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a b s t r a c t

Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the
solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast
transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the
uncertainties associated with model parameters, may impact the reliability of the predictions on short-
lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the
numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-
varying conditions, depending on the number of modes and on the time discretization. The definition
of this upper bound allows introducing a methodology to a priori bound the numerical error on short-
lived volatile fission product retention.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Short-lived volatile fission products greatly contribute to the
equivalent dose potentially connected to nuclear accidental sce-
narios. As a consequence, fission product release predictions must
consider the natural radioactive decay of these isotopes [1]. Pre-
dicting the release of radioactive volatile fission products from
nuclear fuel is crucial in assessing radiological consequences of
design-basis accidents, especially when dealing with short-lived
fission products and evaluating the so-called source term for
reactor safety analysis and licensing procedures [2,3]. The first step
in modelling the release of radioactive volatile fission products
requires the solution of a diffusion-decay partial differential
equation on the scale of fuel grain [1,4]. Several fuel performance
codes tackle the intra-granular gas behaviour problem through
spectral diffusion algorithms (e.g., TRANSURANUS [5], BISON [6]).
The development and verification of the PolyPole algorithm [7,8]
demonstrated the effectiveness of spectral diffusion algorithms
applied to the simulation of fission gas behaviour during fast
transients in the frame of BISON code development [9].

The error introduced by the numerical discretization of the
by Elsevier Korea LLC. This is an
governing diffusion-decay equation, in general, must not overcome
the uncertainties associated with model parameters. In nuclear
safety analysis numerical error may impact the reliability of the
predictions on radioactive volatile fission product release from
nuclear fuel with the risk of jeopardising the licensing procedure.
This work investigates the error introduced by the spectral diffu-
sion algorithm adopted in the grain-scale code SCIANTIX [10] to
compute both stable fission gas and radioactive volatile fission
product release, as for the work of Hermansson and Massih [11]
who investigated the accuracy of the FORMAS spectral diffusion
algorithm considering only stable fission gas release [12,13]. The
goal of this work is hence to propose a methodology to select the
proper a priori condition to apply the presented spectral diffusion
algorithm, being able to limit the numerical error.

In Section 2, we apply the spectrum-temporal discretization to
the non-dimensional diffusion-decay equation. The non-
dimensional description allows considering stable or radioactive
fission products, different model parameters (e.g., the diffusion
coefficient and the grain radius) and different operative conditions
(e.g., temperature and fission rate) with a single analysis. The nu-
merical solution is computed, and a quasi-analytical solution is
provided as reference for the error analysis. In Section 3, we define
an upper bound on the numerical error and we develop the error
analysis for stable and radioactive fission products, during constant
and time-varying conditions. In Section 4, we provide a
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Nomenclature

D (m2 s�1) Single gas atom intra-granular diffusivity
l (s�1) Decay rate of the fission product
S (at m�3s�1) Production rate of the fission product
y (at fiss�1) Fission product yield
r (/) Non-dimensional radial coordinate in the

spherical grain
t (/) Non-dimensional temporal coordinate
f (/) Non-dimensional intra-granular fission product

concentration
a (m) Radius of the ideal spherical fuel grain
T (K) Fuel temperature
F (fiss m�3 s�1) Fission rate density
jn (/) n-th normalized eigenfunction of the spherical

Laplace operator
qn (/) n-th eigenvalue of the spherical Laplace operator
xn (/) n-th temporal coefficient
dnj (/) Kronecker delta
m (/) Non-dimensional group of the diffusion-decay

equation

f (/) Spatial average of the non-dimensional intra-
granular fission product concentration

fA (/) Quasi-analytical solution for the spatial average of
the non-dimensional concentration

fN (/) Numerical solution for the spatial average of the
non-dimensional concentration

err (/) Numerical error between the numerical and the
quasi-analytic solution for the spatial average of the
concentration

ε (/) Upper bound on the numerical error between the
numerical and the quasi-analytic solution for the
spatial average of the concentration

εDt (/) Temporal contribution to the upper bound on the
numerical error

εM (/) Modal contribution to the upper bound on the
numerical errorbε (/) Polynomial fit of the upper bound on the
numerical error
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methodology for the a priori choice of the time step and mode
number to be used in the presented spectral diffusion algorithm,
according to a demanded upper bound on the numerical error.
Lastly, Appendices A, B and C showcase the application and verifi-
cation of the proposed methodology in selecting the time step and
mode number, according to a demanded upper bound on the nu-
merical error.
2. Spectral algorithm

Diffusion-decay models allow for the description of intra-
granular behaviour of volatile fission products in nuclear oxide
fuel [1,14e18]. These models describe the fission product diffusion
in a spherical homogenous fuel grain, of radius a (m), at uniform
temperature T ðKÞ and experiencing a uniform fission rate density F
(fiss m�3 s�1). We consider the following partial differential
equation:

vCðr; tÞ
vt

¼DðF; TÞV2C
�
r; t
�
� lC

�
r; t
�
þ SðFÞ; r2 ½0; aÞ; t > 0

(1)

inwhich the variables depend on the time t (s) and radial position r
(m). Eq. (1) is formulated with the initial condition Cðr;0Þ ¼ C0 on

r2½0; aÞ, boundary conditions Cða; tÞ ¼ 0 and
�
vCðr;tÞ

vr

�
r¼0

¼ 0 for

t >0. C(at m�3) is the intra-granular fission product concentration,
D (m2 s�1) is the diffusivity [19], l (s�1) is the decay rate, S ¼ yF (at
m�3s�1) is the production rate of the fission product, being y (at
fiss�1) the fission yield. Besides, in Eq. (1) we exploit the weak
variation of the diffusivity D on the radial position r in the fuel grain
to assume that � V$ð � DðF;TÞ VCðr;tÞÞ ¼ DðF;TÞV2Cðr;tÞ. Wewrite
the non-dimensional version of Eq. (1) by posing r ¼ r= a, t ¼ tD=
a2, f ¼ CD=a2S and m ¼ la2=D to get

vfðr; tÞ
vt

¼ ~V
2
fðr; tÞ�mðtÞfðr; tÞþ 1; r2½0;1Þ; t > 0 (2)

It is worth clarifying that, among possible normalizations, the
proposed one is well defined when stable fission products are
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considered, i.e., l ¼ 0, but requires minor modifications to account
for out-of-pile conditions, as explained in Appendix B. The initial
condition for Eq. (1) translates into f0 ¼ C0D=a2S and the non-

dimensional radial spherical Laplacian is noted as ~V
2. Then we

apply the following modal expansion of the concentration up to the
NM-th term

fðr; tÞ¼
XNM

n¼1

xnðtÞjnðrÞ (3)

with the chosen spatial modes jnðrÞ being the normalized eigen-

functions of the spherical Laplace operator, jnðrÞ ¼ 1ffiffiffiffiffi
2p

p sinðqnrÞ
r , qn ¼

np, the unknown of the problem becomes the set of time co-
efficients fxnðtÞg. The latter are the solution of the problem:

XNM

n¼1

dxnðtÞ
dt

dnj ¼ �
XNM

n¼1

xnðtÞ
�
q2n þ mðtÞ

�
dnj þ

�
jj
��1	 (4)

where
�
jn
��jj
	 ¼ R

U

jnjjdU ¼ dnj is the Kronecker delta and
�
jj
��1	 ¼

ð�1Þjþ1

j

ffiffiffi
8
p

q
. For every time coefficient the following ordinary differ-

ential equation is hence to be solved:

dxjðtÞ
dt

¼ �LjðtÞxjðtÞ þ
�
jj
��1	 (5)

where the mode eigenvalue is LjðtÞ ¼ q2j þ mðtÞ and the initial

condition comes from the projection xjð0Þ ¼ �jj
��f0
	
:

We briefly sketch the numerical scheme adopted in SCIANTIX
[10] to solve Eq. (5). The time-interval ð0; tf Þ is divided in NDt time-
steps, and by exploiting the backward Euler scheme we compute,
for each time-step:

xkþ1
j;N ¼

xkj;N þ �jj
��1	Dt

1þLkþ1
j Dt

(6)

where the superscript k indicates the discrete time tk ¼ kDt. For
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every time-step, the temporal coefficients xkþ1
j;N are evaluated and

the spatial average of the concentration

0@�f ¼ 3
4p
PN
j¼1

xj
�
jj
��1	
1A is

reconstructed. When the temporal coefficients are given by Eq. (6),
we mark the spatial average of the concentration f with the
subscript N:

f
kþ1
N ∶ ¼ 3

4p

XNM

j¼1

xkj;N þ �jj
��1	Dt

1þLkþ1
j Dt

�
jj
��1	 (7)

Since the temporal coefficients xjðtÞ are computed by exploiting
a numerical discretization scheme (Eq. (6)), we refer to Eq. (7) as
the numerical solution (of our interest).

To carry out the next error analysis, and hence verify our nu-
merical solution (Eq. (7)), we introduce a quasi-analytical formu-
lation for the spatial average of the concentration f, labelled with
the subscript A, as:

f
kþ1
A ∶ ¼ 3

4p

XCNM

j¼1

 �
jj
��1	

Lkþ1
j

�
1� exp

�
�Lkþ1

j
Dt
M

��

þxkj;A exp
�
�Lkþ1

j
Dt
M

�!�
jj
��1	 (8)

Constant conditions are assumed within each time-step. We
refer to Eq. (8) as the quasi-analytic solution, in contrast with the
numerical solution (Eq. (7)). The main difference with the latter

formulation lies in the temporal coefficient xkþ1
j;A , evaluated at each

time step from the exact solution of Eq. (5), with an incremental
approach. Besides, Eq. (8) is obtained by using a higher number of
time-stepsNDt (by a factor ofM[1) and a higher number of modes
NM (by a factor of C[1) with respect to Eq. (7), to increase its
accuracy.

The presented error analysis exploits a quasi-analytic reference
solution that is in line with the reference solution used as reference
f
kþ1
A � f

kþ1
N ¼ 3

4p

XCNM

j¼1

xkþ1
j;A

�
jj
��1	� 3

4p

XNM

j¼1

xkþ1
j;N

�
jj
��1	 ¼ 3

4p

XNM

j¼1

�
xkþ1
j;A � xkþ1

j;N

��
jj
��1	þ XCNM

j¼NMþ1

xkþ1
j;A

�
jj
��1	 (12)
by Lassmann and Benk for the verification of URGAS and FORMAS
[20], namely, the quasi-exact ANS-5.4 algorithm [21]. In the current
fuel performance codes, the spectral diffusion algorithms represent
the state-of-the-art approach to solve the intra-granular stable
fission gas diffusion. To provide a straightforward application of our
work, we tailored our error bound methodology on the presented
spectral diffusion algorithm, extended to include the radioactive
decay. Different error analysis, e.g., based on the global spectral
analysis [22e24], are of interest for future developments, towards
the innovation of the presented algorithm.
3. Error analysis

The goal of this section is to analyse the error introduced by the
presented spectral diffusion algorithm adopting the backward
Euler time discretization and to provide an upper bound on it.

We propose the following definition for the error between the
numerical solution (Eq. (7)) and the quasi-analytic solution (Eq. (8)):
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errðNDt; NM;mÞ∶¼max
�����fAðtÞ � fNðtÞ

fAðtÞ

����� (9)

where NDt and NM are the number of time-steps and the number of
modes used in the computation of the numerical solution (Eq. (7)).
In the definition of the error, we assume thatM and C, introduced in
Eq. (8), are high enough to have a negligible impact on the error
itself.

The diffusion-decay equation (Eq. (2)) is numerically solved on
the interval, t2ð0; teÞ, being te the time required from the con-
centration f to reach equilibrium. In constant conditions, tez 5

p2þm,

or tez 5
Dp2

a2
þl
, in dimensional quantities.

It is possible to split the error errðNDt; NM;mÞ defined in Eq. (9)
in two contributions, as errðNDt; NM ;mÞ ¼ εDtðNDt; NM ;mÞ þ εMðNDt;

NM ;mÞ. In Section 2, we introduced the numerical solution (Eq. (7))
and the quasi-analytical solution (Eq. (8)) of interest in the current
error analysis. We recall here below the previous definitions:

f
kþ1
N ∶ ¼ 3

4p

XNM

j¼1

xkþ1
j;N

�
jj
��1	 (10)

constitutes the numerical solution (Eq. (7)), with the temporal co-

efficients xkþ1
j;N calculated according to Eq. (6). The quasi-analytic

solution (Eq. (8)) is:

f
kþ1
A ∶ ¼ 3

4p

XCNM

j¼1

xkþ1
j;A

�
jj
��1	 (11)

where the temporal coefficients xkþ1
j;A come from the quasi-analytic

solution of Eq. (5).
It is possible to split the aforementioned error errðNDt; NM ;mÞ

(Eq. (9)) by considering that:
Then, we define the temporal contribution to the error as

εDtðNDt; NM;mÞ∶ ¼
PNM

j¼1

�
xkþ1
j;A � xkþ1

j;N

��
jj
��1	PCNM

j¼1 xkþ1
j;A

�
jj
��1	 (13)

and the modal contribution as

εMðNDt; NM;mÞ∶ ¼
PCNM

j¼NMþ1x
kþ1
j;A

�
jj
��1	PCNM

j¼1 xkþ1
j;A

�
jj
��1	 (14)

Afterwards, we write:

jerrðNDt; NM;mÞj¼ jεDtðNDt; NM;mÞþ εMðNDt; NM;mÞ
� j� jεDtðNDt; NM;mÞj þ jεMðNDt; NM;mÞj (15)

in which we exploited the triangular inequality to define an upper
bound on the error, namely, the right-hand side of the inequality,



Table 1
Values of the adopted parameters in the exemplative error analysis regarding the stable fission products, the long-lived fission product 134Cs and the short-lived fission product
131I.

Nuclide D (m2s�1) a (mm) l (s�1) m (/) te (s) te ¼ teD=a2 (/)

Stable gas 10e20 5 0 0 1.3 � 109 5.1 � 10-1
134Cs 10e20 5 1.064 � 10�8 26.6 3.4 � 108 2.2 � 10-2
131I 10e20 5 9.98 � 10�7 2495.0 5.0 � 106 2.4 � 10-4
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jεDtðNDt; NM ;mÞj þ jεMðNDt; NM ;mÞj.
The temporal contribution to the error jεDtðNDt; NM ;mÞj (Eq.

(13)) is the difference between quasi-analytical and numerical so-
lutions, computed with the same number of modes NM , hence
representing the error due to time discretization. The second
contribution to the error, jεMðNDt; NM ;mÞj (Eq. (14)), is the
remainder of the modal expansion considered in the numerical
solution, truncated at the NM-term. Thanks to the triangular
inequality, the right-hand side of Eq. (15) provides an upper bound
on the error introduced by the spectral diffusion algorithm. From
now on, we indicate this upper bound as:

εðNDt; NM;mÞ∶¼ jεDtðNDt; NM;mÞj þ jεMðNDt; NM;mÞj (16)

The upper bound on the error, defined with Eq. (16), varies by
changing the spectrum-temporal discretization parameters
ðNDt; NMÞ and according to the value of m. The study of the
behaviour of εðNDt; NM ;mÞ with varying NDt; NM and m configures
our next error analyses. Given the definition m ¼ la2= D, we
distinguish the m ¼ 0 case (stable fission products) from the m> 0
case (radioactive fission products). Indeed:

� Stable fission products are characterized by m ¼ 0, regardless of
a and D. The error map εðNDt; NM ;m¼ 0Þ does not depend on a
and D, and a single error analysis applies to different reactor
conditions.

� Radioactive fission products are characterized by m> 0. There-
fore, depending on its value, we observe different behaviours of
εðNDt; NM ;mÞ, according to the considered reactor condition (i.e.,
the value of m).

We perform, in Section 3.1, the error analysis in constant con-
ditions (m¼ m0Þ and, in Section 3.2, in time-varying conditions (m ¼
mðtÞ).
3.1. Constant conditions

We showcase illustrative error analyses performed in constant
conditions. We consider stable fission products, 131I (short-lived
fission product) and 134Cs (long-lived fission product). Respectively,
m takes the values m ¼ 0; mz26:6 and mz2495:0 (numerical values
of grain radius a and diffusivity D come from exemplative average
values in an LWR pellet and are reported in Table 1).

The error analysis is performed as follows:

1. For a given value of m, we compute several times the numerical
solution (Eq. (7)) with ðNDt;NMÞ that range from (10, 10) up to
(1000,100). The value of m is kept constant during the interval ð0;
teÞ.

2. Similarly, the quasi-analytical solution (Eq. (8)) is computed,
with M ¼ C ¼ 10:

3. We evaluate the temporal contribution to the error
jεDtðNDt; NM ;mÞj (Eq. (13)), the modal contribution to the
errorjεMðNDt; NM ;mÞj (Eq. (14)) and the upper bound εðNDt; NM ;

mÞ (Eq. (16)).
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We restrict our error analysis up to a mode number NM ¼ 100
and a time-step number NDt ¼ 1000 to ensure reasonable CPU
times and memory use. In Fig. 1, we show εðNDt; NM ;mÞ,
jεDtðNDt; NM ;mÞj and jεMðNDt; NM ;mÞj, for the stable (Fig. 1a) and
radioactive volatile fission products (Fig. 1b and c) in Table 1.

In the first place, we briefly discuss the main results of error
analysis. Namely, the behaviour of the upper bound εðNDt; NM ;mÞ,
with respect to the number of time steps NDt, the number of modes
NM and m ¼ la2=D, the parameter which condenses the informa-
tion about the described physical phenomenon.

The computed upper bounds εðNDt; NM ;mÞ are shown on the
right side of Fig. 1, for the cases m ¼ 0 (Fig. 1a), m ¼ 26:6 (Fig. 1b) and
m ¼ 2495:0 (Fig. 1c). By observing εðNDt; NM ;mÞ for these three
cases, we notice that εðNDt; NM ;mÞ decreases with increasing NDt

and NM , as expected. The major difference regards the rapidity (i.e.,
the convergence rate) with which the upper bounds εðNDt; NM ;mÞ
decrease by increasing the number of modes NM in contrast to the
reduction of εðNDt; NM ;mÞ with increasing number of time steps
NDt (see jεDtðNDt; NM ;mÞj in Fig. 1a, 1b, c).

The methodology that we provide in Section 4 allows a more
precise evaluation of the behaviour of εðNDt; NM ;mÞ, in constant
conditions, for a suitable range of values of m. We limit here the
discussion by noting that, for a reasonable number of employed
modes (NMz20÷30 modes) the major contribution to εðNDt;NM ;mÞ
is represented by the temporal contribution jεDtðNDt; NM ;mÞ j,
rather than the modal one. This translates in the recommendation
that is convenient to increase the number of time steps first, and
subsequently the number of modes, to improve the accuracy of the
spectral diffusion algorithm.

The behaviour of the contributions jεDtðNDt; NM ;mÞ j and
jεMðNDt; NM ;mÞ j, shown on the left and the middle of Fig. 1,
respectively, suffers from numerical artefacts that are noticeable
only when these contributes are separately assessed. For this
reason, they are not of concern in the present discussion. Never-
theless, we report them for completeness:

� The decrease of jεDtðNDt; NM ;mÞ j|, at a fixed number of time
steps NDtz1000, by reducing NM (Fig. 1a and 1b).

� The increase of jεMðNDt; NM ;mÞ j|, at a fixed number of modes
NDtz1000, by increasing NM (Fig. 1a and 1b, ac).

We indicate the aforementioned trends of jεDtðNDt; NM ;mÞ j| and
jεMðNDt; NM ;mÞ j| as artefact because their nature is merely nu-
merical. Indeed, they are ascribable to the definitions given in Eq.
(13) and Eq. (14), and in their turn to the behaviour of term expð �
LnDtÞ, and its first-order Taylor expansion 1

1þLnDt
, at large time

step size Dt and small values of m.
3.2. Random-varying conditions

We show the results of the error analysis performed in time-
varying conditions, highlighting the similarities and differences
with respect to the case of constant conditions. To account for time-
varying conditions, we solve Eq. (2) with a time-dependent m ¼
mðtÞ. In particular, we carry out the analysis exploiting the random



Fig. 1. Results of the error analysis in constant conditions. Each horizontal set of figures shows the temporal contribution to the error |εDtðNDt ; NM ;mÞj on the left, the modal
contribution to the error εMðNDt ; NM ;mÞ in the middle, and the upper bound εðNDt ; NM ;mÞ on the right, for a given m.
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or stochastic-testing approach [24,25]. Namely, we iterate Niter ¼
100 times the following procedure:

1. We sample an array for mðtÞ, with values uniformly distributed
between 0 and mmax ¼ 109. The value of mmax is arbitrarily set.

2. As previously done (Section 3.1), we compute the numerical
solution fN (Eq. (7)) and the quasi-analytical solution fA (Eq.
(8)).1
1 When assessing time-varying conditions, the numerical solution and quasi-
analytical solution are computed on the interval ð0; teÞ, with te ¼ 5

p2þmmax=2
. The

value mmax=2 represents the midpoint of the interval (0, mmax). The midpoint must
be considered because the solution of the diffusion-decay problem (Eq. (2)), in
which the decay rate varies between two values (e.g., ma and mb), can be approxi-
mated by the solution of the same diffusion-decay problem with an equivalent,
constant, decay rate equal to the midpoint of the interval ðma; mbÞ. This equivalence
is shown below, in Fig. 4.

1199
3. We evaluate
��
εDt;iðNDt; NM ;mÞ �� (Eq. (13)), ��εM;iðNDt; NM ;mÞ��

(Eq. (14)) and εiðNDt; NM ;mÞ (Eq. (16)), where i refers to the i-th
iteration.

To obtain an upper bound that is representative for time-varying
conditions, we eventually average

��
εDt;iðNDt; NM ;mÞ��, ��εM;iðNDt; NM ;

mÞ�� and εiðNDt; NM ;mÞ over the Niter iterations:

hjεDtjiðNDt; NM;mÞ ¼ 1
Niter

XNiter

i¼1

��
εDt;iðNDt; NM;mÞ�� (17)

hjεMjiðNDt; NM;mÞ ¼ 1
Niter

XNiter

i¼1

��
εM;iðNDt; NM;mÞ�� (18)

hεiðNDt; NM;mÞ ¼ 1
Niter

XNiter

i¼1

εiðNDt; NM;mÞ (19)
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In Fig. 2 we show the error analysis, performed in time-varying
conditions. We compare the latter results with the error analysis
performed in constant conditions (as in Section 3.1) with m ¼ 5�
108, the midpoint of [0,109], shown in Fig. 3, to clarify some key
differences between constant and time-varying conditions.

We compare the error analysis in time-varying conditions
(Fig. 2) with the one in constant conditions (Fig. 3). We recall that
the two analyses can be compared each other because of the
equivalence between the solution of the diffusion-decay problem
(Eq. (2)) in time-varying conditions with the solution of the same
problem, in constant conditions, provided that m is set to the proper
midpoint.

Concerning the temporal contributions to the error, hjεDtji
(Fig. 2) and jεDtj (Fig. 3), we observe an important increase in hjεDtji,
due to the steep time variation of m. Conversely, the modal contri-
butions to the error, hjεM ji (Fig. 2) and jεM j (Fig. 3) are unaffected by
the time variation of m. Hence, the increase in the total error ε is
only caused by the temporal contribution hjεDtji, and not by the
modal one hjεM ji. We deduce that when we apply the presented
spectral diffusion algorithm to a non-stationary diffusion-decay
problem, it is highly recommended to increase the number of time
steps NDt to reduce hjεDtji, and in turn to reduce hεi.

We conclude this section with a visual representation (Fig. 4) of
the equivalence exploited before. Namely, that the solution of the
diffusion-decay problem (Eq. (2)), in which the decay rate varies
between two values (e.g., ma and mb), can be approximated by the
solution of the same diffusion-decay problem with an equivalent,
constant, decay rate set to the midpoint of the interval ðma; mbÞ.

We compute the numerical solution fN (Eq. (7)) of the diffusion-
decay problem (Eq. (2)) with a time-varying mðtÞ. The latter takes
values that are randomly sampled from a uniform distribution
between 0 and mmax ¼ 109. In particular, we compute fN (dashed
lines) by going from a “coarse” discretization (ðNDt;NMÞ � ð10; 10Þ)
to a “fine” one (ðNDt;NMÞ � ð1000; 100Þ).

By increasing the discretization parameters, fN approaches to
the red solid line, that is the numerical solution of the same
diffusion-decay problem, with constant m ¼ 5� 108, the midpoint
of [0,109]. This confirms that the solution of the diffusion-decay
problem (Eq. (2)), in which the m varies between two values (e.g.,
ma and mb), can be satisfactory approximated by the solution of the
same diffusion-decay problemwith an equivalent, constant, m equal
to the midpoint of the interval ðma; mbÞ.

4. Bounding spectrum-temporal discretization parameters

In this section, we provide a simple tool e two reference tables
e complementary to the presented spectral diffusion algorithm, to
select the spectrum-temporal discretization parameters (NDt;NM),
providing a suitable upper bound to the numerical error.

To build the tables, we compute a fit of the upper bound εðNDt;
Fig. 2. Error analysis in time-varying conditions, where mðtÞtakes values in ½0;109 �. The aver
modal contribution to the error hjεM ji(Eq. (18)) in the middle, and the average total error ε
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NM ;mÞ, for different values of m ¼ la2=D, namely for different
reactor conditions (different values of the diffusion coefficient,
different isotopes, etc.).

The fit depends on five parameters, (A, B, C, D, E) and its accuracy
is ensured from R2 � 99:1%. The fit function is:

bε ðNDt;NMÞ¼10Alog 10NDt þ B þ 10Cð log10NMÞ2 þ Dlog 10NMþE (20)

For each m, we evaluate εðNDt; NM ;mÞ (Eq. (16)), as in Section 3.1,
and we obtain A, B, C, D, E for use in Eq. (20). When considering
constant conditions, namely when a and D are constant throughout
the simulation, we obtain for A, B, C, D and E the values reported in
Table 2. Hence, these values allow the computation of the couple
(NDt;NM) that ensure to get a numerical error lower than bε ðNDt;

NMÞ, when solving the diffusion-decay equation (Eq. (1)) with the
presented spectral diffusion algorithm.

It is important to add that, when constant conditions are
assessed, we must check if the number of time steps NDt, given by
Table 2, is sufficiently large to bound the numerical error. This is a
consequence of having performed the error analysis (Section 3) on
the time interval ð0; teÞ, where te is the equilibrium time of the
diffusion-decay problem. Indeed, one must check if the time in-
terval of the desired simulation ð0; tsÞ is larger than the time in-
terval ð0; teÞ. In other words, if ts=te +1. Then:

� If tste >1, wemust correct the number of time steps NDt evaluated
from Table 2, of a factor ts=te. Therefore, the correction results in
the following number of time steps, tsteNDt, for use in the simu-
lation, to bound the numerical error.

� If ts
te <1, the number of time steps NDt computed from Table 2 is

sufficient to bound the numerical error, hence no correction is
needed.

This corrective procedure is necessary when assessing diffusion-
decay phenomena in constant conditions. Indeed, the error analysis
in constant conditions (Section 3) is performed on the interval (0;
te), that is where the transient evolves, i.e., wheremaximum error is
made, when discretizing evolutionary phenomena. Therefore,
Table 2 returns the number of time steps NDt needed to discretise
the diffusion-decay equation on the time interval (0;te). In the case
ts
te
>1, the diffusion-decay phenomenon reaches the equilibrium in a

time ðteÞ that is lower than the time of the overall time of the
simulation ðtsÞ. The consequence is that the transient phase,
happening during (0; te), is discretised with time steps that are
larger than the size required ðDt ¼ te=NDt) and the upper bound on
the numerical error is not guaranteed. The increases in the time
step number given by ts

teNDt ensure the correct discretization of the
entire diffusive phenomenon, and in particular of the transient
phase. Lastly, this corrective procedure does not apply to the next
age temporal contribution to the error hjεDt ji(Eq. (17)) is shown on the left, the average
(Eq. (19)) on the right.



Fig. 3. Error analysis in constant conditions, with m ¼ 5� 108, the midpoint of ½0; 109�. The temporal contribution to the error |εDt j (Eq. (13)) is shown on the left, the modal
contribution to the error jεN j (Eq. (14)) in the middle, and the upper bound ε (Eq. (16)) on the right.

Fig. 4. We show, as dashed lines, the numerical solutions fN (Eq. (7)) of the diffusion-decay problem (Eq. (2)), with a time-varying mðtÞ that takes values within [0,109]. Several
numerical solutions are shown, according to the adopted discretization, as explained in the text. As red solid line, we show the numerical solution of the same problem, in which a
constant m ¼ 5� 108 (the midpoint value) is used. As the discretization parameters of the numerical solution increase (that is, going towards the “fine” discretization) the solution
in time-varying conditions approaches the one in constant conditions.
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Table 3, tailored for time-varying conditions, because in principle
we cannot predict where the maximum error happens.

An applicative example of Table 2 is given in Appendix A, where
we apply the here below proposed methodology to the simulation
of one of the Baker irradiation experiments [26]. We follow these
steps:
Table 2
Reference table for constant conditions.

m A B C D E

0 �0.5028 �0.2662 �0.0397 �2.8320 1.4450
10 �0.5643 �0.1951 �0.7793 �0.2846 �0.4304
102 �0.6998 �0.0498 �0.5863 �0.2571 �0.4280
103 �0.8979 0.2502 �0.2448 �0.5961 �0.4140
104 �0.9764 0.3470 �0.1205 �0.7202 �0.4080
105 �0.9798 0.3367 �0.0841 �0.7575 �0.4062
106 �0.9797 0.3343 �0.0731 �0.7687 �0.4057
107 �0.9797 0.3340 �0.0702 �0.7716 �0.4056
108 �0.9797 0.3340 �0.0698 �0.7720 �0.4055
>108 �0.9797 0.3340 �0.0698 �0.7720 �0.4055
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1. Fix the demanded upper bound (e.g., UB ¼ 5%).

2. Estimate the constant value of m ¼ la2
D .

3. Determine the row, in Table 2, which best approximate the value
previously estimated.
Table 3
Reference table for time-varying conditions.

hmi2½0;mmax� A B C D E

[0; 10] �0.5633 �0.1979 �0.1460 �2.4400 1.3840
[0; 102] �0.4725 �0.1248 �1.1640 1.5660 �1.8260
[0; 103] �0.4705 �0.0781 �0.5503 0.3801 �1.1650
[0; 104] �0.4748 �0.0602 �0.1693 �0.5628 �0.5322
[0; 105] �0.4748 �0.0602 �0.1693 �0.5628 �0.5322
[0; 106] �0.4716 �0.0680 �0.0283 �0.9075 �0.3017
[0; 107] �0.4995 0.0052 �0.0218 �0.9272 �0.2885
[0; 108] �0.4760 �0.0540 �0.0192 �0.9300 �0.2867
[0; 109] �0.4964 �0.0015 �0.0130 �0.9450 �0.3219
[0; 1010] �0.4912 �0.0143 �0.0130 �0.9450 �0.3219
[0; 1020] �0.4874 �0.0227 �0.0130 �0.9450 �0.3219
[0; 1030] �0.4889 �0.0237 �0.0130 �0.9450 �0.3219
[0; 1040] �0.4716 �0.0581 �0.0130 �0.9450 �0.3219
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4. Choose (NDt;NM) for which bε � UB (if ts=te >1 then use NDtts
te

) and
use it in the implementation of the spectral diffusion algorithm.

We investigate the range m2½0;109� because beyond this upper
value we found that the parameters A, B, C, D, E become rather
insensitive to further increase of m. Therefore, when diffusion-
decay equation is represented by a m that exceeds 109, we recom-
mend referring to the last row of Table 2 (corresponding to m ¼
109).

Table 3 is designed for application in time-varying conditions.
For each row, we operate as in Section 3.2. Namely, when we
consider the interval [0,mmax], we carry out the error analysis with a
value of m that is randomly sampled within the considered interval.
We evaluate ε (Eq. (16)) and we obtain A, B, C, D, E for use in Eq. (17).

In time-varying conditions, that is when a and D varying
throughout the simulation, the following Table 3 is used to
compute the suitable (NDt;NM). An example of the application of
this case is given in Appendices B and C, in which we apply the
following methodology for the simulation of the VERCORS-4 out-
of-pile test and a RIA-representative experiment. The operative
procedure to apply Table 3 is the following:

1. Fix the demanded upper bound (e.g., UB ¼ 5%).

2. Compute the time-varying m ¼ la2
D and its average value hmi over

the time interval.
3. Determine the row, in Table 3, for which m2½0;mmax�
4. Choose (NDt; NM) for which bε � UB and use it in the imple-

mentation of the spectral diffusion algorithm.

For application in time-varying conditions, we extend the range
for m. Indeed, we reach a maximum value of 1040 to take properly
into account the variation of m, strongly affected by the variation of
the diffusivity D and temperature T : As before, when the estimated
m exceeds 1040, we recommend referring to the last row of Table 3,
corresponding to m2½0;1040�.

Regarding the implementation in a fission gas behaviour mod-
ule within a fuel performance code, in general such codes entail
phenomena of different nature. For example, thermo-mechanical
analysis, intra- and inter-granular bubble evolution, etc. If the
temporal discretization NDtis the same for all the involved equa-
tions, the proper time-step number NDt must be determined to
guarantee the accuracy, as well as the convergence, of all the nu-
merical solutions. This means that NDtis often imposed by other,
more binding, requirements. Hence, the mode number NM is the
only parameter which we can set to a reasonable value, according
to the radioactive volatile fission products to be modelled, and it
can be effectively estimated from Tables 2 and 3. Lastly, the
fundamental requirement of the mass conservation must be satis-
fied inside the fuel grain. For the stable fission gas case, the pure

diffusive equation
�
vCðr;tÞ

vt ¼ DðF; TÞV2Cðr; tÞþSðFÞ
�
is solved for the

average retained concentration together with the production rate

equation
�
dPðtÞ
dt ¼ SðFÞ

�
and mass conservation results in the eval-

uation of the fission gas released. Similarly, when the diffusion-
decay problem is considered (namely, Eq. (1)) the mass conserva-

tion calls for the solution of dPðtÞ
dt ¼ SðFÞ � lPðtÞ (formally identical

to Eqs. (5) and (6)) and the balance results again the amount of
radioactive fission products released from the grain.
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5. Conclusions

This work provides an extensive error analysis of the spectral
diffusion algorithm employed in the grain-scale code SCIANTIX.
The presented spectral diffusion algorithm allows the accurate
modelling the intra-granular behaviour of short-lived volatile
fission products through the numerical discretization of the
diffusion-decay equation. By defining a suitable upper bound for
the numerical error, we carry out an extensive error analysis in a
broad range of the spectrum-temporal discretization parameters
(number of time steps and modes), during constant and time-
varying conditions. The error analysis is of extreme interest in
determining the proper number of time steps andmodes to be used
in implementing the spectral diffusion algorithm in fuel perfor-
mance codes.

We observe that, especially in time-varying conditions, the
contribution to the error due to the temporal discretization is of
most concern when determining the numerical error. Conversely,
the modal contribution to the error appears to be secondary with
respect to the temporal one. This information translates in the
recommendation of increase the number of time steps first, and
subsequently the number of modes, in order to improve the accu-
racy of the spectral diffusion algorithm.

We propose a methodology to select the proper a priori condi-
tions, in terms of the number of time steps and of modes, to
implement the spectral diffusion algorithm and guarantee a correct
overestimation of the numerical error. Depending on the simula-
tion (i.e., constant or time-varying conditions), a reference table can
be used to accomplish the selection of discretizing parameters. The
validity of the methodology is assessed against three cases of
practical interest, a Baker's irradiation experiment, a VERCORS-4
experimental test and a RIA-representive experiment.

In conclusion, this work confirms that the presented spectral
diffusion algorithm is successfully able to describe diffusive phe-
nomena in transient conditions, by also considering the radioactive
behaviour. Since the formulation of the spectral diffusion algorithm
is kept simple, the implementation in fission gas behaviour mod-
ules of fuel performance codes is straightforward. Moreover, the
proposed methodology to bound the numerical error by the a priori
estimation of the number of time steps and modes, makes the
spectral diffusion algorithm more reliable in modelling the intra-
granular behaviour of radioactive volatile fission products, in con-
stant and time-varying conditions.
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Appendix A. Application of the proposed methodology: Baker
irradiation experiment

In this section, we implement the spectral diffusion algorithm,
presented in Section 2, to model a diffusive problem in stationary
conditions andwe exploit themethodology outlined in Section 4, in
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the proper setting of the spectrum-temporal discretization
parameters.

We consider one of Baker's irradiation experiment [27]. These
experiments involve UO2 samples irradiated at a fixed temperature
T (we consider the one at T ¼ 1473 K) up to a burn-up of 23 GWd/t.
We assume a constant fission rate F ¼ 1019 fiss m�3 s�1 and a
constant grain radius a ¼ 5 mm throughout the 5500 h of irradia-
tion. The diffusivity isDz 1.31� 10�19m2 s�1, according toTurnbull
formulation [19].

We remember the methodology to apply Table 2:

1. Fix the demanded upper bound (e.g., UB ¼ 5%).

2. Estimate the constant value of m ¼ la2
D .

3. Determine the row, in Table 2, which best approximate the value
previously estimated.

4. Choose (NDt;NM) for which bε � UB (if ts=te >1 then use NDtts
te

) and
use it in the implementation of the spectral diffusion algorithm.

We demand UB ¼ 3 %, for the maximum error introduced by the
spectral diffusion algorithm. Since we deal with stable gas, m ¼ 0
(see Fig. 5) and, in Table 2, we refer to the first row. By setting NDt ¼
400 and NM ¼ 40 the guaranteed bound is UBz2:72 %. There is no
need to increase NDt because the equilibrium time for the repro-
duced phenomenon is tez 2.7 � 104 h.

Fig. 5. Constant values for the temperature (black line) and m (red line) used for the
application of Table 2 in constant conditions.

Therefore, by solving the diffusion-decay problem (Eq. (1)) for
stable fission gas (l ¼ 0) with NDt ¼ 400 and NM ¼ 40, the error
introduced by the spectral diffusion algorithm is below the
demanded upper bound (UB ¼ 3 %Þ.

To verify the application of Table 2, we solve the (dimensional)
diffusion-decay problem (Eq. (1)) and compute the quasi-analytical
and the numerical solution for the concentration CðtÞ. The
maximum error obtained, according to the definition given by Eq.
(9), is errz1:31 %, below the demanded bound.

Appendix B. Application of the proposed methodology:
VERCORS-4

The VERCORS program encompasses six out-of-pile tests on UO2
samples. It is devoted to the assessment of the release of radioactive
fission products from PWR fuel samples, during temperature
transients representative of LOCA scenarios [28e30]. In VERCORS-
4, three re-irradiated fuel pellets, together with the original clad-
ding, are placed in a furnace. The pellets undergo a temperature
transient and on-line fission product release measurements are
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accomplished [28]. It is important to consider re-irradiated pellets
because of the rebuilding of the short-lived fission product in-
ventory, at both intra- and inter-granular level.

We implement the spectral diffusion algorithm presented in
Section 2 and we reproduce the intra-granular behaviour of
radioactive volatile fission products, according to Eq. (1), during the
VERCORS-4 test. To select (NDt;NM) we apply Table 3, by requesting
to commit a certain numerical error.

As VERCORS-4 is an annealing test, the fission rate is F ¼ 0 fiss
m�3 s�1, as well as the source term SðFÞ in the diffusion-decay
equation (Eq. (1)). Even if we cannot set f ¼ CD=a2S and comply
with the dimensionless analysis developed in Section 2 for SðFÞs0,
the results of the previous dimensionless error analysis, and ulti-
mately the reference tables (Tables 2 and 3), are still valid. In the
case of a null source term, togetherwith a finite initial condition Cðr;
0Þ ¼ C0, the diffusion-decay equation is:

vCðr; tÞ
vt

¼DðF; TÞV2C
�
r; t
�
� lC

�
r; t
�
; r2 ½0; aÞ; t > 0 (21)

The non-dimensional equation is again obtained by posing r ¼
r=a, t ¼ tD=a2, f ¼ CD=a2C0 and m ¼ la2=D. The initial condition is
f0 ¼ D=a2. The resulting equation is:

vfðr; tÞ
vt

¼ ~V
2
fðr; tÞ�mðtÞfðr; tÞ; r2½0;1Þ; t > 0 (22)

Proceeding as in Section 2, we come up with the following
formulation for the numerical solution (Eq. (7)):

f
kþ1
N ¼ 3

4p

XNM

n¼1

xkn;Nhjnj1i
1þLkþ1

n Dt
(23)

while for the quasi-analytical solution (Eq. (8)) we get:

f
kþ1
A ¼ 3

4p

XCNM

n¼1

xkn;A exp
�
�Lkþ1

n
Dt
M

�
hjnj1i (24)

The last two equations, for fkþ1
N and f

kþ1
A , differ from Eq. (7) and

Eq. (8) in the only lack of one term, namely, the one due to the
production rate by the source term. In the end, the latter does not
affect the results of the error analysis previously developed (Section
3). The definition of the upper bound (Eq. (16)) remain valid and the
reference tables (Tables 2 and 3) are still appliable to Eq. (21).

We repeat here the methodology for the application of Table 3:

1. Fix the demanded upper bound (e.g., UB ¼ 5%).

2. Compute the time-varying m ¼ la2
D and its average value hmi over

the time interval.
3. Determine the row, in Table 3, for which m2½0;mmax�
4. Choose (NDt; NM) for which bε � UB and use it in the imple-

mentation of the spectral diffusion algorithm.

The determined couple (NDt; NM) therefore ensures that the
numerical error introduced by the spectral diffusion algorithm is
below the demanded upper bound. As an example, we only
consider the radioactive volatile fission product 131I, with decay
rate l ¼ 9:98� 10�7s�1. We select an upper bound on the error
UB ¼ 3%. Then, we recover the behaviour of the intra-granular
diffusivity D from the Turnbull model [19] and the grain radius a
behaviour from the Ainscough model [31].

We compute the time-varying m ¼ la2=D and its average value
hmi ¼ 1:1� 1035 (Fig. 6). Since the average belongs to the interval
½0;1040�, we refer to the last row of Table 3. We choose NDt ¼ 1368
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and NM ¼ 40. From Table 3 we get an upper bound bεz2:71 %.
Namely, by solving the diffusion-decay problem (Eq. (1)) for 131I,
with NDt ¼ 1368 and NM ¼ 40, the error introduced by the spectral
diffusion algorithm is below the demanded upper bound (UB ¼ 3%Þ.

To verify the latter conclusion, we solve the (dimensional)
diffusion-decay problem (Eq. (1)) for 131I and compute the quasi-
analytical and the numerical solution for the iodine concentration
CðtÞ. We evaluate the maximum numerical error according to Eq.
(9) and we get errz1:46 %, which is below the demanded error
bound, UB ¼ 3%, as guaranteed by the provided methodology.

Fig. 6. Temperature transient (solid black line) imposed to UO2 samples in VERCORS-4
test, used as input in the simulation. The time-varying m is shown as a red solid line
while its average, used in Table 3, is the red dashed line.

Appendix C. Application of the proposed methodology: RIA

As far as the safety analysis is concerned, we consider an
experiment that is representative of a Reactivity-Initiated Accident
(RIA), a design basis accident for light water reactors [9]. The RIA
scenario involves a fast increase of the reactor fission rate, power
and temperature during a short period of time, typically tens of
millisecond [32,33]. For the application of our error bound meth-
odology, it is an exemplificative case of great interest because the
intra-granular concentration of the gaseous and volatile fission
products significantly varies in a short amount of time and a robust
numerical algorithm is required to follow such evolution. The main
scope of this section is hence to verify our methodology against a
case inwhich the temporal evolution develops over a short amount
of time, nevertheless we highlight that a complete safety analysis of
the nuclear fuel behaviour in RIA conditions is out of the scope.

We consider the CABRI REP-Na5 experiment in which a
Gaussian-type power pulse injects 451 J g�1 in a rodlet of UO2/Zr-4
irradiated to 64 GWd tHM�1 [31]. Like the previous VERCORS-4 case
we use the spectral diffusion algorithm presented in Section 2 to
reproduce the intra-granular behaviour of a radioactive volatile
fission product. During fast and significant temperature transient
several phenomena impact the fission product diffusivity. Since the
basis scope of the present analysis is to purely assess the numerical
accuracy of our algorithm, we exploit the same models for diffu-
sivity D and grain radius a models [19,30] that we exploited in the
previous section (Appendix B).

The expressions for fkþ1
N and f

kþ1
A are given by Eq. (7) and Eq.

(8). We consider the short-lived gaseous fission product 133Xe, with
decay rate l ¼ 1:53� 10�6 s�1. We evaluate the time-varying m ¼
la2=D and its average value hmi ¼ 4:24(Fig. 7). From Table 3, we
choose NDt ¼ 3010 and NM ¼ 40 for an upper bound bεz0:82%. In
conclusion, by solving the diffusion-decay problem (Eq. (1)) for
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133Xe, with NDt ¼ 3010 and NM ¼ 40, the error introduced by the
spectral diffusion algorithm is below 0.82% and the demanded
upper bound can be set to UB ¼ 1%.

To verify the methodology, we solve the (dimensional)
diffusion-decay problem (Eq. (1)) for the current isotope of interest
and compute the quasi-analytical and the numerical solution for
CðtÞ. We evaluate the maximum numerical error according to Eq.
(9) and we get errz0:00012%, which is well below the demanded
error bound, UB ¼ 1%, as guaranteed by the provided methodology.

Fig. 7. Time-varying m(black line) and average value (red line) for the tested transient.
The evolution of mmirrors the behaviour of the reproduced RIA case. In particular, the
sharp initial variation reflects the strong increase of the production rate typical of this
accidental scenario.
Appendix D. Verification against the analytical solution at
equilibrium

In stationary condition, the diffusion-decay equation (Eq. (1) or
Eq. (2), equivalently) approaches to an equilibrium time-
independent value. This is true when t � tez 5

Dp2

a2
þl

or

t � tez 5
p2þm. Since the equilibrium value of the non-dimensional

concentration is a function only of m, we have the opportunity to
verify the numerical solution against an exact analytical formula.
Given the non-dimensional problem, from the quasi-analytical
solution fA (Eq. (8)) one can obtain an exact formula for the equi-
librium value of f, namely

feq¼
1
m
� 3

m
3
2

 
coth

ffiffiffi
m

p � 1ffiffiffi
m

p
!

(25)

which only depends on the value of m. In a similar manner to the
previous error analysis, here we show the soundness of the nu-
merical solution fN (Eq. (7)) obtained by the presented spectral
diffusion algorithm. Since in this section we take as reference so-
lution an exact value both time and mode-independent, our figure
of merit is the relative error at exhausted transient

εðNDt; NM;mÞ∶¼feq � fNðt � teÞ
feq

(26)

This error depends on the number of time-steps NDt and modes
NM used in the computation of the numerical solution, and on the
value of m. In Fig. 8 we show the result of an error analysis carried
out for m ¼ 26:6 (a representative case for a131I isotope, short-lived
volatile fission products, in a LWR nuclear fuel in stationary
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conditions as reported in Table 1).
The error behaves as expected with respect to NDt and NM, i.e.,

decreases with their increasing. For sake of brevity, we do not
repeat the same analysis for other values of m since the goal here is
to assess the numerical solution against an exact formula for the
average concentration (Eq. (25)) and the slight increase of the error
with the increase of m is subjected to the same conclusions drawn in
Section 3.1

Fig. 8. Behaviour of the relative error on the numerical solution (Eq. (7)) in stationary
conditions at exhausted transient, against the analytical equilibrium formula (Eq. (25)).
The analysis is performed for m ¼ 26:6, representative of a131I isotope in typical sta-
tionary LWR conditions (see Table 1). By increasing both the number of time-steps and
of modes the relative error correctly decreases.
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