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Abstract. The development of transportation infrastructure systems is an essen-
tial part of modern civilization. Any functional deficiency of these systems may 
cause severe economic losses and social distress. Bridges are among the most 
vulnerable components of transportation networks. They are exposed to several 
deterioration processes and traffic loading scenarios during their service life, ex-
acerbating the significant uncertainties on the life-cycle prediction of their struc-
tural response. Structural Health Monitoring (SHM) measurements can give sig-
nificant information and support the damage detection of aging bridges, reducing 
the uncertainties associated to the structural performance and improving struc-
tural reliability of deteriorating systems. This paper presents a life-cycle proba-
bilistic approach to incorporate SHM measurements via Bayesian updating in 
simulation-based reliability assessment of deteriorating bridges. The proposed 
methodology is applied to reinforced concrete (RC) bridges exposed to corrosion. 
The uncertainties of the corrosion model are updated based on SHM data. The 
Metropolis-Hastings (MH) algorithm is used to update the statistical parameters 
of the deterioration damage index at the prescribed observation time. The appli-
cation to time-variant reliability assessment of a RC box-girder continuous bridge 
under corrosion shows the benefits of SHM to improve the accuracy of life-cycle 
prediction models. 

Keywords: Structural reliability; Deteriorating bridges; Life-cycle assessment; 
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1 Introduction 

The life-cycle assessment of infrastructure systems is of paramount importance in eco-
nomically developed countries where infrastructure facilities have been serving for 
more than half a century. In transportation infrastructure networks most bridges either 
are about to reach or have already reached their expected lifetime [1,2]. Recent bridge 
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damage and failure events highlighted the importance of planning repair interventions 
during the structural lifetime to guarantee the life-cycle performance from the design 
stage to the dismantling process. In this context, the direct interventions costs of pre-
ventive maintenance and retrofit, essential maintenance and repair, up to demolition 
and replacement of structurally deficient bridges can severely burden the public econ-
omy. Nonetheless, the economic growth and the social well-being of communities 
heavily relies on transportation systems, which are required to be functional at any time 
without abrupt interruptions. 
Bridges are exposed to environmental aging and different mechanical deterioration phe-
nomena during their service life, including corrosion and fatigue [3]. Aging effects lead 
to losses over time in strength, ductility and stiffness of structural components that may 
drastically affect the bridge bearing capacity to service loads and the vulnerability to 
extreme hazards. An in-depth knowledge of infrastructure assets is crucial for invest-
ment, planning, and management policies informing large-scale maintenance, retrofit, 
and monitoring activities. To ensure the serviceability of transportation systems, it is 
necessary to assess the aging effects and deterioration processes and to evaluate the 
time-variant performance of the structural systems throughout their service life. Even 
though an accurate mathematical description of physical deterioration processes may 
follow complex patterns, advanced life-cycle models are nowadays established for 
damage processes such as carbonation and chloride-induced corrosion processes in re-
inforced concrete (RC) structures [4–6]. 
Advances in computer technology and new approaches to structural assessment have 
enabled the use of probabilistic simulation-based frameworks in bridge reliability anal-
ysis [7]. Structural model uncertainties associated to geometry, material characteristics, 
loading conditions and exposure scenario may play a crucial role in the structural reli-
ability assessment of bridges. In these probabilistic approaches, SHM measurements 
can be integrated into the deterioration models based on Bayesian updating strategies. 
This allows integrating the empirical evidence with the prior information into the prob-
abilistic distributions of critical mechanical parameters of bridges [8],[9],[10]. 
This study presents a methodology that incorporates based on Bayesian updating the 
SHM measurements of damage indices in structural systems within the life-cycle reli-
ability analysis of deteriorating bridges. Probabilistic performance indicators such as 
the reliability index with respect to prescribed limit states of deteriorating bridges are 
assessed with and without the information gathered from SHM data. The Metropolis-
Hastings (MH) algorithm is adopted to update the distribution of the local damage index 
of vulnerable bridge components and, in turn, on overall structural reliability. The 
methodology is applied to a box-girder continuous RC bridge under a prescribed sce-
nario of environmental aggressiveness in terms of corrosion initiation and propagation. 
The impact of uncertainties of experimental data on the posterior distribution is also 
investigated. 
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2 Deterioration in RC Structures 

2.1 Corrosion Damage and Propagation Modeling 

RC bridges built about 40-50 years ago are showing nowadays aging and deterioration 
effects, like corrosion of steel reinforcement, which may drastically affect their bearing 
capacity. The corrosion process is characterized by two phases: initiation and propaga-
tion. Aggressive agents such as chlorides penetrate through the concrete cover with a 
predominantly diffusive physical process. Their concentration ( , )C C z t= can be de-
scribed in time t at depth z and steel bars corrosion is triggered when a critical concen-
tration threshold crC  is attained at a critical time crt . The onset of corrosion leads to a 
progressive degradation of steel and concrete, such as the reduction of steel reinforce-
ment area and ductility and the impairment of concrete cover strength up to spalling. 
Steel reinforcement mass loss is one of the most critical phenomena, which may se-
verely affect the section capacity under static and dynamic loads. The dimensionless 
damage index δ s ∈ [0,1] represents the mass loss of the section and it expresses the 
corroded area of reinforcement sA  as follows: 

 
0( ) [1 ( )]s s sA Aδ δ δ= −  (1) 

where soA is the undamaged reinforcement area and the corrosion penetration index δ  
∈ [0,1] represents the corrosion penetration depth normalized by the steel bar diameter. 
The damage function depends on the type of corrosion mechanism [11].  Uniform cor-
rosion generally occurs in carbonated RC structures. A suitable time-variant deteriora-
tion model is required to consider the life-cycle analysis of structure in a proper way. 
In this case, empirical models can be successfully adopted [3]: 

 
( ) ( )it t t ηδ κ= −  (2) 

where i crt t= represents the corrosion initiation time, whilst κ  and η  are shape pa-
rameter that could be determined based on available experimental data via statistical 
regression [12,13]. 

3 Life-Cycle SHM of RC Bridges 

Structural Health Monitoring (SHM) systems can be used to determine the damage and 
deterioration of critical bridge components with more objectivity and based on empiri-
cal evidence. However, installing and operating SHM systems is inherently expensive.  
Structural damage of bridge components can develop in a short period of time due to 
the occurrence of extreme events that mechanically impair the material structural prop-
erties. On the other hand, long-term degradation processes are related to progressive 
impairment of the structural integrity, which reduce in time the structural capacity. 
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SHM typically allows measuring the time-histories of critical demand parameters such 
as generalized strains and displacements. The measured dataset can be adopted to suit-
ably calibrate structural models. Long-term measurement also allows determining 
eventual changes on the traffic density and intensity affecting the loading conditions 
and subsequently the structural demand on vulnerable aging viaducts [14]. Nonetheless, 
short-term SHM activities can be planned not only to assess the structural response, but 
also to directly evaluate the deteriorating mechanical properties of structural members 
and their constitutive materials. Recurrent visual inspection coupled with periodical 
destructive and non-destructive testing can be adopted for this purpose. 
There are numerous corrosion depth detection technique in the literature and some of 
them are Ultrasonic Detection Technique [15], Acoustic Emission Testing Technique 
[16], Eddy Current Technique.[17], and Magnetic Flux Leakage (MFL) Method [18]. 
With the help of the mentioned advanced techniques corrosion depth can be easily de-
termined and the obtained data can be used to update the performance of the bridge and 
it enables to improve the probabilistic approaches that used to estimate structural dete-
rioration during lifetime. 

4 BAYESIAN UPDATING 

4.1 Basics of Bayesian statistics 

Collecting information from the experimental study, theoretical study, and expert judg-
ment is an essential part of decision-making processes of public and private managing 
road networks. However, the underlying phenomena associated with the time-variant 
structural demand and capacity of key network components are inherently affected by 
aleatory and epistemic uncertainties and decision-making should be informed by a 
probabilistic framework. The Bayesian approach of statistics is a mathematical tool that 
is typical of problems involving the combination of new information with the current 
knowledge on the system. 
Bayesian updating allows incorporating the information coming from observed data 
into the analytical models of the constitutive random variables describing the physical 
phenomena. More specifically, their prior probability distributions of these random var-
iables are updated based on the application of the Bayes’ theorem to obtain a posterior 
distribution that incorporates the information obtained from empirical evidence [19]. 
Initially, the possible values of a parameter θ  with prior relative likelihood 

( )i ip P θ= Θ =  is existed. With the available additional information, the prior assump-
tion on the parameter θ  is modified through the Bayes’ theorem [19]: 
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where ( )iP ε θΘ =  is the likelihood function associated with the i-th of the k additional 
measurements, whilst prior and posterior probabilities are ( )iP θΘ = = '( )iP θΘ =  and

( )iP θ εΘ = = ''( )iP θΘ = , respectively. Based on probabilistic continuous analytical 

models for both additional information ( ( ))ifx x θ and prior knowledge '( )f θ , the pos-
terior Probability Density Function (PDF) can be expressed as follows [19]: 
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(4) 

The analytical expression of the posterior distribution can be achieved in closed form 
when prior distribution and likelihood functions are characterized by statistical conju-
gate distribution. Nevertheless, this assumption is rarely valid in most practical appli-
cations and approximate numerical approaches can be adopted to estimate the posterior 
distribution, such as the MH algorithm [20]. 

4.2 Metropolis-Hastings Algorithm 

The MH algorithm is a Markov chain Monte Carlo (MCMC) method, which generates 
a set of random samples to obtain the posterior distribution based on prior distribution 
and expected likelihood. These methods are easily used to generate any model when 
direct sampling is difficult. Some basic steps of the algorithm are listed [21]: 

1. Set counter t = 1. 
2. An initial sample value ( )x t  from prior distribution is determined to start the 

number generation. 
3. A candidate sample ( )y t is generated. 
4. The candidate points accepted or rejected depends on ratios of the proposed 

( )y t  and old ( )x t  candidate samples likelihood. If the candidate point is ac-
cepted, initial values ( 1)x t + equalize to ( )y t . 

5. Increase the iteration number 1t t→ + and repeat steps 2 and 3 until the target 
number of samples generated. 

For this propose, any symmetric distribution can be used for generating the candidate 
point. Different approaches are adopted to minimize the number of iterations and guar-
antee a reasonable degree of accuracy. For example, the removal of the initial trivial 
iteration terms is an effective strategy since the selection of the initial sampling condi-
tions tend to be negligible after a large number of samples is generated. 
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5 Case Study 

5.1 Continuous RC box girder bridge 

The two-span continuous RC bridge shown in Figure 1, with span length l=30 m, is 
considered. The box-girder cross-section of the deck is characterized by reinforcement 
S1 for the outer deck segments with length 𝑙𝑙1=25 m and S2 for the inner segments over 
the mid-support with length 𝑙𝑙2=5 m. The bridge deck is subject to a dead load G, live 
load 𝑄𝑄s in each span s=1,2. 

 

 
(a) 

 

 
(b) 

Figure 1. RC box girder bridge: (a) structural scheme and loadings; (b) geometry and 
reinforcement layout of the deck cross-section (dimensions in cm). 

5.2 Simulation of corrosion processes and Bayesian updating 

A uniform distribution is assumed for corrosion initiation time ti bounded between 
tmin = 5.4 years and tmax = 10.8 years. Shape parameters 𝜅𝜅 and 𝜂𝜂 of the time variant- 
deterioration model (Eq. 2) are modeled by symmetric triangular distributions over the 
intervals 𝜅𝜅 = 3.7 ∙ 10−3 ± 2.0 ∙ 10−3 and 𝜂𝜂 = 8.1 ± 2.7. 
Figure 2a shows the probabilistic time-variant steel reinforcement section loss, with 
both sample mean and sample standard deviation significantly increasing over the 
structural lifetime. A SHM system is installed at time ts = 30 years. A Kernel smoothing 
function is assumed for the section loss at time ts. Figure 2b compares the empirical 
probability mass function (histogram) with theoretical PDF of the assumed distribution. 
 

l l

S1 S2 S1S2

Q1 Q2

G
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Figure 2. (a) Time-variant steel reinforcement section loss; (b) empirical probability 
mass function and theoretical probability density function of section loss at time ts. 

5.3 Bayesian updating and structural reliability assessment 

The steel reinforcement section loss resulting from the SHM system measurement is 
characterized by a normal distribution characterized by a mean value of 0.08 and co-
variance of 5%. The corrosion loss index is updated with Bayesian updating. Figure 3 
shows the comparison among prior distribution, experimental distribution, and poste-
rior distribution of the section loss in case of twenty and one hundred measurements. 

 

 
Figure 3. Comparison among prior distribution, experimental distribution and poste-

rior distribution of section loss index for twenty and one hundred samples. 
 
A second set of measurements is simulated with 0.09 mean values and CoV equals to 
5%. Updated section loss are assumed as the prior distribution and the second set of 
measurements is used as a target function. The MH numerical Bayesian updating pro-
cedure has been adopted twice to evaluate the posterior distribution (Figure 4). 
The life-cycle reliability of the RC bridge is computed by Monte Carlo simulation, in-
cluding the uncertainties associated to dead and live loads, concrete and steel mechan-
ical characteristics. Figure 5 shows the effect of information updating on the time-var-
iant reliability index associated to the collapse limit state. 

(a) (b) 
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Figure 4. Bayesian updating procedure after two SHM-based damage estimate. 

 
 

 
Figure 5. Time-variant reliability index. 

6 CONCLUSIONS 

The condition state assessment of critical bridges within transportation networks is fun-
damental to define robust strategies and inform decision-making processes for effective 
infrastructure management policies. In this context, Bayesian updating can be adopted 
to properly incorporate instrumental measurements into structural reliability assess-
ment. In this study, life-cycle analysis of bridges has been presented and the infor-
mation obtained from the probabilistic model and SHM measurements are combined 
based on a Bayesian approach. The posterior probabilistic deterioration model is gen-
erated adopting the ME algorithm. The proposed approach has been applied to life-
cycle reliability assessment of a RC box-girder bridge under corrosion. The life-cycle 
performance of the bridge is simulated using both initial and updated probabilistic mod-
els and it is shown how SHM measurements are effective in assessing the lifetime 
bridge performance. This approach can be used to exploit information from bridge in-
spection and SHM to plan bridge maintenance and repair activities and support infra-
structure management procedures. 
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