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ARTICLE INFO ABSTRACT
Keywords: Large scale neuroimaging datasets present the possibility of providing normative distributions for a wide variety
Harmonisation of neuroimaging markers, which would vastly improve the clinical utility of these measures. However, a major
MRI challenge is our current poor ability to integrate measures across different large-scale datasets, due to inconsis-
Whit‘? matter hyperintensities tencies in imaging and non-imaging measures across the different protocols and populations. Here we explore
UK Biobank s . . . . .
the harmonisation of white matter hyperintensity (WMH) measures across two major studies of healthy elderly
populations, the Whitehall II imaging sub-study and the UK Biobank. We identify pre-processing strategies that
maximise the consistency across datasets and utilise multivariate regression to characterise study sample differ-
ences contributing to differences in WMH variations across studies. We also present a parser to harmonise WMH-
relevant non-imaging variables across the two datasets. We show that we can provide highly calibrated WMH
measures from these datasets with: (1) the inclusion of a number of specific standardised processing steps; and (2)
appropriate modelling of sample differences through the alignment of demographic, cognitive and physiological
variables. These results open up a wide range of applications for the study of WMHs and other neuroimaging
markers across extensive databases of clinical data.
1. Introduction ity of merging datasets and achieving unprecedent statistical power
(Smith and Nichols, 2018). This has greatly increased the range of re-
The increasing availability of brain MRI datasets through multi- search questions that can now be tackled. Moreover, this provides the
centre studies, consortia, and data sharing platforms, along with the possibility of generating normative distributions of neuroimaging mark-
increased power of computational resources, allows for the possibil- ers, which would vastly improve the clinical utility of these measures.

However, the increasing use of combined datasets has raised the impor-
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tant issue of ensuring that measures are consistent across datasets. The
process of harmonisation aims to remove non-biological variability re-
lated to the measurement process, while preserving the biological and
especially the clinically-relevant variability present in the data.

In this work we aimed to combine different harmonisation ap-
proaches to develop a harmonisation pipeline for MRI-derived measures
of white matter hyperintensities (WMHs) of presumed vascular origin
(Wardlaw et al., 2013) on two large datasets related to healthy age-
ing that are part of the Dementias Platform UK (Bauermeister et al.,
2020): the Whitehall II imaging sub-study (WH) (Filippini et al., 2014)
and the UK Biobank (UKB) (Miller et al., 2016). For the WH study, two
MRI scanners were used. A second MRI scanner was included due to a
scanner upgrade which took place two-thirds of the way into the study
(Zsoldos et al., 2020). The UKB is also focused on the ageing population,
but used a different sample demographic, scanner, protocol, and set of
non-imaging variables (demographic, cognitive and physiological) com-
pared to WH. Our goal was to find the best combination of processing
approaches to minimise non-biological variability in WMH measures ex-
tracted from these datasets. This would help providing a comprehensive
protocol to successfully reduce biases and promote data integration.

The importance of characterising ageing-associated vascular damage
is increasingly recognised, since vascular disease contributes to more
than half of dementia cases, often in conjunction with Alzheimer’s dis-
ease pathology (Arvanitakis et al., 2016; Debette et al., 2010). Among
the signs of cerebral small vessel disease (SVD), WMHs are one of the
most commonly evaluated, but their underlying pathology and clinical
impact on cognition is still poorly understood (Wardlaw et al., 2013),
and possibly affected by age (Zamboni et al., 2019). An ability to com-
bine datasets would give additional insight on the relationships be-
tween WMH, its risk factors and clinical outcomes. It would not only
improve statistical power, but also enable complementary information
from datasets to be merged. For example, WH includes detailed longi-
tudinal cognitive and behavioural assessments that are of great impor-
tance for understanding dementia pathology. On the other hand, the
UKB dataset has a larger sample size, wider age range and more even
gender balance than WH, providing data on a wider segment of the
population. An ability to integrate WMH data across these two datasets
would combine their strengths and lead to novel insights into the prog-
nostic value of WMHs.

While many harmonisation approaches have been developed and
tested on T1-weighted (e.g. Fortin et al., 2018; Zandifar et al., 2018)
and diffusion MRI (e.g. Fortin et al., 2017; Mirzaalian et al., 2016), stud-
ies evaluating harmonisation approaches for T2-weighted scans and the
quantification of WMHs (and other lesions) are still lacking, despite the
recognition that biases are also present in this modality (Shinohara et al.,
2017; Guo et al., 2019). Consortia and working groups (Wardlaw et al.,
2013; Smith et al., 2019) recognised the need to standardise the as-
sessment of cerebral SVD and proposed a set of standard definitions,
acquisition protocols and a framework for developing neuroimaging
biomarkers of the condition. The HARmoNising Brain Imaging MEth-
odS for VaScular Contributions to Neurodegeneration (HARNESS) initia-
tive (https://harness-neuroimaging.org) also provides web-based repos-
itories of protocols, software tools and rating scales to facilitate multi-
centre research. While all these resources contribute to more standard-
ised assessment of WMHs, what is still currently lacking is a way to make
quantitative measures truly consistent.

The datasets we selected for this study allow us to test retrospec-
tive (i.e. after data collection) harmonisation strategies in the presence
(WH scanner upgrade) and absence (WH-UKB) of prospective (i.e. prior
to data collection) harmonisation. Harmonised acquisition protocols are
commonly employed in consortia and multi-centre studies (Jack et al.,
2008; Potvin et al., 2019) to facilitate future integration or compar-
ison of data, with agreement on collection procedures and common
measures prior to data collection. However, even after careful protocol
harmonisation, systematic differences in images across sites can remain
(related to scanner vendor, model, non-linearity of imaging gradients,
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magnetic field homogeneity, signal-to-noise ratio etc.) and lead to bias
in the MRI-derived measures (Kruggel et al., 2010; Potvin et al., 2019;
Shinohara et al., 2017; Mirzaalian et al., 2016; Guo et al., 2019). At
the image pre-processing level, harmonisation strategies aim to directly
remove the non-biological variability in the images (Mirzaalian et al.,
2016; Dewey et al., 2018) and provide processing procedures that en-
sure well-matched measures and consistent performance across datasets
(Erus et al., 2018; Zandifar et al., 2018; Guo et al., 2019). At the anal-
ysis level, harmonisation approaches may further standardise measures
derived across datasets and account for differences in the samples across
studies, to ensure that characteristics of imaging site and study do not
bias analyses (Fortin et al., 2017; Fortin et al., 2018; Pomponio et al.,
2020). Despite rapid progress, MRI data harmonisation remains a chal-
lenge because of the many sources that may drive variability in MR
measurements across datasets. Due to the different nature of the biases
involved, a single strategy is unlikely to achieve successfully harmonised
data (Wachinger et al., 2019; Glocker et al., 2019). With this study we
aim to combine manifold approaches to overcome such limitation.

A key element of the present work involved increasing the robust-
ness of FSL-BIANCA, a supervised classification method for segment-
ing WMHs (Griffanti et al., 2016). Briefly, BIANCA classifies the image
voxels based on their intensity and spatial features using the k-nearest
neighbour (k-NN) algorithm. The intensity features used by BIANCA
can be extracted from multiple MRI modalities, making it a very ver-
satile tool. Being a supervised method, it needs examples of manually
segmented WMHs for training the algorithm. The output image repre-
sents the probability of each voxel being a WMH. This image can then
be thresholded to obtain the final binary mask representing the WMHs
(see Griffanti et al., 2016 for further details). BIANCA has been tested
on vascular, neurodegenerative and healthy populations. It achieved ex-
cellent performance scores with respect to manual annotation and vi-
sual rating. It is registered among the software tools on the HARNESS
initiative website (https://software.harness-neuroimaging.org/harness-
software-catalog/bianca.html).

We assessed the effects of a variety processing choices on the har-
monisation of the identification of WMHs. As different datasets will of-
ten have different imaging modalities available, we determined the ef-
fects of using different combinations of modalities to train BIANCA. As
the rater employed to perform the manual segmentations used to train
BIANCA will typically be different across studies, we assessed impact
of the choice of rater, and the effects of training BIANCA on individual
datasets or on combined data. We also assessed the effect of using bias
field correction, as the distribution of radio frequency field (RF) inhomo-
geneities is unique to each scanner. We first explored the impact of these
processing choices on the harmonisation of WMHs measured across a
scanner change, using the WH data. We then extended the evaluation
to the retrospective merging of data across studies, comparing WH (as
a whole) with the UKB. Particularly in the latter case, it was important
to include non-imaging variables such as age and sex, to account for
differences in study populations. Finally, based on the results of these
assessments, we propose a set of recommendations for improving WMH
comparability across datasets.

2. Methods
2.1. Datasets

The datasets we used in this work are WH and UKB.

The first, described in Filippini et al., 2014, is part of a large lon-
gitudinal study, namely the Whitehall II Study, that explores the social
determinants of health. It involves a sample of British civil servants (age
range 60-85 years) who were first recruited in 1985 and participated
in a number of phases of clinical/cognitive assessment. Seven hundred
and seventy-four participants were selected randomly to receive multi-
modal brain MRI scans and a detailed cognitive battery at the Oxford
Centre for Functional MRI of the Brain (FMRIB) as part of the Imag-
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ing Sub-study (2012-2016). Out of those, we excluded 18 participants
with evident brain abnormalities other than WMHs (e.g. tumour, stroke,
multiple sclerosis), 17 due to poor quality of the available MRI scans or
lack of some of the MRI contrast of interest, and 26 with missing data
in the non-imaging variables of interest (details below). As a result, the
analysis was performed on a total number of 713 subjects, of which
513 (WH1) were imaged with a 3T Siemens Verio scanner (SC1) and
200 (WH2) with a 3T Siemens Prisma (SC2). Alongside the WH cohort,
5 additional young and healthy participants (age 31 + 4.9 years, age
range 26-39 years, 2 males) were also scanned at FMRIB on both SC1
and SC2 (‘traveling heads’). They were all acquired immediately before
the scanner replacement and then as soon as possible after the instal-
lation of the new machine, with an average time between scans of 5
months (150 + 6 days). The time of the day was not necessarily the
same for all subjects (details in Supplementary Table S1). Even though
these subjects did not have any WMHs, the MRI data allowed us to get
additional insight on non-biological sources of variability in the images
and test some harmonisation approaches.

The second dataset is the UKB imaging study, a sub-study of the
UKB prospective epidemiological study gathering extensive question-
naires, physical and cognitive measures, and biological samples from
predominantly healthy participants. The project imaging component
Miller et al., 2016, currently ongoing, aims to collect detailed diagnos-
tic MRI scans from 100,000 UKB participants. The sample available at
the time of our work included 14,503 subjects with scans released by
January 2019 (age range 46-80 years). Out of those with available MRI
data, we selected 2,295 participants who had no missing data in the
non-imaging variables of interest (details below). This allowed us to
avoid performing data imputation, which could have introduced an ad-
ditional source of variability, while retaining a large number to focus
on the methodological goal of imaging data harmonisation. Ten further
participants were excluded due to other brain abnormalities. The result-
ing UKB dataset was therefore composed of 2,285 participants.

Non-imaging variables — In order to model the biological variability
in WMH measures across datasets, we selected non-imaging variables
with a potential link to WMHs. An example of such variables is age. It
is one of the most important risk factor for WMHs, and WH and UKB
have only partially overlapping age ranges (WH: 60-85 years; UKB: 46—
80 years). Therefore, we considered particularly important to take it
into account as source of biological variability when comparing mea-
sures of WMHs across datasets. A total of 33 variables, including demo-
graphic, clinical and cognitive factors were selected among those avail-
able for the WH dataset. Subsequently, when performing harmonisation
between the WH and UKB datasets, we excluded 4 variables due to lack
of availability for all participants within the UKB cohort, or due to sub-
stantial differences in the data collection across the two datasets (e.g.
the design or administration of certain cognitive tests). The full list of
non-imaging variables selected for both datasets is presented in Table 1.

MRI data acquisition — Acquisition details for the datasets involved in
our analysis are listed in Table 2.

For the WH study, two MRI scanners were used, due to the scanner
upgrade two-thirds of the way through the study: a 3T Siemens Mag-
netom Verio scanner (SC1) with a 32-channel receive head coil (April
2012-December 2014) and a 3T Siemens Prisma scanner (SC2) with
a 64-channel receive head-neck coil in the same centre (July 2015-
December 2016). The MRI modalities used for WMH segmentation were
Fluid Attenuated Inversion Recovery (FLAIR) scans, T1-weighed scans
and diffusion-weighted scans (dMRI), to derive Fractional Anisotropy
(FA) maps. The MRI sequence parameters were either identical or
closely matched between the two scanners.

For the UKB dataset, MRI acquisition was carried out using a 3T
Siemens Skyra with a 32-channel receive head coil (full details in
Miller et al., 2016). As regards the MRI modalities, for the current study
we used FLAIR scans and T1-weighed scans. We decided not to include
dMRI within the WMH quantification pipeline, because the requirement
to have 3 usable MRI modalities for each subject would have caused
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the exclusion of a small, yet significant amount of data (see Alfaro-
Almagro et al., 2018 for an indication of usable data for each modality).
In fact, currently released measures of WMHs for UKB are extracted
using T1-weighted and FLAIR only. Moreover, unlike T1-weighted and
FLAIR scans, dMRI with 6 or more directions (needed to perform Dif-
fusion Tensor Imaging and generate FA maps) are not very common in
clinical contexts. Therefore, being able to obtain consistent WMH esti-
mates with common sequences would make our approach more widely
applicable.

MRI pre-processing — All the available MRI scans underwent pre-
processing using FSL v.6.0 tools (Jenkinson et al., 2012) before being
fed to BIANCA for WMH segmentation. T1-weighted scans were pro-
cessed using fsl_anat, which performs bias correction, brain extraction,
and partial-volume tissue segmentation using FAST (Zhang et al., 2001).
The sum of the volumes for the three tissue classes was used as to-
tal brain volume to normalise WMH measures. We used an exclusion
mask for cortical grey matter and structures that can appear hyperin-
tense on FLAIR and for which BIANCA is not currently optimised (details
in Griffanti et al., 2016). FLAIR images were brain-extracted using BET
(Smith, 2002) and bias field corrected with FAST (Zhang et al., 2001).
Images without bias field correction were also used to evaluate the effect
of this pre-processing step on the WMH measures. For WH data, dMRI
scans were pre-processed as described in (Filippini et al., 2014) and a
diffusion tensor model was fit at each voxel to obtain FA maps.

Since BIANCA works in single-subject space, we used FLIRT
(Jenkinson and Smith, 2001) to register all the MRI modalities to the
FLAIR scan, chosen as reference modality. Then, we masked the lat-
ter with the exclusion mask derived from the T1-weighted images. The
transformation between FLAIR and MNI space for each subject was also
calculated (using FLIRT) to be used by BIANCA to derive the spatial
features (MNI coordinates).

As BIANCA requires several parameter choices, we tested the influ-
ence of those that are particularly relevant for harmonisation, while
keeping the others constant. We performed a preliminary analysis to
assess the best combination of settings that produced consistent perfor-
mances for segmentation accuracy and specificity across datasets. The
best settings were found to be in line with the suggested parameters in
(Griffanti et al., 2016) and previously used in studies using BIANCA on
the WH dataset (Griffanti et al., 2018). Therefore, we fixed the following
parameters for BIANCA throughout our study: 2000 training points rep-
resenting WMH lesions, 10,000 points representing non-lesion voxels,
a patch size of dimension 3 voxels and a spatial weighting coefficient
equal to 2. The number of k nearest neighbours used in the algorithm
was set to k = 40, since it provided good performance in previous studies
using k-NN for white matter lesion segmentation (Anbeek et al., 2004;
Steenwijk et al., 2013; Griffanti et al., 2016).

A subset of manually segmented WMH images was available from
each dataset to train BIANCA and to evaluate its segmentation perfor-
mance in a cross-validated manner. The segmented data included 24
participants from the WH1 dataset, 24 from the WH2 dataset and 12
from the UKB dataset. The 24 subjects from WH1 were manually anno-
tated by two raters (R1, R2). Rater 2 repeated their annotation a year
later (R2a, R2b) enabling us to assess the effects of within- and between-
rater variability on the WMH measures. Rater 2 also labelled the 24
scans from the WH2 dataset. For UKB we used the manual masks of 12
subjects used in the released imaging pipeline (Alfaro-Almagro et al.,
2018).

2.2. Harmonisation pipeline

During our work we dealt with two scenarios: the first aimed to har-
monise the two Whitehall imaging sub-studies (WH1 and WH2) rep-
resenting data before and after the scanner upgrade within the same
cohort and centre; the second addressed the integration of the WH and
UKB cohorts, which were acquired on different scanners at different cen-
tres. The two scenarios allowed us to test the effect of different factors
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Table 1

Details of the non-imaging variables selected for our study.
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Harmonised Units

Variables Raw Units chosen Value harmonised
Whitehall UK Biobank Whitehall UK Biobank
Demographic Age Years (continuous) Years (integer) Years (integer) 69.73 + 5.15 61.46 + 7.13 o
Sex Categorical (binary) Categorical (binary) Categorical M: 586 (82.19%) M: 1013 (44.33%) o
(binary)
Biological Weight kg (continuous) kg (continuous) kg (continuous) 78.72 + 13.69 74.81 + 14.68 o
Height m (continuous) cm (integer) m (continuous) 1.74 + 0.08 1.70 + 0.09 o
BMI (Body Mass Index) Kg/m? (continuous) Kg/m? (continuous) Kg/m? 26.11 + 4.09 26.05 + 4.31
(continuous)
Systolic blood pressure mmHg (integer) mmHg (integer) mmHg (integer) 141.31 + 17.44 136.94 + 19.03 o
Diastolic blood Pressure mmHg (integer) mmHg (integer) mmHg (integer) 77.51 + 10.71 78.10 + 10.44
Pulse bpm (integer) bpm (integer) bpm (integer) 67.57 + 12.03 70.73 + 12.09 o
Hand class Categorical (3 classes) Categorical (4 classes) Categorical (3 Right: 631 (88.50%), Right: 2034 (89.01%),
classes) Left: 59 (8.27%), Left: 211 (9.24%),
Ambidextrous: 23 Ambidextrous: 40
(3.23%) (1.75%)
Socioeconomic Education Years (int) N/A N/A 19.10 + 2.85 N/A
Health behaviours Moderate physical h/week (continuous)  day/week (integer), h/week 16.99 + 27.59 4.27 + 5.96 o
activity min/day (integer) (continuous)
Vigorous physical h/week (continuous)  min/day (integer) h/week 9.41 + 17.06 1.47 + 2.27 o
activity (continuous)
Combination of h/week (continuous) day/week (integer), h/week 25.16 + 34.87 532 +6.79 o
different motorial tasks min/day (integer) (continuous)
Time spent watching TV h/week (continuous)  h/day (integer) h/week (integer) 5.62 + 3.28 19.07 + 10.09 o
Total walking activity  h/week (continuous) min/day (integer) h/week 10.10 + 8.00 6.36 + 6.68 o
(continuous)
Sleep duration h/day (continuous) h/day (integer) h/day (integer) 6.92 + 1.01 7.21 + 0.96 o
Smoker status Categorical (binary) Categorical (4 classes) Categorical Smoker: 27 (3.79%) Smoker: 65 (2.84%)
(binary)
Cigarette units units/day (integer) units/day (integer) units/day (integer) 0.45 + 2.84 0.32 +2.20
Alcohol status Categorical (binary) Categorical (4 classes) Categorical Consumer: 639 Consumer: 2206 o
(binary) (89.62%) (96.54%)
Alcohol units units/month units/day (categorical, units/month 14.83 + 15.16 5.26 + 39.05 o
(continuous) 5 classes), day/week  (continuous)
(categorical, 5 classes)
CVD Medications for Categorical (binary) Categorical (6 classes) Categorical Yes: 381 (53.44%) Yes: 228 (9.98%) o
(cardiovascular Cardiovascular Disease (binary)
disease) History of Categorical (binary) Categorical (6 classes) Categorical Yes: 133 (18.65%) Yes: 442 (19.34%)
Cardiovascular Disease (binary)
General health Self-rated health Categorical (4 classes) Categorical (9 classes) Categorical (4 Poor: 6 (0.84%), Fair:  Poor: 17 (0.74%), Fair: **
classes) 52 (7.29%), Good: 224 249 (10.90%), Good:

Total number of
medications

units (integer)

units (integer)

units (integer)

(31.42%), Very
good/Excellent: 431
(60.45%)

2.84 + 249

1425 (62.36%), Very
good/Excellent: 594
(26.00%)

1.60 + 1.81

Medications for Blood Categorical (binary) Categorical (6 classes) Categorical Yes: 232 (32.54%) Yes: 227 (9.93%) o

Pressure (binary)

History of Diabetes Categorical (binary) Categorical (4 classes) Categorical Yes: 62 (8.70%) Yes: 68 (2.98%) o
(binary)

Mental health Center for Categorical (4 classes) Categorical (5 classes) Categorical (4 Not at all: 600 Not at all: 1879 *
Epidemiologic classes) (84.15%), Several days: (82.23%), Several days:
Studies-Depression 90 (12.62%), More than 362 (15.84%), More
(CES-D) scale half the days: 18 than half the days: 28

(2.53%), Nearly every  (1.23%), Nearly every
day: 5 (0.70%) day: 16 (0.70%)
Depression - Categorical (binary) N/A N/A Yes: 29 (4.07%) N/A
Medications

Cognitive skills Trail Making Test (TMT) seconds (integer) seconds (continuous) seconds (integer) 30.69 + 11.10 37.72 + 13.46 o
A
Trail Making Test (TMT) seconds (integer) seconds (continuous) seconds (integer) 66.75 + 33.72 62.15 + 22.16 i
B
Digit CODing (DCOD) Correct answers ~ ~ 63.13 + 13.01 ~

(integer)
Digit Span Backward u (integer) u (integer) u (integer) 9.67 + 2.44 7.07 + 1.42 o

(DSB)

Reaction time ms (continuous) ~ ~ 315.45 + 68.03 ~

For each variable we display the raw units (used at the time of data collection), the units chosen to harmonise the data, and the numerical values for the two
cohorts in harmonised units, which allowed us to compare the two cohorts. The last column displays the results of the tests (t-test or chi-square, as appropriate)
showing non-imaging differences between the two cohorts (* for p-values < 0.05 and ** for p-values < 0.01). Variables requiring the application of non-imaging
harmonisation strategies are highlighted in bold. Legend: N/A = excluded due to lack of availability for all participants within the UK Biobank cohort, ~ = excluded
due to substantial differences in the data collection across the two datasets.
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Table 2
Acquisition details for the three scanners involved in our study.
Whitehall UK Biobank

3T Siemens Verio (WH1) 3T Siemens Prisma (WH2) 3T Siemens Skyra (UKB)
Sequence FLAIR T1 (MEMPR) dMRI (EPI) FLAIR T1 (MPRAGE) dMRI (EPI) FLAIR T1
TR (ms) 9000 2530 8900 9000 1900 8900 5000 2000
TE (ms) 73 1.79/3.65/5.51/7.37 91.2 73 3.97 91 395.0 2.01
Flip angle (degrees) 150 7 — 150 8 — — 8
Voxel dimension (mm?) 0.9x0.9x3 1x1x1 2X2x2 0.4x0.4x3 1x1x1 2X2X2 1.05x1x1 1x1x1
FoV read (mm) 220 256 192 220 192 192 256 256
FoV phase (%) 100 100 100 100 100 100 100 100
Base resolution 256 256 96 256 256 96 256 256
Phase resolution (%) 100 100 100 100 100 100 100 100
TI (ms) 2500 1380 — 2500 904 — 1800 880
Bandwidth (Hz/Px) 283 651 1680 283 200 1680 781 240
Orientation Transversal Sagittal Transversal Transversal Transversal Transversal Sagittal Sagittal
b-value (s/mm?) — — 1500 — — 1500 — —
Directions (n.) — — 60 + 6 b0 (1 —_ — 60 + 6 b0 (1 — —

reversed PE) reversed PE)

Acquisition time 4m 14s 6m 12s 9m 56s 4m 14s 5m 31s 10m 41s 5m 52s 4m 54s

Legend: FLAIR, fluid attenuated inversion recovery; MEMPR, Multi-Echo MPRAGE; MPRAGE, Magnetisation Prepared Rapid Acquisition Gradient Echo; dMRI,
diffusion MRI; EPI, Echo Planar Imaging; TR, repetition time; TE, echo time; FoV, field of view; TI, inversion time; PE, Phase Encoding.

affecting data and required some changes in the harmonisation pipelines
applied.

Scanner upgrade (Whitehall) - We started the analysis with the scan-
ner upgrade scenario (WH1 and WH2) that included prospective har-
monisation in the study design: the same non-imaging variables were
collected and the MRI protocol was as close as possible for the two
scanners. Retrospective harmonisation was therefore not needed for the
non-imaging data but carried out on the images.

The availability of manual masks from multiple raters, ‘traveling
heads’ data and FA maps for most of the participants allowed us to study
the impact of: (i) the rater performing the manual labelling, (ii) the pro-
cess of bias field correction on FLAIR images, (iii) the composition of
the dataset used to train BIANCA (training set) and (iv) the inclusion
of FA as one of the MRI modalities used by the segmentation tool to
derive intensity features. We compared one option at a time using the
metrics described in the Evaluation metrics section, while keeping the
others fixed, in order to understand how each one could influence the
results. We then identified optimal pre-processing and analysis strate-
gies to reduce non-biological variability across datasets, while retaining
or taking into account (modelling) the biological variability.

Effect of rater: in the training phase, BIANCA requires manually
delineated WMH masks, which are known to suffer from inter- and
intra-rater variability (Guo et al., 2019). We wanted to assess whether
BIANCA trained with different manual masks (either multiple annota-
tions by different raters or repeated annotations by the same rater) gen-
erates WMH segmentations that are more or less variable than the man-
ual annotations among themselves. If BIANCA produced more consistent
WMH masks than manual operators, the use of this automated segmen-
tation tool would be advisable to obtain more consistent results. We
evaluated this on data from a single scanner (WH1). We had multiple
annotations for 24 MRI scans (two raters - R1, R2; and two annotations
by R2 one year apart - R2a, R2b - corresponding manual masks M1,
M2a, M2b). Between-rater (M1 vs M2a; M1 vs M2b) and within-rater
(M2a vs M2b) agreement was calculated in terms of overlap between
the manual masks using Dice Similarity Index (DI — see Griffanti et al.,
2016). Each set of ratings was then used to train BIANCA and the au-
tomated WMH masks (B1, B2a, B2b) were generated using a leave-one-
out approach. We then calculated between-rater (B1 vs B2a; B1 vs B2b)
and within-rater (B2a vs B2b) agreement also on the automatically seg-
mented masks using DI. Finally, we compared DI values using paired
t-tests to assess whether consistency within the automatic WMH seg-
mentations was higher or lower with respect to consistency within the
manually labelled masks.

Effect of bias field correction: we assessed the impact of bias field
correction (BC) in multiple ways. One indication of successful harmoni-
sation is that harmonised images should be more similar to each other.
We evaluated this aspect on the ‘traveling heads’ data available for the
WH dataset. Corresponding scans from each of the 5 subjects were first
registered to each other and then resampled into the space half-way be-
tween the two. We then calculated the cost function (correlation ratio)
between the registered images as a measure of image similarity that
is not influenced by head position (lower cost function indicates more
similar images). The same procedure was repeated on the bias field cor-
rected images. The values of the cost function before and after BC were
compared with a paired t-test. Secondly, we investigated the effect of
BC on BIANCA performance (i.e. overlap with manual WMH masks) as
described in the Evaluation metrics section. The manual rater was R2
for both datasets and the training set for BIANCA was the same (24
subjects from WH1). We compared the results obtained before and af-
ter BC, to test whether the adoption of this pre-processing step could
provide more consistent results across datasets. We then evaluated the
effect of BC on the relationship between WMHs and age, and in terms of
explained variability of the scanner effect in a multivariate regression
model (see Evaluation metrics for details).

Effect of training set composition for BIANCA: we compared three
options that could be used to train BIANCA when performing WMH
segmentation on multiple datasets: single-site training (using the same
training set for all datasets, with examples coming only from one site - 24
subjects from WH1 in our case), site-specific training (training BIANCA
on each dataset separately) and mixed training (combining examples
from WH1 and WH2, 24 subjects each, in a single training set to apply
to all datasets). As before, we exploited several analysis approaches to
evaluate which option would lead to better harmonised WMH measures.
We investigated the effect of each option on: BIANCA performance, the
relationship between WMHs and age, and the weight of the scanner vari-
able in the multivariate regression model. All data were bias field cor-
rected before the analysis (see Evaluation metrics for details).

Effect of FA information: as previously mentioned, we did not use
FA maps derived from dMRI to inform WMH segmentation for the UKB
dataset, but FA maps were used in the WH dataset. Aiming to ultimately
integrate the two datasets, we assessed on WH datasets the impact of not
using FA as an additional intensity feature for BIANCA. We compared
the FA inclusion/exclusion cases in terms of BIANCA performance, re-
lationship between WMHs and age, and the weight of the scanner vari-
able in the multivariate regression model (see Evaluation metrics for
details). For testing this option, we only used bias field corrected im-
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ages and fixed BIANCA training set to be mixed (i.e. including examples
from WH1 and WH2).

Retrospective harmonisation of Whitehall and UK Biobank datasets — We
then extended the investigation to include data from the UKB cohort. In
this case, no prospective harmonisation had been performed for imag-
ing or non-imaging variables. The cohorts, despite being ageing pop-
ulations, differ in many aspects (see Table 1 for details). Hence, both
non-imaging and imaging data required harmonisation.

Non-imaging harmonisation: non-imaging data available for both
WH and UKB were converted to a common format. The conversion
was conducted using the FMRIB UKBiobank Normalisation, Parsing And
Cleaning Kit (FUNPACK) (McCarthy, 2019), a Python library for pre-
processing of UKB data containing a large number of procedures allow-
ing us to perform various data sanitisation and processing steps. We
defined a configuration file for FUNPACK, currently available online
on GitLab (https://issues.dpuk.org/eugeneduff/wmh_harmonisation). It
includes both built-in rules and new conversion functions that allowed
us to obtain non-imaging variables expressed in the same units of mea-
surements.

Imaging data harmonisation - effect of training set composi-
tion for BIANCA: for WH-UKB integration, the manual WMH masks
were generated by different raters, bias field correction was already
performed as part of the automated pre-processing pipeline (Alfaro-
Almagro et al., 2018) and FA was not used as additional intensity fea-
ture. We therefore tested whether the use of a specific training set for
BIANCA could improve harmonisation between UKB and WH, despite
different raters providing WMH examples and the use of only T1 and
FLAIR as intensity features. Similar to the previous scenario, we com-
pared the impact of site-specific and mixed training sets (this time com-
bining examples from WH1, WH2 and UBK). Also in this case, the eval-
uation included comparing BIANCA performance, the relationship be-
tween WMHs and age, and the weight of the scanner variable in the
multivariate regression model (see Evaluation metrics for details).

Evaluation metrics — We evaluated the success of harmonisation in
several ways.

First, the harmonised WMH segmentation pipeline should have the
same (or as close as possible) WMH segmentation performance across
datasets. To assess this, we calculated a series of overlap measures: Dice
Similarity Index (DI), voxel-level False Positive Ratio (FPR), voxel-level
False Negative Ratio (FNR), cluster-level FPR, cluster-level FNR (see
Griffanti et al., 2016 for details) between manual WMH masks and auto-
matically segmented WMH masks (obtained using leave-one-out cross-
validation whenever appropriate). We matched the number and the ap-
proximate lesion load of the manually annotated scans used to evaluate
the automatic segmentation performance for all datasets (12 subjects for
each dataset, WH1, WH2, UKB). We then looked at how different these
metrics were between datasets for each option tested (across-scanner
evaluation within option). In the scanner upgrade scenario we com-
pared metrics between SC1 and SC2 for each of the following options:
(A) without BC, single-site training, FA included; (B) with BC, single-site
training, FA included; (C) with BC, site-specific training, FA included;
(D) with BC, mixed training, FA included; (E) with BC, mixed training,
FA excluded. For the WH-UKB harmonisation we compared SC1 vs SC2
vs UKB for the (A) site-specific training and (B) mixed training options
(both with BC and no FA).

Alongside the harmonisation aim, we also took into account the accu-
racy of the WMH segmentation (since consistent BIANCA performance
across datasets does not necessarily correspond to accurate segmenta-
tion). Therefore — for each dataset — we compared BIANCA performance
across different options ((A) vs (B) for bias field, (B) vs (C) vs (D) for
training set, (D) vs (E) for effect of FA — for the scanner upgrade sce-
nario; (A) vs (B) for training set — for the WH-UKB scenario) to inves-
tigate whether the adoption of one of them could lead to substantial
improvements in terms of either segmentation accuracy, sensitivity or
specificity (within-scanner evaluation across options).
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When the number of available options for both the across- and
within-subject factors (being dataset and analysis option, respectively)
was equal to two (as for the rater, bias field, and FA assessment) we
used two-sample independent t-tests and paired t-tests for statistical as-
sessment. When the number of available options was higher than two
(as for the training set assessment) we first performed a two-way mixed
ANOVA test, to test for potential interaction between factors and then,
if results were significant, we investigated the main effect of each factor
through separate one-way ANOVA tests.

We then extended the evaluation to the full sample by considering
the output of the automatic WMH segmentation for all the available
subjects (WH1=513, WH2=200, UKB=2285), instead of just for those
with manual WMH mask. We calculated WMH volumes (expressed as
% of total brain volume) and compared them across datasets for each
option of the two scenarios. In doing this we wanted to take sources
of biological variability into account. Given that age is known to be
among the strongest risk factors for WMHs, we started by looking at the
correlation between WMH volumes and age in our datasets. We used a
one-way ANCOVA test, with WMH volumes as the dependent variable,
age as the main covariate and scanner/site as the categorical factor.
Age was demeaned to avoid multicollinearity and make results more
interpretable. With this test we assessed differences in terms of slope
(interaction between age and scanner) and intercept at mean age (main
effect of scanner) for each option. Similar regression slopes (no signif-
icant interaction) and reduced or no volume bias (no significant main
effect of scanner) would indicate successful harmonisation. When the
hypothesis of homogeneous regression slopes was not met (i.e. when
slopes were significantly different), we used the Johnson-Neyman tech-
nique to identify the “region of non-significance”, i.e. the range of age
values for which there are no significant differences in WMH% between
scanners (White, 2003).

Finally, harmonisation was evaluated by the extent to which it
reduced the variation in WMH volumes that could be explained by
scanner and dataset. We assessed this by examining the fit of a lin-
ear multivariate model, estimated using Elastic Net to reduce over-
fitting (Pedregosa et al., 2011), that predicted WMH volumes from non-
imaging variables (see Table 1 for details) (including a variable asso-
ciated with scanner/dataset). Well harmonised datasets will have min-
imal variance attributed to the scanner/dataset variables. While non-
linearities are likely to be present in the data, this linear approach al-
lowed us to compare the effect of the different processing approaches in
a highly interpretable way.

3. Results
3.1. Scanner upgrade (Whitehall)

Effect of rater. Overall, BIANCA produced more consistent WMH
masks than manual operators (Fig. 1). Comparing manual and auto-
matic segmentation procedures in terms of between-rater variability (R1
vs R2), we obtained opposite results when considering either the first
(R2a) or second rating (R2b) from the second rater. The comparison be-
tween R1 and R2a highlighted a higher agreement (higher DI values)
between manual masks (M1 vs M2a) than between the corresponding
BIANCA output (B1 vs B2a) (Fig. 1.A, p < 0.001 paired t-test). On the
other hand, the comparison between R1 and R2b showed better con-
sistency for BIANCA results (B1 vs B2b) than manual annotations (M1
vs M2b) (Fig. 1.B, p < 0.001 paired t-test). It is worth noting that the
worst agreements (both between manual masks and BIANCA outputs)
were observed for subjects characterised by very low WMH loads (dot-
ted lines). For within-rater (R2) variability, we observed that BIANCA
outputs (B2a vs B2b) had higher consistency than manual masks an-
notated twice by the same operator (M2a vs M2b) (Fig. 1.C, p < 0.001
paired t-test). For full details of the DI statistics across these comparisons
refer to Supplementary Table S2.
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Fig. 1. Effect of rater, assessed both in terms of between- (A and B) and within-rater variability (C). Each panel displays a comparison of the agreement (measured
with Dice Similarity Index) between manual masks annotated by the raters (left box-plots) and BIANCA outputs generated with masks from those raters (right
box-plot). Solid and dotted lines refer to results obtained on subjects characterised, respectively, by high and low WMH load. Legend: R1 = rater 1, R2a = Rater 2,
first rating, R2b = rater 2, second rating (1 year apart from the first rating, blind to first rating), M = manual, B = BIANCA.
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Fig. 2. Effect of bias field correction (BC) on ‘travelling heads’ data from the WH dataset. (A) example data from 1 subject acquired on both scanners, before and after
BC showing improvement in image similarity after BC (B) Cost function (correlation ratio) between Scannerl/Scanner2 images of the 5 traveling head participants,

calculated before and after BC (*** - p < 0.001).

Effect of bias field correction. BC led to increased image similarity,
when comparing ‘traveling heads’ data from the two WH scanners, as
clearly visible from the example shown in Fig. 2.A. This was confirmed
by a significant decrease in the cost function (correlation-ratio) after BC
(p < 0.001 paired t-test; Fig. 2.B).

The effects of bias field correction on BIANCA performance are
shown in Table 3 and Fig. 3 (where Fig. 3 displays DI values, while the
equivalent plots for the other metrics are reported in the Supplemen-
tary material). Comparing segmentation performance within scanner,
we observed a significant increase in the overall segmentation accuracy
after BC, with higher DI values for both WH1 and WH2 datasets (Fig. 3).
Moreover, BC led to a greater level of specificity for the WH2 dataset,
demonstrated by a significant decrease in FPR and cluster-level FPR. For
the WHI1 dataset, the DI improvement was accompanied by a decrease
of FNR and cluster-level FNR values. This was at the expense of an in-
crease in the WHI1 FPR and cluster-level FPR. There was a significant
difference in DI values between WH1 and WH2 after but not before BC.
This was likely due to a combination of uneven increase of accuracy in

WHI1 and WH2 and a reduction of the variability of DI values within
scanner (smaller interquartile range in boxplots — Fig. 3). However, BC
also had a positive impact on FPR which were no longer significantly
different across-scanners.

We then analysed the correlation between WMH volumes and age
to determine the extent to which this relationship was affected by the
scanner for the two BC options (Fig. 4.A and B). Results of the one-
way ANCOVA tests reported in Table 5 show no significant difference
when comparing regressions slopes between scanners for both options
(p-value=0.836 before BC; p-value=0.892 after BC). A significant across-
scanner difference was instead found in the intercepts — in correspon-
dence to the mean age — both before and after BC. However, the dif-
ference was reduced after BC (p-value<0.001 before BC; p-value=0.029
after BC).

Finally, the implemented Elastic Net model showed that, after BC,
the amount of variance in WMH volume attributed to the scanner/site
of acquisition was lower (from 0.046 to 0.012, see Table 6), passing
from second to sixth position (Fig. 5.A and B). Elastic Nets were used to



Table 3

BIANCA performance - scanner upgrade scenario — Summary of all the overlap measures between BIANCA output and the corresponding manual mask, calculated for the different analysis options tested in our study
(using leave-one-out cross-validation whenever appropriate). Statistical tests performed on data to assess the impact of bias field correction, training modalities and FA inclusion/exclusion on the segmentation

performance.
DI FPR FNR cluster-level FPR cluster-level FNR
WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2
Overlap Mean + std Option A 0.52 + 0.10 0.59 + 0.07 0.05 + 0.04 0.33 +£0.16 0.63 + 0.09 0.43 + 0.08 0.09 + 0.07 0.69 + 0.14 0.610.13 0.48 + 0.11
measures Option B 0.75 + 0.06 0.64 + 0.03 0.18 + 0.08 0.22 + 0.10 0.28 + 0.09 0.42 + 0.07 0.33 +0.17 0.57 + 0.18 0.35 + 0.17 0.47 + 0.09
Option C 0.75 + 0.06 0.73 £ 0.05 0.18 + 0.08 0.26 + 0.12  0.28 + 0.09 0.24 + 0.08 0.33 +0.17 0.53 + 0.18 0.35 + 0.17 035 + 0.12
Option D 0.76 + 0.05 0.71 £ 0.04 0.22 + 0.09 023 +£0.11 0.23 + 0.08 0.30 + 0.07 0.42 + 0.16 0.52 + 0.17 0.28 + 0.15 0.40 + 0.10
Option E 0.48 + 0.11 0.45 + 0.06 0.07 = 0.05 0.09 + 0.09 0.66 + 0.09 0.68 + 0.06 0.15 + 0.09 0.17 £ 0.10 0.55 + 0.14 0.63 + 0.10
Effect of Bias Between-subject WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
field analysis: independent Option A 0.061 < 0.001 *** < 0.001 *** < 0.001 *** 0.020 *
correction t-test Option B < 0.001 *** 0.259 < 0.001 *** 0.004 ** 0.049 *
Within-subject analysis: Option A vs < 0.001 *** 0.035 * < 0.007 *** 0.002 ** < 0.001 *** 0.531 < 0.007 *** < 0.001 *** < 0.001 *** 0.306
paired t-test Option B
Effect of Training - Scanner < 0.0071 *** < 0.001 *** < 0.007 *** < 0.001 *** < 0.001 ***
Training interaction: two-ways
modalities mixed ANOVA test
Main effect of the WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
Scanner Option B < 0.001 *** 0.259 < 0.001 *** 0.004 ** 0.049 *
(between-subject factor): Option C 0.433 0.071 0.272 0.013 ** 0.998
independent t-test Option D 0.046 * 0.861 0.049 * 0.178 0.049 *
Main effect of the 0.466 < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 0.036 * < 0.001 *** < 0.007 ***
Training (within-subject Option B vs ——— < 0.001 *** < 0.0071 *** < 0.001 *** 0.45 < 0.0071 ***
factor): repeated Option C
measures one-way Option Bvs —— < 0.001 *** < 0.001 *** 0.309 < 0.001 *** < 0.001 *** < 0.001 *** 0.045 * < 0.001 *** < 0.001 ***
ANOVA test (F-test and Option D
post-hocs) Option Cvs —— 0.044 * < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 1 < 0.0071 *** 0.002 **
Option D
Effect of FA  Between-subject WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
inclusion/ analysis: independent Option D 0.046 * 0.861 0.049 * 0.178 0.049 *
exclusion t-test Option E 0.462 0.461 0.484 0.565 0.134
Within-subject analysis: Option D vs < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.0071 ***
paired t-test Option E

Options tested in our study are: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA
included; (E) with BC, mixed training, FA excluded. For each metric we reported: (i) mean + std values relative to all datasets involved in our study (WH1, WH2); (ii) impact exerted by bias field correction on
BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively); (iii) impact exerted by training modalities on BIANCA performance (two-ways mixed
ANOVA test assessing the interaction between training and scanner (between- and within-subject factors respectively); when the interaction term resulted being significant we decomposed the analysis in two
separate components assessing the main effect of training (repeated measures one-way ANOVA test evaluating differences between the investigated options for each dataset involved in our study; F-test and
post-hoc comparisons are displayed) and the main effect of scanner (independent t-test evaluating differences between the investigated dataset for each option involved in our analysis); (iv) impact exerted by FA
inclusion/exclusion on BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively). Results relative to the statistical tests are all reported in terms of
p-values: * (< 0.05), ** (< 0.01), *** (< 0.001). Legend: DI = Dice Similarity Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall dataset 2.
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Fig. 3. BIANCA performance - scanner up-
grade scenario. Box-plot of the Dice Similar-
s WHA1 ity Index (DI) between BIANCA output and the
. WH2 corresponding manual masks for the different
analysis options tested during our study (spec-
ified on the x axis). All the displayed results
were evaluated on a sub-sample of manually
segmented subjects (12 for WH1 and 12 for
WH2) balanced in terms of WMH load and
= using leave-one-out cross-validation whenever
* appropriate (details in the main text).
+
With BC
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reduce the likelihood of over-fitting of these complex models. While reg-
ularisation may in some cases have unpredictable effects on regression
parameters, in this case matching results were observed when models
were fit using standard Ordinary Least Squares (OLS).

Effect of training set composition for BIANCA. Overall, our results
suggest that the mixed-training option offers the best trade-off among
the explored evaluation metrics, providing good and consistent BIANCA
performance and consistent WMH volumes.

When investigating the presence of a significant interaction be-
tween scanners (WH1/WH2) and training options (single-site/site-
specific/mixed), a two-way mixed ANOVA test gave significant results
for all the assessed overlap measures (Table 3). Therefore, we inves-
tigated the effect of each factor separately, evaluating firstly across-
scanner and then within-scanner performances. Site-specific training
produced the most consistent segmentations with respect to across-
scanner performance. Between the remaining two options, the mixed
training showed better consistency with respect to single-site training,
with no significant WH1-WH2 difference in the cluster-level FPR val-
ues. When comparing segmentation performance within-scanner, we ob-
served an overall improvement of results in WH2 when BIANCA was
trained using annotated data from WH2 (site-specific training) rather
than from WHI (single-site training). The significant improvements in
DI, FNR and cluster-level FNR were only at the expense of increased
FP values. The comparison between site-specific and mixed training led
to different results for the two scanners, with significantly worse FPR
and cluster-level FPR values for mixed training in WH1 and worse DI,
FNR and cluster-level FNR values in WH2. The remaining indicators
showed improved or unaltered performance with mixed training. Re-
sults showed a favourable pattern towards mixed over single-site train-
ing. For WH1, we observed a significant improvement for both FNR and
cluster-level FNR when using mixed training, no significant difference in
DI, and worse FPR and cluster-level FPR. For WH2, better performances
were observed using a mixed training for all the indicators except FPR,
which was not significantly different from the single-site training case.

The results obtained from the one-way ANCOVA tests (Table 5)
showed that site-specific training led to a significant difference between
the age regression slopes for the two scanners (p-value=0.004). The
Johnson-Neyman technique further confirmed that using this option led
to the highest differences in WMH% between scanners (Fig. 4.B, C and
D) as the region of non-significance between WH1 and WH2 would have
been between 51.13 and 57.95 years, a narrow range of values outside
the age range of WH data (60-85 years). The adoption of a mixed train-
ing had a positive impact on regression slopes, such that they were no

longer significantly different (p-value=0.129) and also reduced the vol-
ume bias (at the mean age) (p-value=0.052).

When site-specific training was used, the weight of the scanner/site
variable was greatly increased in the multivariate regression model,
compared to the single-site option (Fig. 5.B and C), with scanner/site
being the variable that explained the greatest amount of variance (from
0.012 to 0.066, see Table 6). The adoption of a mixed training instead,
reduced the amount of variance explained by the scanner/site variable
(from 0.066 to 0.008, see Table 6), with the variable moving to the ninth
position (Fig. 5.D).

Effect of FA information. The removal of FA as an additional inten-
sity feature for WMH segmentation led to higher consistency between
sites, but lower segmentation accuracy.

Without FA there were no significant differences between the WH1
and WH2 datasets in all performance metrics. There was a significant de-
crease in the overall segmentation accuracy when excluding FA from the
intensity features used by BIANCA, with lower DI performances (Fig. 3),
and a negative impact on both FNR and cluster-level FNR (worse sensi-
tivity). Removing FA also lowered FPR and cluster-level FPR, leading to
a greater level of specificity.

For the correlation between WMH volumes and age, results of the
one-way ANCOVA tests (Table 5) showed that, excluding FA, the dif-
ference in slopes remained not significant (p-value=0.379). The already
small volume bias (at mean age) was further decreased (p-value=0.874)
(Fig. 4.D and E).

Extracting WMHs using FLAIR and T1-weighted images only led to
a decrease in the variance explained by the scanner/site variable (form
0.008 to 0.000, see Table 6), which was no longer present amongst the
most predictive features (Fig. 5.D and E).

Retrospective harmonisation of Whitehall and UK Biobank datasets

Non-imaging harmonisation. By applying our configuration file for
FUNPACK, we brought all the variables into the same units for both
datasets. Table 1 shows the format/units that each of the selected non-
imaging variables were originally acquired with in WH and UKB, as well
as the harmonised units chosen and the resulting harmonised mean and
standard deviation values.

Imaging data harmonisation - effect of training set composition
for BIANCA. We next assessed the impact of different training sets (site-
specific and mixed training) on the level of harmonisation between the
WH and UKB WMH datasets (the single-site training was not tested, as
it gave poor results in the scanner upgrade scenario).

Results for BIANCA performance in terms of Dice Similarity In-
dex (DI) are shown in Fig. 6. The equivalent plots for the other met-
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Fig. 4. Association between WMHs and age — scanner upgrade scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume,
y axis) and age (x axis), for WH1 (cyan) and WH2 (purple) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the
investigated analysis options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA
included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded. Evaluation was conducted on the full sample of data for both datasets
(WH1 = 513, WH2 = 200) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

rics are reported in the Supplementary material. The two-way mixed formance with respect to the other datasets (WH1, WH2), using either
ANOVA test highlighted the presence of a significant interaction be- site-specific or mixed training. Significant differences between WH1 and
tween the scanners (WH1/WH2/UKB) and the training options (site- UKB were observed in DI, FNR and cluster-level FNR in the site-specific
specific/mixed) for all the overlap measures (Table 4). For this rea- training case. DI, FNR and cluster-level FPR were significantly differ-
son, we further evaluated the main effect of each factor, investigat- ent in the mixed training case. All overlap metrics were significantly
ing across- and within- scanner performance separately. Results of the different between WH2 and UKB, except FPR and cluster-level FPR
one-way ANOVA test revealed significant differences for all metrics using site-specific training. Within-scanner comparisons highlighted a
across scanners when using a mixed training. The site-specific train- more favourable pattern towards the site-specific training. In fact, the
ing gave more homogeneous results, (non-significant FPR and cluster- use of a mixed training dataset led to improved segmentation sensi-
level FPR). Post-hoc pairwise comparisons revealed no significant dif- tivity only for WH1, with a significant decrease of cluster-level FNR,

ference in any overlap metrics between WH1 and WH2 for either of and improved specificity for UKB with lower FPR and cluster-level
the training options. On the other hand, UKB showed a different per- FPR.
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Fig. 5. Multivariate model - scanner upgrade scenario. Percentage of variance (y axis) explained by non-imaging variables (reported on the x axis) in the linear
multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data (WH1 = 513, WH2 = 200). Each plot refers to one of
the investigated analysis options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training,
FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values are reported
in Table 6 and Supplementary Table S3 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 6. BIANCA performance — retrospective
data merging scenario. Box-plot of the Dice
1.0 Similarity Index (DI) between BIANCA out-
. WH1 X
WH put and the corresponding manual mask for
UKB the different analysis options tested during our
0.8 study (specified on the x axis) All the dis-
played results were evaluated on a sub-sample
of manually segmented subjects (12 for WH1,
12 for WH2 and 12 for UKB) balanced in terms
06 of WMH load and using leave-one-out cross-
— validation.
[a)
0.4
0.2
0.0
With BC With BC
Site-specific training Mixed training
FA Excluded FA Excluded
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Table 5
Analysis of the relationship between WMH volumes and age — scanner upgrade and retrospective data merging scenario — Summary of the one-way ANCOVA test
and Johnson-Neyman (J-N) procedure.

Scanner upgrade scenario Retrospective data merging scenario

Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option B Analysis option C
One-way ANCOVA F(1, 709) = 0.043, F(1, 709) = 0.019, F(1, 709) = 8.358, F(1, 709) = 2.303, F(1, 709) = 0.774, F(1, 2994) = 10.705,  F(1, 2994) = 8.334,
Slope p = 0.836 p = 0.892 p = 0.004 ** p =0.129 p =0.379 p = 0.001 ** p = 0.004 **
One-way ANCOVA F(1, 709) = 43.678, F(1, 709) = 4.772, F(1, 709) = 3.789, K(1, 709) = 0.025, —4MM——-
Intercept p < 0.007 *** p =0.029 * — - p<0.052 p =0.874 _
J-N Region of 51.13-57.95 N/A 66.06-75.54

non-significance
(age interval in
years)

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included;
(C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective data
merging scenario: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. The one-way ANCOVA test evaluated across-scanner
differences (between WH1/WHZ2 or between WH1/WH2/UKB) characterising regression slope (interaction between age and scanner) and intercept at mean age (main
effect of scanner) in the linear model relating WMH% to age. Results of the ANCOVA test are reported in terms of F(df)- and p-values: * (< 0.05), ** (< 0.01), ***
(< 0.001). When the hypothesis of homogeneous regression slopes was not met, we used the Johnson-Neyman procedure to evaluate the across-scanner differences.
Results for the Johnson-Neyman procedure are reported in terms of age intervals. Legend: N/A = Not Available (i.e. there was no age interval where WMH% were
not different across scanners).

25 25 s WH1
A) SITE-SPECIFIC TRAINING B) MIXED TRAINING e WH?2
s UKB

20 20

Fig. 7. Association between WMHs and age — retrospective data merging scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total
brain volume, y axis) and age (x axis), for WH1 (cyan), WH2 (purple) and UKB (orange) data. Regression lines with 95% confidence interval are also displayed. Each
plot refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Evaluation was
conducted on the full sample of data for all datasets (WH1 = 513, WH2 = 200, UKB = 2285) (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

Table 6
Elastic Net Regression performance — retrospective data merging scenario — Summary of the results in terms of variance explained by the model and by age and
scanner, the features considered most relevant in our study. Full details of all the other features are provided in Supplementary Table S3.

Scanner upgrade scenario Retrospective data merging scenario

Analysis option  Analysis option ~ Analysis option  Analysis option  Analysis option  Analysis option  Analysis option

A B C D E A B
Variance explained by the model 0.243 0.161 0.207 0.173 0.125 0.190 0.098
Variance explained by Age 0.060 0.043 0.048 0.054 0.034 0.052 0.070
the features Scanner 0.046 0.012 0.066 0.008 0.000 0.115 0.000

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included;
(C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective data
merging scenario: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. The amount of WMH variance explained by the model
is calculated using the R-squared coefficient and reported in the first row. The amount of WMH variance explained by the features is reported in the rest of the table
for the most relevant variables (age and scanner).

major impact on the final BIANCA outputs. If the manual segmentations is low, BIANCA results can be even less consistent than manual masks.
provided to BIANCA are sufficiently similar between raters/ratings, the This prompts the need to standardise the definition of WMHs, especially
automated tool improves the consistency of the output, providing bet- in light of the fact that even if an increase in rating consistency is even-
ter within- and between-rater agreement than the manual raters/ratings tually achieved, this does not necessarily mean the obtained results are
themselves. On the other hand, if the agreement between manual masks better in terms of accuracy. While for other segmentation tasks, e.g.
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Fig. 8. Multivariate model - retrospective data merging scenario. Percentage of variance (reported on the y axis) explained by non-imaging variables (reported on
the x axis) in the linear multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data for all the involved populations
(WH1 = 513, WH2 = 200, UKB = 2285). Each plot refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC,
mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values are reported in Table 6 and Supplementary Table S3 (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).

hippocampus segmentation, clear protocols exist for manual labelling
(Zandifar et al., 2018), there is no such protocol for WMHs. It is also
worth noting that the lowest agreements (both between manual and au-
tomatic results) were observed for subjects characterised by a very low
WMH load. In these images, WMHs are likely to be more difficult to
segment because of their less obvious appearance or small size. Spe-
cific guidelines should therefore aim to clarify these sources of ambi-
guity. This analysis was limited by the relatively small number of rat-
ings available and the range of expertise of the raters (R1 neuroimaging
researcher, R2 medical student trained and supervised by an experi-
enced neurologist). However, the scope of this evaluation was to explore
how differences in manual ratings can impact a supervised segmentation
method like BIANCA.

Correcting for bias field had a positive impact on almost all the
metrics used for evaluation, indicating that, overall, its adoption con-
tributes to successful harmonisation. We observed increased image sim-
ilarity when comparing ‘traveling heads’ data from the WH scanners,
showing a clear removal of scanner-related variability in the images, re-
gardless of the difference in time of day for the acquisition. BIANCA
performance improved after BC, although in terms of consistency of
performance between scanners, an improvement was only observable
when BC was combined with a different strategy for the composition
of the training dataset, such as re-training BIANCA within each scan-
ner or merging multiple examples from different scanners (Fig. 3). The
successful removal of non-biological differences with BC was also evi-
dent when considering the correlation between WMH volumes and age,
which showed that BC preserved the relationship with age (slopes not
significantly different) while causing a decrease in the volume bias in
correspondence of the mean age. The regression modelling using Elastic
Nets confirmed the improved harmonisation with a significant decrease
in the importance attributed to the scanner/site of acquisition (with sim-
ilar results for OLS). Bias field correction of T2-weighted (and FLAIR)
images is, however, not always included in pre-processing pipelines. In
this work we specifically assessed the impact of BC on WMH segmenta-
tion and confirmed that it is beneficial to obtain more consistent image
segmentation outputs across datasets.

The information provided by dMRI proved to be useful to obtain
accurate WMH segmentation. When using FA maps as one of the inten-
sity features for BIANCA, the performance within-scanner was higher
than when using only T1-weighted and FLAIR images. However, when
using only two modalities, all the overlap measures were more consis-
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tent across scanners, and the volume bias was reduced. Furthermore,
the scanner was no longer a significant predictor of WMH volumes in
the regression model. The decision regarding whether to use FA would
therefore depend on the application. While for an accurate segmen-
tation it is useful to include features from diffusion-weighted scans,
it also constitutes an additional source of variability across datasets
and scanners, leading to less harmonised WMH measures. dMRI data
may be more sensitive to scanner and protocol changes than T1 and
FLAIR due to the complexity of the sequence. Extra sources of vari-
ability in the measurements can be introduced by differences in the
angular and spatial resolution, the number and distribution of diffu-
sion gradient directions, the b-values, and other acquisition protocol
parameters (Tax et al., 2019; Fortin et al., 2017). Several harmonisation
strategies have been developed for dMRI including statistical data pool-
ing techniques (Fortin et al., 2017), dictionary learning architectures
(St-Jean et al., 2020) and registration-based methods (Mirzaalian et al.,
2016; Mirzaalian et al., 2018), but it remains an active area of research
(Tax et al., 2019; Ning et al., 2019, 2020). Further work in this area
should allow integration of DTI-derived measures in multimodal analy-
ses such as ours, while maintaining good consistency of results. Another
aspect to keep in mind is that FA might not always be available (while
T2-FLAIR and T1 scans are more commonly acquired), preventing the
integration of datasets (or participants within a dataset) that do not have
all of them available and usable.

Regarding the choice of the composition of the training dataset for
BIANCA we started by exploring three options in the scanner upgrade
scenario. We compared the effect of using the same set for all the sites
(single site), re-training BIANCA within-scanner (site-specific), or merg-
ing examples from different scanners (mixed). Single site training led
to the biggest difference in BIANCA performance across datasets and
a significant bias in the volumes (significantly different intercept at the
mean age), although the relationship with age remained consistent (non-
significant difference in regression slopes, highest amount of variance
explained by age). On the other hand, the site-specific training pro-
vided the highest and most consistent BIANCA performance (overlap
with manual masks on the subset of subjects with manual labels avail-
able) but led to the biggest difference in WMH volumes on the whole
sample (significantly different slopes of the regression lines, Johnson—
Neyman region of non-significance not within the age range of interest,
highest amount of variance explained by the scanner variable). The re-
sults observed for the mixed training set suggest it represents the best
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trade-off between good and consistent BIANCA performance, and con-
sistent WMH volumes. Although this could also be due to the fact that
more images were used in the mixed training, similar results were ob-
served when using the same number of images (12 from each scanner).

We further compared the best performing options (site-specific vs
mixed) when harmonising WMH measures between WH and UKB. Us-
ing bias field corrected data and FLAIR and T1 as intensity features,
the results were similar to the scanner upgrade scenario. While the seg-
mentation performance was overall higher in the case of site-specific
training, the most consistent results were those obtained with the mixed
training set. To better understand these results we investigated how the
information from the mixed datasets was used by BIANCA. In fact, even
if the training points come from different datasets, only the (k = 40)
neighbours are used in the classification of each point. We therefore
confirmed that in the mixed training option, the neighbours used by the
algorithm were indeed coming from a mixture of examples from the dif-
ferent datasets (see supplementary material for details). Moreover, we
verified that our results were not driven by the significantly different
age ranges of the three datasets by repeating our analyses on a subset of
age-matched subjects and finding very similar results (see supplemen-
tary material for details). We still cannot exclude the possibility of some
volume over/underestimation especially in the younger subjects. Future
evaluations on additional samples of younger subjects and with manual
masks will be important to further investigate this aspect.

The choice of the most suitable training set should hence be made
depending on the application. When prioritising a more accurate WMH
segmentation, a site-specific training is likely to give the best perfor-
mance. When the aim is to compare or merge multiple datasets, a mixed
training set is more appropriate.

Both of the optimal options identified above would require the effort
of generating, or having access to, some manual masks and having to re-
train BIANCA. Even if the numbers required are not high (12 images per
dataset proved to be enough), this could still be an unfeasible option for
some applications. The use of a single training set for multiple datasets
would still be a valid option, but in light of our results, the recommenda-
tion would be to carefully check the segmentation accuracy and, when
combining the resulting volumes, to consider the use of further strate-
gies in the analyses to address potential biases (e.g. additional covariate
in statistical analyses). The fact that including more examples from dif-
ferent datasets improved the results suggests that a promising solution
would be to build a larger and more representative/generalisable train-
ing set, including examples from more scanners/datasets, that could be
widely used. Towards this, we are publicly sharing our mixed training
sets’. Future work on more datasets should assess if, with a sufficiently
large set of examples, a single training set is general enough to be able
to be successfully applied to new datasets.

The implemented multivariate linear regression approach suggested
that major differences between datasets were removed with optimal
pre-processing without direct harmonisation between datasets. How-
ever, direct harmonisation approaches such as ComBat (Fortin et al.,
2018), which estimate corrections between datasets, applied either di-
rectly to T2 images, or to the output of BIANCA, could further enhance
the harmonisation of these datasets. ComBat, specifically, is focused
on small datasets, taking advantage of commonalities across “batches”
(here, space) to improve estimation of site effects. While it may not pro-
vide substantial benefits for the large datasets analysed here, this could
bring benefits to the harmonisation of smaller datasets. Approaches such
as ComBat could also correct for multiplicative site effects, although it is
not clear these are a major factor for WMHs. We expect that non-linear
modelling of the non-imaging variables of interest would be valuable in
this endeavour, as WMHs greatly increase in prevalence at later ages.

An important part of retrospective data merging was also the har-
monisation of non-imaging variables. Modelling the biological variabil-

1 https://issues.dpuk.org/eugeneduff/wmh_harmonisation
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ity is crucial to obtain imaging measurements that are well aligned
across datasets. The ad-hoc configuration file we created for FUNPACK
allowed us to obtain matched variables, with the same units across the
WH and UKB datasets. The configuration file is openly available! and
fully customizable, so it can be adapted to different datasets and ex-
panded to include more variables and conversion rules.

To conclude, we identified processing strategies to maximise the con-
sistency across two large datasets, Whitehall IT and UK Biobank, for the
study of WMHs. We harmonised non-imaging variables and proposed a
processing pipeline to minimise the effect of non-biological sources of
difference in the imaging data. The main recommendations emerging
from this work are the following:

¢ Use WMH manual masks generated from the same rater whenever
possible and establish guidelines to maximise consistency of the
manual masks;

Perform bias field correction;

Carefully consider the trade-off between improving segmentation
performance with additional modalities (e.g., FA) and using a
smaller set of modalities (T1-weighted and FLAIR), which are more
reliably present across studies and provide better dataset harmoni-
sation;

Train BIANCA on data coming from a mix of different scan-
ners/studies when working with more than one dataset.

We showed that with these steps, and appropriate modelling of sam-
ple differences through the alignment of demographic, cognitive and
physiological variables, we can provide highly consistent WMH mea-
sures. These results open up a wide range of applications for the study
of WMHs and potentially other neuroimaging markers across extensive
databases of clinical data.
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