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Entanglement is at the heart of most quantum information tasks, and therefore considerable effort
has been made to find methods of deciding the entanglement content of a given bipartite quantum
state. Here, we prove a fundamental limitation to deciding if an unknown state is entangled or
not: we show that any quantum measurement which can answer this question necessarily gives
enough information to identify the state completely. Therefore, only prior information regarding
the state can make entanglement detection less expensive than full state tomography in terms of the
demanded quantum resources. We also extend our treatment to other classes of correlated states
by considering the problem of deciding if a state is NPT, discordant, or fully classically correlated.
Remarkably, only the question related to quantum discord can be answered without resorting to full
state tomography.

The advent of quantum information theory has
brought entanglement from a peculiarity of quantum the-
ory into a genuine resource which allows the performance
of tasks that are beyond what is possible within classi-
cal physics. The vast sea of applications of entanglement
include super dense coding [1], teleportation [2] and one-
way quantum computation [3], to name a few. Due to
the significant role of entanglement in these applications,
a considerable effort has been made to find methods of
verifying if a given bipartite system is entangled or not
[4, 5]. Many of the existing methods such as entangle-
ment witnesses [6, 7] or Bell inequalitites [8, 9] are able
to detect the entanglement of specific types of states, and
it seems that a detour via full state tomography is the
only way to give a definite answer for an arbitrary un-
known state. However, even with complete knowledge of
the quantum state, the problem is computationally ex-
tremely difficult [10, 11], and since deciding if a state is
entangled or not is a simple yes-no question, one might
hope to do this with less resources. In this article, we ad-
dress the problem of entanglement detection from a very
fundamental point of view by formulating and answering
the following question:

What is the minimum amount of information
required from a quantum measurement to al-
low us to infer whether or not an unknown
state is entangled?
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In order to properly motivate this question, we begin
with an illustrative example of the corresponding prob-
lem for pure states. Suppose we have a bipartite system
consisting of two d-dimensional subsystems. The system
is in an unknown pure state described by a unit vector ∣ψ⟩
in the D = d2-dimensional Hilbert space of the composite
system, and it is entangled if it cannot be decomposed
as a factorized vector ∣ψ⟩ = ∣φ⟩⊗ ∣ϕ⟩. One possible way of
deciding if this is the case, is to first identify completely
which pure state the system is in and then look at its
Schmidt decomposition. By exploiting prior knowledge
about the purity of the state this can be done with a
measurement consisting of ∼ 4D = 4d2 different outcomes
[12]. However, since a pure state is entangled if and only
if its reduced states are mixed, it is sufficient to perform a
local measurement which answers this question on either
subsystem. This can be achieved with just ∼ 5d outcomes
[13], which shows a significant reduction in the resources
needed for answering the question.

The essential conclusion in the above example is that it
is possible to find out if a pure state is entangled without
identifying the state. In fact, a direct comparison of the
minimal number of outcomes 4d2 and 5d shows that the
latter measurement is not sufficient, even in principle, for
identifying an unknown pure state. For mixed states the
situation changes drastically. A general mixed state of a
bipartite system is described by a D×D density matrix %,
and it is entangled if it does not admit a convex mixture
% = ∑i ciσi ⊗ ηi in terms of factorized states. Clearly,
no strategy involving only local measurements on one
party can be useful, but our main result says even more,
namely, that:

Any measurement which can be used to de-
cide if a bipartite system is in an entangled
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state is necessarily giving enough information
to identify the unknown state completely.

As we will explain, this fact can be formulated as a ge-
ometric property of the subset of entangled states. The
geometric approach can also be applied to other subsets
of a bipartite state space, and we study the question for
NPT states, discordant states, and fully classically cor-
related states. Interestingly, only the membership to the
subset of discordant states can be determined without
full knowledge of the state. For two qubits, this result is
implicit in [14].

VERIFYING PROPERTIES OF QUANTUM
STATES

Entanglement detection can be thought of as a mem-
bership problem: it is a question about whether or not
an unknown state belongs to the set of entangled states.
The same question can obviously be asked for any sub-
set P of the state space S of the system. Physically one
can think of this as a problem of deciding if the system
possesses some predefined property represented by P. In
order to answer this, one must perform a measurement
on the system, represented by a positive operator valued
measure (POVM) [15]. A POVM with a finite number of
outcomes is a map E that assigns a positive operator Ej
to each measurement outcome j and satisfies the normal-
ization ∑j Ej = 1. The measurement of E in a state %
then yields measurement outcomes which are distributed
according to the probabilities pj = tr [%Ej].

If the measurement of E is meant to give an answer
to the membership problem, then the states in P must
be distinguishable from the states in the complement
Pc = S ∖ P solely in terms of the measurement outcome
statistics. In order to get a grasp of what this means,
notice that if two states %1 and %2 give the same statis-
tics, then tr [(%1 − %2)Ej] = 0 for all j. In other words,
the operator %1 − %2 belongs to the subspace

XE = {∆ ∣ tr [∆Ej] = 0 for all j}

of traceless Hermitian operators which are orthogonal to
all the POVM elements Ej . The geometric idea behind
this is depicted in Fig. 1. By turning this around, we see
that a measurement of E determines if a state belongs
to P, if and only if the subspace XE has the property
that no nonzero operator ∆ ∈ XE can be decomposed as
∆ = λ(%1 − %2) with %1 ∈ P and %2 ∈ P

c and some scalar
λ.

In the extreme case that XE = {0}, the POVM E is
called informationally complete [16], and it means that
any two states are distinguishable from the statistics.
Such measurements form the basis of quantum state to-
mography, and always provide a trivial answer to the
membership problem. However, an informationally com-
plete POVM always requires D2 different measurement
outcomes, and thus it is the most demanding in terms

FIG. 1. Geometric idea behind state distinction. The state
space and the space XE orthogonal to all POVM elements
Ej are embedded in a common space. The states %1 and
%2 cannot be distinguished by measuring E, since the line
segment from %1 to %2 is parallel to XE . For the states %1 and
%3 this is not the case, and therefore a measurement of E can
be used to distinguish between them.

of quantum resources. Our aim instead is to find opti-
mal measurements which minimize the number of needed
outcomes. To this end, notice that the dimension of the
subspace XE depends only on the number of linearly in-
dependent POVM elements and as such, on the minimal
number of outcomes for the optimal measurement. In
fact, if we denote the number of linearly independent el-
ements by dimE, then we have the equality

D2
= dimE + dimXE (1)

as the real linear space of all Hermitian operators splits
into a direct sum of XE and the span of E. This means
that in our search for an optimal measurement for ver-
ifying a given property P, we can look for the largest
subspace XE which still has the property stated in the
previous paragraph.

GEOMETRICAL VIEWPOINT

When the problem of verifying a property of a quantum
state is viewed as a membership problem, it allows an
intuitive geometrical interpretation. Indeed, using the
generalized Bloch representation % = 1

D
(1+ r⃗ ⋅ σ⃗), we can

view the state space of a D-dimensional quantum system

as a subset of RD
2−1 [17]. Moreover, since the matrices

{σj}
D2−1
j=1 form a basis of traceless Hermitian matrices,

we can embed also XE into the same space.
For a given property P (now viewed also as a subset

of RD
2−1) and a POVM E, the relevant question was

if any ∆ ∈ XE could be decomposed as ∆ = λ(%1 − %2)
with %1 ∈ P and %2 ∈ P

c. Solving for %1 = %2 + λ
−1∆, we

arrive at the following observation: a POVM E can not
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FIG. 2. Two examples of properties to be verified. In the
left picture, the set P is contained in the interior of the state
space, and therefore for any direction it is possible to draw
a line segment from P to Pc in that direction. This means
that an informationally complete measurement is needed to
decide whether a state is in P or Pc. In the right picture, the
vertical line segments do not cross the boundary between P
and Pc, and therefore distinguishing between these sets does
not require informational completeness.

be used to verify a property P if it is possible to draw
a line segment from P to Pc which is parallel to XE .
Conversely, E can be used for the task if there does not
exist a line parallel to XE which intersects both P and
Pc.

Since the state space S is a compact convex subset of

RD
2−1, we immediately notice that the problem becomes

trivial if either P or Pc is contained in the interior of S.
In that case for any direction one can always find a par-
allel line which intersects both sets. The physical impli-
cation of this is that in order to verify the corresponding
property of the state, it is necessary to measure an in-
formationallly complete POVM, see Fig. 2. However, for
the properties we are interested in, such as entanglement,
both sets contain states from the boundary of the state
space (e.g., pure states can be entangled or separable),
and the problem becomes more intricate.

Whenever the property is such that it can be verified
without informational completeness, we also have inter-
esting geometrical implications regarding the correspond-

ing sets in RD
2−1. Indeed, this means that there exists

at least one preferred direction such that no line parallel
to it crosses the boundary between P and Pc. Hence,
the boundary is flat in that direction; see Fig. 2. Simi-
larly, if there are several preferred directions which cor-
responds to one being able to verify the property P with
fewer POVM elements (measurement outcomes), then
the boundary is flat in all of these directions.

BIPARTITE CORRELATIONS

We now make these general ideas more concrete by
specifying the types of properties that we wish to verify.
In our case, these are given by different levels of correla-
tions between two quantum systems, see Fig. 3.

The most commonly encountered class of bipartite
states possessing quantum correlations are the entangled
states. These are the states which cannot be represented

NPT

PPT

SEP

CQ

CC

FIG. 3. Schematic of the state space of a bipartite system
with the various subsets of states possessing different types
of correlations. For the colored areas we have the inclusions
CC ⊂ CQ ⊂ SEP ⊂ PPT, whereas the the NPT states form the
complement of the colored region.

as convex mixtures

% =∑
i

ciσi ⊗ ηi

of product states [18]. The complement of the set of en-
tangled states is the set of separable (SEP) states. The
significance of entanglement in quantum information pro-
cessing is undisputed, and hence the detection of entan-
glement is of utmost importance. However, even if the
state of the bipartite system is known, it is generally an
NP-hard problem to decide if it is separable or not [10].
For this reason one typically relies on some more easily
manageable sufficient test for entanglement. One such
test is based on the NPT (negative partial transpose)
criterion: if the partial transpose of % has a negative
eigenvalue, then the state is entangled. The converse im-
plication holds only for systems consisting of two qubits
or a qubit and a qutrit [6]. The NPT states are also
important in their own right, in particular due to their
connection with entanglement distillation [4]. The divi-
sion of the state space into NPT and PPT (positive par-
tial transpose) states gives example of a property whose
verification we consider.

Even a separable state may have some correlations that
are not purely classical in nature. Quantum discord, a
certain functional on the state space, has been introduced
as a quantifier of the quantumness of these correlations
[19]. It has been shown that nonzero discord yields ad-
vantage in tasks such as distributing entanglement [20],
phase estimation [21] and remote state preparation [22],
and it allows locking of correlations without entangle-
ment [23] and special encoding of information [24]. A
state has nonzero quantum discord if it cannot be writ-
ten as

% =∑
i

ci∣φi⟩⟨φi∣⊗ ηi

for some orthonormal basis {∣φi⟩}
d
i=1. If such a decompo-

sition exists, we say that the state is classical-quantum
(CQ) in order to emphasize the asymmetric nature of
the zero discord states. Similarly, by exchanging the lo-
cal parties we get quantum-classical (QC) states. The
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states lying in the intersection of these sets are then called
classical-classical (CC) and these are the states which can
be written as

% =∑
ij

cij ∣φi⟩⟨φi∣⊗ ∣ϕj⟩⟨ϕj ∣

for some orthonormal bases {∣φi⟩}
d
i=1 and {∣ϕj⟩}

d
j=1. The

CC states are often called (fully) classically correlated
states, and we will use the term non-classical to mean
the complement of these states.

MAIN RESULTS

Taking the general formulation of the verification prob-
lem as the starting point and following the geometric in-
tuition outlined above, it is possible to study the problem
of verifying the different levels of correlations in bipartite
states. Our main result is that the only question that can
be answered without an informationally complete mea-
surement is whether or not the state is CQ. In all of the
other cases the measurement necessarily gives enough in-
formation to completely identify the state (see Table I).
This may seem quite surprising, in particular, after one
notices that the subsets satisfy the following chain of in-
clusions:

CC ⊂ CQ ⊂ SEP ⊂ PPT.

This serves as a demonstration of an important observa-
tion regarding these verification problems in general: the
size of the subset is irrelevant, but the minimal resources
are intimately connected to the geometry of the set.

Property Informational Minimal number

to be verified completeness of outcomes

NPT " D2

ENTANGLED " D2

DISCORDANT % D2
−D + 1

NON-CLASSICAL " D2

TABLE I. Summary of the main results. For the various prop-
erties of bipartite states, we indicate whether or not their veri-
fication requires an informationally complete measurement, as
well as the minimal number of measurement outcomes needed
for succeeding in the task. D = d2 is the dimension of the bi-
partite system’s Hilbert space.

We now outline the main idea behind the proofs of our
results. The detailed mathematical calculations are given
in the Supplementary Material.

We begin by looking at the problem in the case of
entanglement. Recall that in order to show that entan-
glement verification requires an informationally complete
measurement, we need to show that for any traceless Her-
mitian operator ∆ we can find a separable state %2 and
a real number λ such that %1 = %2 +λ

−1∆ is an entangled
state. It is convenient to seek for a suitable %2 from the

FIG. 4. The geometric idea behind the proof that entangle-
ment detection requires an informationally complete measure-
ment. For any direction (red arrow) we choose an isotropic
state from the boundary of the set of separable states, and
check if the perturbed state is entangled. If not, then we
choose a different isotropic state. For any direction there al-
ways exists a separable state such that the perturbed state is
entangled.

boundary of the set of separable states, in which case one
can think of λ−1∆ as a small perturbation on %2.

To this end, we consider isotropic states which are con-
vex mixtures of a maximally entangled state ∣ψ⟩ and the
maximally mixed state 1/D. The condition for the sepa-
rability of isotropic states is known [25] and, in particular,
the state

%2 =
1

d + 1
∣ψ⟩⟨ψ∣ +

1

d(d + 1)
1

lies on the boundary of the set of separable states. This
state is therefore separable for any maximally entangled
∣ψ⟩ = 1√

d
∑j ∣φj⟩⊗ ∣ϕj⟩, and the problem reduces to show-

ing that for any ∆ the bases {∣φi⟩}
d
i=1 and {∣ϕj⟩}

d
j=1 can

be chosen in such a way that the perturbed state %1 is en-
tangled. This will be done using the NPT criterion which
will then immediately also give us the proof of the fact
that distinguishing PPT states from NPT states requires
informational completeness. The geometric idea behind
the proof is presented in Fig. 4.

By exploiting the local unitary equivalence of maxi-
mally entangled states, ∣ψ⟩ = (U ⊗ V )∣ψ0⟩ where ∣ψ0⟩ =
1√
d
∑j ∣j⟩⊗∣j⟩ is the canonical maximally entangled state,

we can express the partial transpose with respect to the
second factor as

%τ1 =
1

d(d + 1)
(U ⊗ V )(1 +F)(U ⊗ V )

∗
+ λ∆τ

where F is the flip operator. Since ∆τ is traceless and
therefore has a negative eigenvalue, and zero is an eigen-
value of 1 +F, it may seem obvious that an appropriate
choice of the unitary operators would yield a negative
eigenvalue for %τ1 . However, the restriction to local uni-
taries makes the problem nontrivial. The construction of
the appropriate unitaries, and thus the completion of the
proof, is given in the Supplementary Material.

It is worth stressing that this result cannot be obtained
with a single fixed isotropic state, but one really needs the
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freedom in choosing the unitaries. As a counterexample,
set U = V = 1 and consider the operator

∆ = ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣ − ∣d⟩⟨d∣⊗ ∣d⟩⟨d∣

so that ∆τ = ∆. Now ∣1⟩ ⊗ ∣1⟩ and ∣d⟩ ⊗ ∣d⟩ are eigen-
vectors of 1 + F corresponding to the eigenvalue 2, and
0 and 2 are the only eigenvalues of 1+F. Therefore, the
partially transposed state %τ1 remains positive whenever
∣λ∣ is small. As explained previously, this means geomet-
rically that the boundary between PPT and NPT states
is flat in some directions at the points corresponding to
the isotropic states.

The remaining cases of CQ and CC states proceeds
similarly, although now the condition for a state to be-
long to the set of discordant or nonclassical states is
somewhat simpler. Indeed, by writing a state % in the
computational basis as

% = ∑
ijkl

%ijkl∣i⟩⟨j∣⊗ ∣k⟩⟨l∣

and by summing over i and j we get the expression

% =∑
kl

Akl(%)⊗ ∣k⟩⟨l∣.

If the state is CQ, then the operators Akl(%) are normal
and commute [26]. Similarly, by summing over k and l
we get a family of operators Bij(%), whose normality and
commutativity is a necessary condition in order for the
state to be QC. As CC states are those which are both
CQ and QC, both families need to be checked in that
case.

We show in the Supplementary Material that the state
%1 = %2 +λ

−1∆ is CQ for all CQ states %2 and scalars λ if
and only if ∆ = 1⊗Ξ for some traceless Hermitian Ξ. This
tells us two things: firstly, it is possible to decide if a state
is CQ without identifying the state, and secondly, that
the minimal number of measurement outcomes which is
needed for this task is d4−d2+1. The latter claim follows
from Eqn. (1) and the fact that the dimension of the space
of operators of the form 1⊗Ξ is d2 − 1.

Quite interestingly, the remaining case of CC states
again requires informational completeness. This may
seem counterintuitive since CC states are a subset of CQ
states. However, one should keep in mind that their com-
plements behave in the opposite way, namely, the discor-
dant states are a subset of the nonclassical states.

As a final observation we note that our result regarding
quantum discord only works when the party possessing
the “quantum” part has been fixed (i.e., we consider ei-
ther CQ or QC states as our definition of the zero discord
states). If we instead don’t care about this and want to
verify if a state belongs to the union of CQ and QC states,

then we are again facing the necessity of an information-
ally complete measurement.

DISCUSSION

We have established that in order for a measurement
to be able to decide the entanglement of an unknown
bipartite state, it is necessary for it to be information-
ally complete, thus allowing the full reconstruction of
the unknown state. Since the number of measurement
outcomes for such a measurement scales quadratically in
the dimension of the system, it is clear that entangle-
ment detection by measuring one single copy of the state
is not an economical approach to the problem. Moreover,
since the membership problem underlying entanglement
detection is a simple yes-no question, one might hope to
answer it more directly.

To establish this goal, the method of collective mea-
surements has been brought to the context of entangle-
ment detection. In a collective measurement, a finite
number N of identical systems are first prepared result-
ing in a factorized state %⊗N , after which a global mea-
surement (a POVM on the tensor product Hilbert space)
is performed on the composite system. The benefit of go-
ing collective is that it allows one to measure polynomial
functions of the initial single-copy state [27], rather than
just linear functions as in the case of standard measure-
ments.

An important result in this line of research was the
work of Augusiak et al. [28], where it was shown that the
entanglement content of a two qubit state can be mea-
sured with a single binary measurement on four copies of
the state. Up to our knowledge, such simple schemes are
not known for higher dimensional systems but in princi-
ple collective measurements may be the way to go also in
the case of more complex systems. In fact, it is known
that the set of separable states is a semialgebraic set [29]
and as such, it is described by a finite set of polyno-
mial inequalities pj(%) ≥ 0. By going to collective mea-
surements, these are transformed into linear inequalities
whose validity can then be confirmed with simple binary
measurements. However, it seems that for general sys-
tems there are no known bounds for the number of poly-
nomials needed for the description of separable states,
so it may happen that this method actually becomes in-
tractable with increasing system size. The advantage of
this approach is that it is computationally efficient, a fact
that serves as motivation for further studies of entangle-
ment detection with collective measurements.
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Supplementary Material

PRELIMINARIES

For a given subset P of the state space, we want to know if for any nonzero traceless Hermitian operator ∆, there
exists a state % ∈ P such that

κ = % + λ∆ ∈ P
c (S.1)

for some real λ. Indeed, if this is the case, the membership problem for the set P can be solved only by informationally
complete POVMs. Otherwise, we are going to determine a largest as possible subspace of traceless Hermitian operators
∆ such that κ ∈ P for any real λ. Note that in Eqn. (S.1) the complement is taken relative to the state space, so that
not all λ’s are admissible, but only those ensuring the positivity of κ. We will address this issue by choosing % to be
a full rank state, in which case it belongs to the interior of the state space, and it is then guaranteed that for small
values of λ, κ remains inside the state space.

We first recall the definitions of the relevant subsets P. The set of separable states consists of those states which
are convex mixtures of product states:

% =∑
i

ciσi ⊗ ηi.

A separable state is called classical-quantum (CQ) if the states σi are orthogonal one dimensional projections, and
quantum-classical (QC) if ηi are such. This means that the CQ and QC states are those which can be decomposed as

%CQ =∑
i

ci∣φi⟩⟨φi∣⊗ ηi, %QC =∑
i

ciσi ⊗ ∣ϕi⟩⟨ϕi∣

for some orthonormal bases {∣φi⟩}
d
i=1 and {∣ϕj⟩}

d
j=1, respectively. If a state belongs to the intersection of CQ and QC

states, it is called classical-classical (CC). These states admit a decomposition of the form

%CC =∑
ij

cij ∣φi⟩⟨φi∣⊗ ∣ϕj⟩⟨ϕj ∣.

Note that a product state % = σ ⊗ η is CC by the spectral theorem applied to the states σ and η. Moreover, for all
states γ, the convex mixture c1%CQ + c2(1/d)⊗ γ is CQ for all CQ states %CQ [respectively, c1%QC + c2γ ⊗ (1/d) is QC
for all QC states %QC].

In order to prove our results we need some useful criteria for deciding if a state belongs to the above subsets. In
the case of separability we will use the PPT criterion [1, 2] which states that the partial transpose of a separable
state is a positive operator. In other words, a sufficient condition for entanglement is that the partial transpose has
a negative eigenvalue. For the other types of correlations, we first write the state in the computational basis as

% = ∑
ijkl

%ijkl∣i⟩⟨j∣⊗ ∣k⟩⟨l∣.

After summing over i and j, or k and l, respectively, we obtain the two expressions

% =∑
kl

Akl(%)⊗ ∣k⟩⟨l∣ =∑
ij

∣i⟩⟨j∣⊗Bij(%).

If the state is classical-quantum, then the operators Akl(%) are normal and commute, and if it is quantum-classical,
then the same holds for Bij(%) [3]. In particular, if the state is classical-classical then both families of operators are
normal and commuting.

SEPARABLE STATES

We start by proving that, if P is the set of separable states, the construction of Eqn. (S.1) can always be done. As
a candidate for %, we fix a maximally entangled vector ∣ψ⟩ and set

% =
1

d + 1
∣ψ⟩⟨ψ∣ +

1

d(d + 1)
1,
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so that % is a separable isotropic state which lies just on the boundary of the set of separable states [4]. This is a full
rank state, so for a fixed traceless Hermitian operator ∆ the operator κ = % + λ∆ is a valid state for small enough λ.
The freedom that we still have is the choice of the maximally entangled vector ∣ψ⟩. We will prove below that this can
always be chosen in such a way that the partial transpose of κ has a negative eigenvalue, and hence κ is entangled.
Before going into the details of the proof, we elaborate this idea a bit further.

We use the fact that ∣ψ⟩ can be obtained from the canonical maximally entangled vector ∣ψ0⟩ = 1/
√
d∑j ∣j⟩ ⊗ ∣j⟩

by local unitaries: ∣ψ⟩ = (U ⊗ V )∣ψ0⟩. With this we can express the partial transpose of κ with respect to the second
factor as

κτ =
1

d(d + 1)
(U ⊗ V )(1 +F)(U ⊗ V )

∗
+ λ∆τ

=
2

d(d + 1)
(U ⊗ V ) [

1 +F

2
+ λ

d(d + 1)

2
(U ⊗ V )

∗∆τ
(U ⊗ V )] (U ⊗ V )

∗

where F is the flip operator F(∣φ⟩ ⊗ ∣ϕ⟩) = ∣ϕ⟩ ⊗ ∣φ⟩. Since the spectrum is invariant under the unitaries, and the
scaling of λ as well as the complex conjugation of V are irrelevant, it suffices to consider the operator

κ̃ =
1 +F

2
+ λ(U ⊗ V )

∗∆τ
(U ⊗ V ).

Let now W ∶ C2 ⊗C2 → Cd ⊗Cd denote the canonical injection from C2 ⊗C2 into Cd ⊗Cd (i.e., W ∣i⟩⊗ ∣j⟩ = ∣i⟩⊗ ∣j⟩
for i, j = 1,2). It is clearly sufficient to show that the operator

W ∗κ̃W =W ∗
[
1 +F

2
+ λ(U ⊗ V )

∗∆τ
(U ⊗ V )]W

has a negative eigenvalue. By defining the orthonormal basis

∣f1⟩ = ∣1⟩⊗ ∣1⟩ ∣f2⟩ = ∣2⟩⊗ ∣2⟩

∣f3⟩ =
1

√
2
(∣1⟩⊗ ∣2⟩ + ∣2⟩⊗ ∣1⟩) ∣f4⟩ =

1
√

2
(∣1⟩⊗ ∣2⟩ − ∣2⟩⊗ ∣1⟩) .

of C2 ⊗C2, we find that the matrix representation of W ∗κ̃W with respect to this basis is

W ∗κ̃W = (
1C3 0

0 0
) + λ(

A a

a∗ α
) (S.2)

for some 3 × 3 Hermitian matrix A, column vector a ∈ C3 and scalar α ∈ R. We now need the following Lemma.

Lemma 1. With the above notations, U and V can always be chosen in such a way that a or α is nonzero.

Proof. Since ∆ is nonzero, there exist p, q, r, s ∈ {1,2, . . . , d} for which

⟨p∣⊗ ⟨q∣∆τ
∣r⟩⊗ ∣s⟩ ≠ 0.

Let U and V0 be two unitary operators on Cd such that {∣p⟩, ∣r⟩} ⊆ UC2 and {∣q⟩, ∣s⟩} ⊆ V0C2. Then the previous
inequality implies that

∆̃ =W ∗
(U ⊗ V0)

∗∆τ
(U ⊗ V0)W ≠ 0

since {∣p⟩ ⊗ ∣q⟩, ∣r⟩ ⊗ ∣s⟩} ⊆ ran(U ⊗ V0)W . We can now assume that ∆̃4 i = 0 for all i ∈ {1,2,3,4}, where the matrix
elements are with respect to the basis {∣fj⟩}

4
j=1, as otherwise the lemma is proved with V = V0.

If T is any unitary operator on Cd which can be written in the block form as

T = (
T ′ 0

0 1Cd−2
) with T ′ = (

t11 t12
t21 t22

)

then (1⊗ T )WW ∗ =WW ∗(1⊗ T ) and hence

W ∗
(U ⊗ V0T )

∗∆τ
(U ⊗ V0T )W =W ∗

(1⊗ T )
∗WW ∗

(U ⊗ V0)
∗∆τ

(U ⊗ V0)WW ∗
(1⊗ T )W

=W ∗
(1⊗ T )

∗W ∆̃W ∗
(1⊗ T )W, (S.3)
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where the matrix representation of W ∗(1⊗ T )W with respect to the basis {∣fj⟩}
4
j=1 is given by

W ∗
(1⊗ T )W =

1

2

⎛
⎜
⎜
⎜
⎜
⎝

2t11 0
√

2t12
√

2t12
0 2t22

√
2t21 −

√
2t21√

2t21
√

2t12 t11 + t22 t22 − t11√
2t21 −

√
2t12 t22 − t11 t11 + t22

⎞
⎟
⎟
⎟
⎟
⎠

(S.4)

We now split the proof into two cases.
(1) Case ∆̃33 ≠ 0. Making the choice

T ≡ T0 = (
T ′0 0

0 1Cd−2
) with T ′0 = (

1 0

0 −1
)

Eqns. (S.3) and (S.4) yield

[W ∗
(U ⊗ V0T0)

∗∆τ
(U ⊗ V0T0)W ]44 = ∆̃33 ≠ 0.

The claim then follows with V = V0T0.
(2) Case ∆̃33 = 0. Picking the following two unitaries T+, T−

T ≡ T± = (
T ′± 0

0 1Cd−2
) with T ′± = (

0 e±i
π
4

e∓i
π
4 0

)

we have

[(U ⊗ V0T±)∗∆τ
(U ⊗ V0T±)]41 = −

∆̃23 ± i∆̃13

2

[(U ⊗ V0T±)∗∆τ
(U ⊗ V0T±)]42 =

∆̃13 ∓ i∆̃23

2

and

[(U ⊗ V0T±)∗∆τ
(U ⊗ V0T±)]43 =

∆̃11 − ∆̃22

2
∓ iRe ∆̃12

[(U ⊗ V0T±)∗∆τ
(U ⊗ V0T±)]44 =

∆̃11 + ∆̃22

2
∓ Im ∆̃12.

Since not all matrix elements ∆̃11, ∆̃22, ∆̃12, ∆̃13 and ∆̃23 can be zero, we must have [(U⊗V0T+)∗∆τ(U⊗V0T+)]4 i ≠ 0
or [(U ⊗ V0T−)∗∆τ(U ⊗ V0T−)]4 i ≠ 0 for some i ∈ {1,2,3,4}. Hence the proposition follows by choosing V = V0T+ or
V = V0T−.

With this lemma, we can now prove the main result of this section.

Proposition 1. For any nonzero traceless Hermitian operator ∆, there exist unitaries U and V and a real number
λ such that κ is a state and κτ has a negative eigenvalue.

Proof. By our previous discussion, it is sufficient to show that for some choice of U and V , the matrix W ∗κ̃W in
Eqn. (S.2) has a negative eigenvalue for all small λ’s. To this end, let U and V be as in Lemma 1 and let S be a 3× 3
unitary matrix such that S∗AS = diag(µ1, µ2, µ3). Then

W ∗κ̃W = (
1C3 0

0 0
) + λ(

A a

a∗ α
) = (

S 0

0 1
)

⎛
⎜
⎜
⎜
⎜
⎝

1 + λµ1 0 0 λb1
0 1 + λµ2 0 λb2
0 0 1 + λµ3 λb3
λb1 λb2 λb3 λα

⎞
⎟
⎟
⎟
⎟
⎠

(
S∗ 0

0 1
)

where b = S∗a. Therefore, we can easily compute

det(W ∗κ̃W ) =λα(1 + λµ1)(1 + λµ2)(1 + λµ3) − λ
2
[∣b1∣

2
(1 + λµ2)(1 + λµ3)

+ ∣b2∣
2
(1 + λµ1)(1 + λµ3) + ∣b3∣

2
(1 + λµ1)(1 + λµ2)].

If α ≠ 0, then det(W ∗κ̃W ) = λα+O(λ2) and hence for small nonzero λ’s with the opposite sign of α the determinant
is negative. This implies that W ∗κ̃W must have a negative eigenvalue. If α = 0, then we must have b ≠ 0 in which case

det(W ∗κ̃W ) = −λ2 ∥b∥
2
+O(λ3) which is negative for small nonzero λ’s. Therefore we again conclude that W ∗κ̃W

has a negative eigenvalue. This completes the proof.
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Corollary 1. In order to determine if a state is PPT or NPT, the measurement must be informationally complete.

Corollary 2. In order determine if a state is separable or entangled, the measurement must be informationally
complete.

CQ AND QC STATES

We now move to the case of CQ and QC states. In other words the subset P is now the CQ states or the QC states.
We present the proof only for the CQ case, the proof for QC being equivalent with the obvious change of the local
systems. The following proposition rules out the necessity of informational completeness.

Proposition 2. If ∆ = 1⊗ Ξ for some traceless Hermitian operator Ξ, then κ = %CQ + λ∆ is a CQ state for all CQ
states %CQ and real numbers λ such that κ is a valid state.

Proof. Using the decomposition %CQ = ∑i ∣φi⟩⟨φi∣ ⊗ ηi for some orthonormal basis {∣φi⟩}
d
i=1, we immediately have

κ = ∑i ∣φi⟩⟨φi∣⊗ (ηi + λΞ) which proves the claim.

The rest of this section goes to showing that whenever ∆ ≠ 1 ⊗ Ξ, we can find a CQ state such that κ is not CQ.
In order to get a grasp of this situation, we decompose ∆ as we did with states:

∆ = ∑
ijkl

∆ijkl∣i⟩⟨j∣⊗ ∣k⟩⟨l∣ =∑
kl

Akl(∆)⊗ ∣k⟩⟨l∣.

If all of the operators Akl(∆) are multiples of the identity, i.e., Akl(∆) = akl(∆)1, then ∆ = ∑kl akl(∆)1⊗ ∣k⟩⟨l∣ = 1⊗Ξ
where Ξ = ∑kl akl(∆)∣k⟩⟨l∣. Conversely, if ∆ = 1⊗Ξ, then ∆ = ∑kl Ξkl1⊗∣k⟩⟨l∣ = ∑klAkl(∆)⊗∣k⟩⟨l∣ with Akl(∆) = Ξkl1.
In other words, the operators ∆ = 1⊗ Ξ are exactly those for which all of the operators Akl(∆) are multiples of the
identity. In order to exploit this observation, we prove the following simple lemma.

Lemma 2. If A is not a multiple of the identity, then there exists a state σ such that [A,σ] ≠ 0.

Proof. Suppose that [A,σ] = 0 for all states σ. Since for any traceless Hermitian ∆, the operator σ = 1
d
(1 + λ∆) is a

state for a small enough nonzero real number λ, we have that [A,∆] = 0 for all ∆. But since the traceless Hermitian
matrices and the identity span the whole space of matrices, A commutes with any matrix. Hence, A must be a
multiple of the identity.

We can now prove the following result which completes this section.

Proposition 3. If ∆ is a traceless Hermitian matrix such that ∆ ≠ 1 ⊗ Ξ, then there exists a CQ state %CQ and λ
such that κ is a state but not CQ.

Proof. Since ∆ ≠ 1⊗ Ξ, there exist p and q such that Apq(∆) is not a multiple of the identity. By Lemma 2 there is
a state σ such that the commutator [Apq(∆), σ] ≠ 0. Pick t ≠ p, and define the state

%CQ =
1

2
σ ⊗ ∣t⟩⟨t∣ +

1

2d2
1⊗ 1 (S.5)

which is clearly CQ (actually, it is CC). Furthermore, since %CQ has full rank, there is an ε > 0 such that κ = %CQ+λ∆
is a valid state for all ∣λ∣ < ε. Moreover,

[Apq(%CQ + λ∆) , Att(%CQ + λ∆)] =
λ

2
[Apq(∆) , σ] + λ2[Apq(∆) , Att(∆)]

because Ars(%CQ) = 1
2
δrtδstσ +

1
2d2

δrs1 (recall that t ≠ p). Choosing λ small enough, the right hand side of this
equation can be made nonzero, and hence %CQ + λ∆ is not CQ.

Corollary 3. In order to determine if a state is CQ [resp., QC], the measurement does not have to be informationally
complete, and the minimal number of measurement outcomes that is needed for this task is d4 − d2 + 1.

Proof. By Propositions 2 and 3, the linear space {1 ⊗ Ξ ∣ Ξ is traceless and Hermitian} coincides with the set X of
traceless Hermitian operators ∆ such that the state κ = %CQ + λ∆ is CQ for all CQ states %CQ and valid λ’s. In
particular, the set X is maximal among all the subspaces of traceless Hermitian operators sharing this property. By
[5, Proposition 1], one can construct a POVM E with d4−dimX = d4−d2+1 outcomes such that XE = {∆ ∣ tr [∆Ej] =
0 for all j} ≡ X , and which is thus capable of determining if a state is CQ. Moreover, by maximality of X , d4 − d2 + 1
is actually the minimal number of outcomes required for this task.
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CC STATES

We have already established all of the necessary ingredients needed for proving that informational completeness
is required for determining if a state is CC or not. In fact, the key point is the observation that the state (S.5)
constructed in the proof of Proposition 3 is actually CC. Let us now denote this state by %CC. The proposition then
directly implies that whenever ∆ ≠ 1 ⊗ Ξ, there exists a λ such that κ = %CC + λ∆ is a state but not CQ. Since by
definition CC states are both CQ and QC, we conclude that κ is not CC. Due to the symmetric situation for QC
states, we also have that whenever ∆ ≠ Ξ′⊗1, there exists a λ′ such that κ′ = %CC+λ

′∆ is a state but not CC. Now to
close the reasoning we only need to note that the only possibility for having ∆ = 1⊗Ξ = Ξ′⊗1 with tr [Ξ] = tr [Ξ′] = 0
is that ∆ = 0, which is not of concern here. We summarize this in the following proposition.

Proposition 4. For any nonzero traceless Hermitian ∆, there exists a CC state %CC and a real number λ such that
κ = %CC + λ∆ is a valid state but not CC.

Corollary 4. In order to determine if a state is CC or not, the measurement must be informationally complete.

CQ OR QC STATES

As the final case we consider the task of determining if a state is either a CQ or a QC state. This corresponds to
the subset P being the union of the sets of CQ and QC states. Just as for CC states, we can exploit the fact that
any nonzero traceless Hermitian operator satisfies either ∆ ≠ 1 ⊗ Ξ or ∆ ≠ Ξ′ ⊗ 1. Using the symmetry between the
CQ and QC states it is therefore sufficient to show that in the first case we can always find a CQ state %CQ such that
κ = %CQ + λ∆ is neither CQ nor QC. We first need a minor refinement of Lemma 2.

Lemma 3. If A is not a multiple of the identity, then there exists a state σ such that [A,σ] ≠ 0 and ⟨1∣σ∣2⟩ ≠ 0.

Proof. By Lemma 2 there exists a state σ0 such that [A,σ0] ≠ 0. If ⟨1∣σ0∣2⟩ ≠ 0, then the second claim follows with
σ = σ0. If otherwise ⟨1∣σ0∣2⟩ = 0, then for small nonzero positive µ the operator σ = (1 − µ)σ0 + µ(∣1⟩⟨2∣ + ∣2⟩⟨1∣ + 1)/d
is still a state which does not commute with A, and ⟨1∣σ∣2⟩ = µ/d ≠ 0.

Proposition 5. For any nonzero traceless Hermitian ∆, there exists a CQ or QC state % and a real number λ such
that κ = % + λ∆ is a valid state but neither CQ nor QC.

Proof. As discussed above, we can restrict to the case ∆ ≠ 1⊗ Ξ. Let p and q be such that Apq(∆) is not a multiple
of the identity, and let σ be a state such that [Apq(∆), σ] ≠ 0 and ⟨1∣σ∣2⟩ ≠ 0. Moreover, choose t ≠ p, and let γ be
any state such that [∣t⟩⟨t∣, γ] ≠ 0. Such states σ and γ exist by Lemmas 2 and 3. By possibly replacing γ with the
convex mixture γ/2 + 1/(2d), we can assume that γ has full rank. Then, the composite state

%CQ =
1

2
σ ⊗ ∣t⟩⟨t∣ +

1

2d
1⊗ γ

has full rank and is CQ. We have

Ars(%CQ) =
1

2
δrtδstσ +

1

2d
⟨r∣γ∣s⟩1

Brs(%CQ) =
1

2
⟨r∣σ∣s⟩∣t⟩⟨t∣ +

1

2d
δrsγ.

Therefore, for small nonzero real numbers λ the operator %CQ + λ∆ is a state, and

[Apq(%CQ + λ∆) , Att(%CQ + λ∆)] =
λ

2
[Apq(∆) , σ] + λ2[Apq(∆) , Att(∆)]

[B12(%CQ + λ∆) , B11(%CQ + λ∆)] =
1

4d
⟨1∣σ∣2⟩ [∣t⟩⟨t∣ , γ] + λ([B12(∆) , B11(%CQ)] + [B12(%CQ) , B11(∆)])

+ λ2[B12(∆) , B11(∆)].

Choosing λ small enough, both of the commutators can be made nonzero, and hence %CQ + λ∆ is neither CQ nor
QC.

Corollary 5. In order to determine if a state is CQ or QC, the measurement must be informationally complete.
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