations proposed in [35] that satisfy the equivalence in terms of blast pressure 

prediction. In particular, to stay on the conservative side, the upper bound value of the TNT equivalent 

weight is adopted in this work. According to the standoff distance and the TNT weight considered in 

the analysis, the scaled distance value associated to the explosion is Z=0.72 m/kg1/3, which satisfies 

the requirement for the validity of the Kingery-Bulmash equations reported in Section 2.1. Note that, 

to reduce the computational time, the arrival time (AT) of the blast wave is estimated using the 

Kingery-Bulmash equations and the analysis is started right before the wave impacts the structure. 

This is achieved by specifying a negative value in the field TBO so that |TBO|<AT. 

The blast pressure and impulse exerted on the centre of the plate are shown in Figure 5. 

 

 
Figure 5. Effective pressure and impulse exerted on the plate central point. Pure Lagrangian approach. 

 

The absolute value of the displacement of the plate centre is shown in Figure 6 for the only CBC 

model, since the SBC model is not assessed using the pure Lagrangian approach. Note that the 

absolute value of the displacement is plotted since, usually, positive values are shown in the literature, 

while according to the reference system shown in Figure 4 the plate gets deformed in the negative z 

direction in this case study. 
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Figure 6. Absolute value of the displacement of the plate central point. Pure Lagrangian approach. 

A summary of the maximum registered pressure (p
max
Lag ), impulse (imax

Lag
) and displacement 

(dmax
Lag,  CBC

) at the central point of the plate is reported in Table 6. The apex Lag identifies the results 

from the pure Lagrangian analysis, the apex CBC identifies the CBC model. 

 

Table 6. Summary of the pure Lagrangian analysis results. 

p
max
Lag          12.1 MPa 

imax
Lag         

 488.9 Pa⋅s 

dmax
Lag,CBC

 34.3 mm 

3.4.  CEL analysis 

According to the CEL approach introduced in Section 2.2, the blast wave propagation and its 

interaction with the target structure are dealt with by explicitly modelling the air domain exploiting 

solid hexahedral elements with characteristic dimension at convergence 1mm. The formulation 

selected in this work is the solid section elform=5, which identifies 1 point Arbitrary Lagrangian-

Eulerian (ALE) elements. The keyword *ALE_REFERENCE_SYSTEM_GROUP is employed to 

model the behaviour of the ALE elements. In particular, the air domain is assigned a mesh smoothing 

option dedicated to scenarios involving shock waves (PRTYPE=8) and the pure Eulerian behaviour is 

forced setting the initial mesh remapping factor (EFAC) to 1. Moreover, the card *CONTROL_ALE is 

included in the analysis to set the following global control parameters for the Eulerian calculations. 

The advection method employed in the analysis is the donor cell + HIS method (METH=3), which is a 

first order accurate method conserving total energy over each advection step. The ALE mesh 

smoothing is turned off (AFAC=-1) and flow out boundary conditions are specified at the Eulerian 

boundaries to avoid undesired reflections of the shock wave as it impacts the mesh boundary 

(EBC=0). Finally, the reference pressure value applied to the free surfaces of the ALE mesh boundary 

(PREF field) is set to 101,325 Pa. The CEL model is shown in Figure 7. 
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Figure 7. Finite element model involved in the CEL analysis. 

The air behaviour is modelled using the material model MAT_009 (card *MAT_NULL) and the 

ideal gas equation of state (card *EOS_IDEAL_GAS). The non-default parameters included in the 

analysis are reported in Table 7, where MU identifies the dynamic viscosity, CV0 and CP0 the specific 

heat constants for the definition of Cv and Cp, respectively, V0 the initial relative volume and T0 the 

initial temperature value. 

 

Table 7. Parameters to model the air behaviour [36,37]. 

Air - MAT_009 

RHO 1.225 kg⋅m-3 

MU 1.8⋅10-5 Pa⋅s 

Air - *EOS_IDEAL_GAS 

CV0 717 J⋅Kg-1⋅K-1 

CP0 1007 J⋅Kg-1⋅K-1 

V0 1 

T0 288.15 K 

 

According to the procedure described in Section 2.2, the shock wave is initiated in the air domain 

by loading its upper surface with the analytical prediction from the Kingery-Bulmash equations. The 

elements acting as receptors for the blast wave are included into a segment set (see Figure 7) that is 

specified in the card *LOAD_BLAST_SEGMENT_SET. In this card, the field SFNRB is set to 1 to 

attenuate the shock waves reflected back to the ambient elements. The parameters included in the 

*LOAD_BLAST_ENHANCED card to define the blast load are the same as the parameters shown in 

Table 5. According to the standoff distance (REUL=380mm) and the TNT weight considered in the 

analysis, the scaled distance value associated to the explosion is Z=0.69 m/kg1/3, which satisfies the 

requirement for the validity of the Kingery-Bulmash equations reported in Section 2.1. 

Symmetry boundary conditions are applied to the x and y negative surfaces of the Eulerian domain, 

as also described in Section 3.2 for the structural components. The interaction between the shock wave 

propagating in the air domain and the composite plate is set up employing the card 

*CONSTRAINED_LAGRANGE_IN_SOLID. In this card, the air domain is set as master part, while 
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the set of plies is specified in the slave field. Moreover, the fluid-structure coupling method CTYPE=4 

is considered in the analysis, which is a penalty coupling for solid elements without erosion. 

The blast pressure and impulse exerted on the centre of the plate are shown in Figure 8. 

 

 
Figure 8. Effective pressure and impulse exerted on the plate central point. CEL approach. 

 

The absolute value of the displacement of the plate centre is shown in Figure 9 for the CBC model 

(solid curve) and for the SBC model (dashed curve). The curve obtained with the SBC model is 

stopped as soon as the plate passes through the initial position. 

 

 
Figure 9. Absolute value of the displacement of the plate central point. CEL approach. 
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A summary of the maximum registered pressure (p
max
CEL), impulse (imax

CEL
) and displacement (dmax

CEL
) at 

the central point of the plate is reported in Table 8. The apex CEL identifies the results from the CEL 

analysis, the apex SBC identifies the SBC model. 

 

Table 8. Summary of the CEL analyses results. 

p
max
CEL          10.0 MPa 

imax
CEL         

 405.3 Pa⋅s 

dmax
CEL,CBC

 30.5 mm 

dmax
CEL,SBC

 15.1 mm 

 

4.  Discussion 

In this Section, the results of the numerical simulations presented in Section 3 are discussed and 

compared. 

The deflection time histories of the plate centre predicted by the numerical analyses presented in 

this work are shown in Figure 10, along with the experimentally measured maximum displacement. 

 

 
Figure 10. Displacement of the plate central point. 

It turns out that the model with simplified boundary conditions (SBC) underestimates the deflection 

time history of the plate centre, while the CBC models satisfactorily reproduce the experimental 

observation. To further prove this, the maximum displacement values are compared in Table 9  

considering the numerical models (dmax
Lag,CBC

, dmax
CEL,CBC

, dmax
CEL,SBC

) and the experimental observation 

(dmax
Exp

). The error affecting the ith numerical prediction is computed according to Equation 5, where 

the apex i identifies the numerical analysis of interest, i.e., i can assume the values Lag,CBC, 

CEL,CBC and CEL,SBC. 
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Errori=
dmax

i
-dmax

Exp         

dmax
Exp         

⋅100% 
(5) 

 

Table 9. Comparison of the maximum deflection of the plate centre. 

  Error 

dmax
Exp         

 34.7 mm [12] ~ 

dmax
Lag,CBC

 34.3 mm -1.2% 

dmax
CEL,CBC

 30.5 mm -12.1% 

dmax
CEL,SBC

 15.1 mm -56.5% 

 

The results shown in Table 9 confirm that the CBC models satisfactorily reproduce the experimentally 

observed maximum deflection of the plate centre, while the SBC setup strongly underestimates this 

value. This result suggests that accurately modelling the boundary conditions of the blast loaded 

structure is paramount to satisfactorily reproduce the real scenario. 

Moreover, the Lagrangian analysis seems to provide more accurate results than the fully coupled 

Eulerian-Lagrangian approach. This result needs a deeper investigation to be explained, since the work 

in [12] labels the scenario assessed in the case study as near-field explosion (or close-range explosion), 

which usually requires the CEL approach for an accurate characterisation of the underlying physical 

phenomena involved. The near-field or far-field nature of an explosive scenario is determined by the 

value of the radial expansion of the shock front at the plate location (r ̅plate), that is computed according 

to Equation 6: 

 

r ̅plate=
standoff distance

charge radius
 

(6) 

 

Typically, close-range effects are relevant for 1<r ̅plate≤10, while far-field conditions can be safely 

assumed for explosions characterised by r ̅plate>10 [38]. The former case requires employing fully 

coupled Eulerian-Lagrangian analysis to satisfactorily reproduce the experimental observations, while 

the latter can be safely simulated employing the pure Lagrangian approach [20]. In the case study 

presented in this work, considering the explosive charge as a sphere of TNT with density 1610 kg⋅m-3 

[39], the radial expansion of the shock front at the plate location value is r ̅plate=13.7, that identifies a 

far-field scenario. Hence, the pure Lagrangian approach is suitable to simulate the explosive event and 

no improvement is expected by performing the CEL analysis. The smaller maximum deflection of the 

plate centre predicted using the fully coupled approach is determined by the lower peak effective 

pressure and impulse imparted to the blast loaded structure than the values determined by the pure 

Lagrangian approach, as shown in Figure 11 and Figure 12, respectively. 
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Figure 11. Effective pressure exerted on the plate central point in the analyses presented in Section 3. 

 

 
Figure 12. Impulse exerted on the plate central point in the analyses presented in Section 3. 

It is worth highlighting that the peak effective pressure and the impulse imparted to the plate were not 

experimentally measured in the work in [12], hence no further considerations can be given about the 

corresponding numerical predictions presented herein.  
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5.  Conclusions 

In this work, two approaches to simulate blast loaded composite plates have been presented and 

compared. In particular, the pure Lagrangian approach and a hybrid CEL approach have been 

described in Section 2 and employed in the case study presented in Section 3. Moreover, the influence 

of the technique employed to model the plate boundary conditions has been investigated. 

As discussed in Section 4, it turns out that explicitly modelling the boundary conditions of the blast 

loaded plate is paramount to satisfactorily reproduce the experimental observations. Moreover, 

considering the model characterised by the accurate reproduction of the boundary conditions, the pure 

Lagrangian approach appears to give slightly more satisfactory results than the predictions provided 

by the CEL analysis. This may seem unexpected at first sight, but it has been shown that the scenario 

assessed in the case study presented in Section 3 is a far-field explosion, thus no improvement is 

expected by employing the CEL approach. The smaller maximum deflection of the plate central point 

predicted by the CEL analysis is caused by the lower peak effective pressure and impulse imparted to 

the plate than the values determined by the pure Lagrangian approach. No further considerations have 

been reported about this dissimilarity, since experimental observations of the pressure loading are not 

available. More accurate numerical models might be set up to get a deeper insight into the explosive 

event presented in the case study, but this requires to have (i) experimental data of the pressure time 

history imparted to the plate, in order to set a more accurate TNT equivalent weight than the one 

assumed in this work, and (ii) the stress-strain curve of the foam material placed between the 

composite plate and the steel frame.  
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