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a b s t r a c t 

Large scale neuroimaging datasets present the possibility of providing normative distributions for a wide variety 

of neuroimaging markers, which would vastly improve the clinical utility of these measures. However, a major 

challenge is our current poor ability to integrate measures across different large-scale datasets, due to inconsis- 

tencies in imaging and non-imaging measures across the different protocols and populations. Here we explore 

the harmonisation of white matter hyperintensity (WMH) measures across two major studies of healthy elderly 

populations, the Whitehall II imaging sub-study and the UK Biobank. We identify pre-processing strategies that 

maximise the consistency across datasets and utilise multivariate regression to characterise study sample differ- 

ences contributing to differences in WMH variations across studies. We also present a parser to harmonise WMH- 

relevant non-imaging variables across the two datasets. We show that we can provide highly calibrated WMH 

measures from these datasets with: (1) the inclusion of a number of specific standardised processing steps; and (2) 

appropriate modelling of sample differences through the alignment of demographic, cognitive and physiological 

variables. These results open up a wide range of applications for the study of WMHs and other neuroimaging 

markers across extensive databases of clinical data. 
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. Introduction 

The increasing availability of brain MRI datasets through multi-

entre studies, consortia, and data sharing platforms, along with the

ncreased power of computational resources, allows for the possibil-
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 Smith and Nichols, 2018 ). This has greatly increased the range of re-

earch questions that can now be tackled. Moreover, this provides the

ossibility of generating normative distributions of neuroimaging mark-

rs, which would vastly improve the clinical utility of these measures.

owever, the increasing use of combined datasets has raised the impor-
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C  
ant issue of ensuring that measures are consistent across datasets. The

rocess of harmonisation aims to remove non-biological variability re-

ated to the measurement process, while preserving the biological and

specially the clinically-relevant variability present in the data. 

In this work we aimed to combine different harmonisation ap-

roaches to develop a harmonisation pipeline for MRI-derived measures

f white matter hyperintensities (WMHs) of presumed vascular origin

 Wardlaw et al., 2013 ) on two large datasets related to healthy age-

ng that are part of the Dementias Platform UK ( Bauermeister et al.,

020 ): the Whitehall II imaging sub-study (WH) ( Filippini et al., 2014 )

nd the UK Biobank (UKB) ( Miller et al., 2016 ). For the WH study, two

RI scanners were used. A second MRI scanner was included due to a

canner upgrade which took place two-thirds of the way into the study

 Zsoldos et al., 2020 ). The UKB is also focused on the ageing population,

ut used a different sample demographic, scanner, protocol, and set of

on-imaging variables (demographic, cognitive and physiological) com-

ared to WH. Our goal was to find the best combination of processing

pproaches to minimise non-biological variability in WMH measures ex-

racted from these datasets. This would help providing a comprehensive

rotocol to successfully reduce biases and promote data integration. 

The importance of characterising ageing-associated vascular damage

s increasingly recognised, since vascular disease contributes to more

han half of dementia cases, often in conjunction with Alzheimer’s dis-

ase pathology ( Arvanitakis et al., 2016 ; Debette et al., 2010 ). Among

he signs of cerebral small vessel disease (SVD), WMHs are one of the

ost commonly evaluated, but their underlying pathology and clinical

mpact on cognition is still poorly understood ( Wardlaw et al., 2013 ),

nd possibly affected by age ( Zamboni et al., 2019 ). An ability to com-

ine datasets would give additional insight on the relationships be-

ween WMHs, its risk factors and clinical outcomes. It would not only

mprove statistical power, but also enable complementary information

rom datasets to be merged. For example, WH includes detailed longi-

udinal cognitive and behavioural assessments that are of great impor-

ance for understanding dementia pathology. On the other hand, the

KB dataset has a larger sample size, wider age range and more even

ender balance than WH, providing data on a wider segment of the

opulation. An ability to integrate WMH data across these two datasets

ould combine their strengths and lead to novel insights into the prog-

ostic value of WMHs. 

While many harmonisation approaches have been developed and

ested on T1-weighted (e.g. Fortin et al., 2018 ; Zandifar et al., 2018 )

nd diffusion MRI (e.g. Fortin et al., 2017 ; Mirzaalian et al., 2016 ), stud-

es evaluating harmonisation approaches for T2-weighted scans and the

uantification of WMHs (and other lesions) are still lacking, despite the

ecognition that biases are also present in this modality ( Shinohara et al.,

017 ; Guo et al., 2019 ). Consortia and working groups ( Wardlaw et al.,

013 ; Smith et al., 2019 ) recognised the need to standardise the as-

essment of cerebral SVD and proposed a set of standard definitions,

cquisition protocols and a framework for developing neuroimaging

iomarkers of the condition. The HARmoNising Brain Imaging MEth-

dS for VaScular Contributions to Neurodegeneration (HARNESS) initia-

ive ( https://harness-neuroimaging.org ) also provides web-based repos-

tories of protocols, software tools and rating scales to facilitate multi-

entre research. While all these resources contribute to more standard-

sed assessment of WMHs, what is still currently lacking is a way to make

uantitative measures truly consistent. 

The datasets we selected for this study allow us to test retrospec-

ive (i.e. after data collection) harmonisation strategies in the presence

WH scanner upgrade) and absence (WH-UKB) of prospective (i.e. prior

o data collection) harmonisation. Harmonised acquisition protocols are

ommonly employed in consortia and multi-centre studies ( Jack et al.,

008 ; Potvin et al., 2019 ) to facilitate future integration or compar-

son of data, with agreement on collection procedures and common

easures prior to data collection. However, even after careful protocol

armonisation, systematic differences in images across sites can remain

related to scanner vendor, model, non-linearity of imaging gradients,
2 
agnetic field homogeneity, signal-to-noise ratio etc.) and lead to bias

n the MRI-derived measures ( Kruggel et al., 2010 ; Potvin et al., 2019 ;

hinohara et al., 2017 ; Mirzaalian et al., 2016 ; Guo et al., 2019 ). At

he image pre-processing level, harmonisation strategies aim to directly

emove the non-biological variability in the images ( Mirzaalian et al.,

016 ; Dewey et al., 2018 ) and provide processing procedures that en-

ure well-matched measures and consistent performance across datasets

 Erus et al., 2018 ; Zandifar et al., 2018 ; Guo et al., 2019 ). At the anal-

sis level, harmonisation approaches may further standardise measures

erived across datasets and account for differences in the samples across

tudies, to ensure that characteristics of imaging site and study do not

ias analyses ( Fortin et al., 2017 ; Fortin et al., 2018 ; Pomponio et al.,

020 ). Despite rapid progress, MRI data harmonisation remains a chal-

enge because of the many sources that may drive variability in MR

easurements across datasets. Due to the different nature of the biases

nvolved, a single strategy is unlikely to achieve successfully harmonised

ata ( Wachinger et al., 2019 ; Glocker et al., 2019 ). With this study we

im to combine manifold approaches to overcome such limitation. 

A key element of the present work involved increasing the robust-

ess of FSL-BIANCA, a supervised classification method for segment-

ng WMHs ( Griffanti et al., 2016 ). Briefly, BIANCA classifies the image

oxels based on their intensity and spatial features using the k-nearest

eighbour (k-NN) algorithm. The intensity features used by BIANCA

an be extracted from multiple MRI modalities, making it a very ver-

atile tool. Being a supervised method, it needs examples of manually

egmented WMHs for training the algorithm. The output image repre-

ents the probability of each voxel being a WMH. This image can then

e thresholded to obtain the final binary mask representing the WMHs

see Griffanti et al., 2016 for further details). BIANCA has been tested

n vascular, neurodegenerative and healthy populations. It achieved ex-

ellent performance scores with respect to manual annotation and vi-

ual rating. It is registered among the software tools on the HARNESS

nitiative website ( https://software.harness-neuroimaging.org/harness-

oftware-catalog/bianca.html ). 

We assessed the effects of a variety processing choices on the har-

onisation of the identification of WMHs. As different datasets will of-

en have different imaging modalities available, we determined the ef-

ects of using different combinations of modalities to train BIANCA. As

he rater employed to perform the manual segmentations used to train

IANCA will typically be different across studies, we assessed impact

f the choice of rater, and the effects of training BIANCA on individual

atasets or on combined data. We also assessed the effect of using bias

eld correction, as the distribution of radio frequency field (RF) inhomo-

eneities is unique to each scanner. We first explored the impact of these

rocessing choices on the harmonisation of WMHs measured across a

canner change, using the WH data. We then extended the evaluation

o the retrospective merging of data across studies, comparing WH (as

 whole) with the UKB. Particularly in the latter case, it was important

o include non-imaging variables such as age and sex, to account for

ifferences in study populations. Finally, based on the results of these

ssessments, we propose a set of recommendations for improving WMH

omparability across datasets. 

. Methods 

.1. Datasets 

The datasets we used in this work are WH and UKB. 

The first, described in Filippini et al., 2014 , is part of a large lon-

itudinal study, namely the Whitehall II Study, that explores the social

eterminants of health. It involves a sample of British civil servants (age

ange 60–85 years) who were first recruited in 1985 and participated

n a number of phases of clinical/cognitive assessment. Seven hundred

nd seventy-four participants were selected randomly to receive multi-

odal brain MRI scans and a detailed cognitive battery at the Oxford

entre for Functional MRI of the Brain (FMRIB) as part of the Imag-

https://harness-neuroimaging.org
https://software.harness-neuroimaging.org/harness-software-catalog/bianca.html
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ng Sub-study (2012–2016). Out of those, we excluded 18 participants

ith evident brain abnormalities other than WMHs (e.g. tumour, stroke,

ultiple sclerosis), 17 due to poor quality of the available MRI scans or

ack of some of the MRI contrast of interest, and 26 with missing data

n the non-imaging variables of interest (details below). As a result, the

nalysis was performed on a total number of 713 subjects, of which

13 (WH1) were imaged with a 3T Siemens Verio scanner (SC1) and

00 (WH2) with a 3T Siemens Prisma (SC2). Alongside the WH cohort,

 additional young and healthy participants (age 31 ± 4.9 years, age

ange 26–39 years, 2 males) were also scanned at FMRIB on both SC1

nd SC2 (‘traveling heads’). They were all acquired immediately before

he scanner replacement and then as soon as possible after the instal-

ation of the new machine, with an average time between scans of 5

onths (150 ± 6 days). The time of the day was not necessarily the

ame for all subjects (details in Supplementary Table S1). Even though

hese subjects did not have any WMHs, the MRI data allowed us to get

dditional insight on non-biological sources of variability in the images

nd test some harmonisation approaches. 

The second dataset is the UKB imaging study, a sub-study of the

KB prospective epidemiological study gathering extensive question-

aires, physical and cognitive measures, and biological samples from

redominantly healthy participants. The project imaging component

iller et al., 2016 , currently ongoing, aims to collect detailed diagnos-

ic MRI scans from 100,000 UKB participants. The sample available at

he time of our work included 14,503 subjects with scans released by

anuary 2019 (age range 46–80 years). Out of those with available MRI

ata, we selected 2,295 participants who had no missing data in the

on-imaging variables of interest (details below). This allowed us to

void performing data imputation, which could have introduced an ad-

itional source of variability, while retaining a large number to focus

n the methodological goal of imaging data harmonisation. Ten further

articipants were excluded due to other brain abnormalities. The result-

ng UKB dataset was therefore composed of 2,285 participants. 

Non-imaging variables – In order to model the biological variability

n WMH measures across datasets, we selected non-imaging variables

ith a potential link to WMHs. An example of such variables is age. It

s one of the most important risk factor for WMHs, and WH and UKB

ave only partially overlapping age ranges (WH: 60–85 years; UKB: 46–

0 years). Therefore, we considered particularly important to take it

nto account as source of biological variability when comparing mea-

ures of WMHs across datasets. A total of 33 variables, including demo-

raphic, clinical and cognitive factors were selected among those avail-

ble for the WH dataset. Subsequently, when performing harmonisation

etween the WH and UKB datasets, we excluded 4 variables due to lack

f availability for all participants within the UKB cohort, or due to sub-

tantial differences in the data collection across the two datasets (e.g.

he design or administration of certain cognitive tests). The full list of

on-imaging variables selected for both datasets is presented in Table 1 .

MRI data acquisition – Acquisition details for the datasets involved in

ur analysis are listed in Table 2 . 

For the WH study, two MRI scanners were used, due to the scanner

pgrade two-thirds of the way through the study: a 3T Siemens Mag-

etom Verio scanner (SC1) with a 32-channel receive head coil (April

012–December 2014) and a 3T Siemens Prisma scanner (SC2) with

 64-channel receive head-neck coil in the same centre (July 2015–

ecember 2016). The MRI modalities used for WMH segmentation were

luid Attenuated Inversion Recovery (FLAIR) scans, T1-weighed scans

nd diffusion-weighted scans (dMRI), to derive Fractional Anisotropy

FA) maps. The MRI sequence parameters were either identical or

losely matched between the two scanners. 

For the UKB dataset, MRI acquisition was carried out using a 3T

iemens Skyra with a 32-channel receive head coil (full details in

iller et al., 2016 ). As regards the MRI modalities, for the current study

e used FLAIR scans and T1-weighed scans. We decided not to include

MRI within the WMH quantification pipeline, because the requirement

o have 3 usable MRI modalities for each subject would have caused
3 
he exclusion of a small, yet significant amount of data (see Alfaro-

lmagro et al., 2018 for an indication of usable data for each modality).

n fact, currently released measures of WMHs for UKB are extracted

sing T1-weighted and FLAIR only. Moreover, unlike T1-weighted and

LAIR scans, dMRI with 6 or more directions (needed to perform Dif-

usion Tensor Imaging and generate FA maps) are not very common in

linical contexts. Therefore, being able to obtain consistent WMH esti-

ates with common sequences would make our approach more widely

pplicable. 

MRI pre-processing – All the available MRI scans underwent pre-

rocessing using FSL v.6.0 tools ( Jenkinson et al., 2012 ) before being

ed to BIANCA for WMH segmentation. T1-weighted scans were pro-

essed using fsl_anat, which performs bias correction, brain extraction,

nd partial-volume tissue segmentation using FAST ( Zhang et al., 2001 ).

he sum of the volumes for the three tissue classes was used as to-

al brain volume to normalise WMH measures. We used an exclusion

ask for cortical grey matter and structures that can appear hyperin-

ense on FLAIR and for which BIANCA is not currently optimised (details

n Griffanti et al., 2016 ). FLAIR images were brain-extracted using BET

 Smith, 2002 ) and bias field corrected with FAST ( Zhang et al., 2001 ).

mages without bias field correction were also used to evaluate the effect

f this pre-processing step on the WMH measures. For WH data, dMRI

cans were pre-processed as described in ( Filippini et al., 2014 ) and a

iffusion tensor model was fit at each voxel to obtain FA maps. 

Since BIANCA works in single-subject space, we used FLIRT

 Jenkinson and Smith, 2001 ) to register all the MRI modalities to the

LAIR scan, chosen as reference modality. Then, we masked the lat-

er with the exclusion mask derived from the T1-weighted images. The

ransformation between FLAIR and MNI space for each subject was also

alculated (using FLIRT) to be used by BIANCA to derive the spatial

eatures (MNI coordinates). 

As BIANCA requires several parameter choices, we tested the influ-

nce of those that are particularly relevant for harmonisation, while

eeping the others constant. We performed a preliminary analysis to

ssess the best combination of settings that produced consistent perfor-

ances for segmentation accuracy and specificity across datasets. The

est settings were found to be in line with the suggested parameters in

 Griffanti et al., 2016 ) and previously used in studies using BIANCA on

he WH dataset ( Griffanti et al., 2018 ). Therefore, we fixed the following

arameters for BIANCA throughout our study: 2000 training points rep-

esenting WMH lesions, 10,000 points representing non-lesion voxels,

 patch size of dimension 3 voxels and a spatial weighting coefficient

qual to 2. The number of k nearest neighbours used in the algorithm

as set to k = 40, since it provided good performance in previous studies

sing k-NN for white matter lesion segmentation ( Anbeek et al., 2004 ;

teenwijk et al., 2013 ; Griffanti et al., 2016 ). 

A subset of manually segmented WMH images was available from

ach dataset to train BIANCA and to evaluate its segmentation perfor-

ance in a cross-validated manner. The segmented data included 24

articipants from the WH1 dataset, 24 from the WH2 dataset and 12

rom the UKB dataset. The 24 subjects from WH1 were manually anno-

ated by two raters (R1, R2). Rater 2 repeated their annotation a year

ater (R2a, R2b) enabling us to assess the effects of within- and between-

ater variability on the WMH measures. Rater 2 also labelled the 24

cans from the WH2 dataset. For UKB we used the manual masks of 12

ubjects used in the released imaging pipeline ( Alfaro-Almagro et al.,

018 ). 

.2. Harmonisation pipeline 

During our work we dealt with two scenarios: the first aimed to har-

onise the two Whitehall imaging sub-studies (WH1 and WH2) rep-

esenting data before and after the scanner upgrade within the same

ohort and centre; the second addressed the integration of the WH and

KB cohorts, which were acquired on different scanners at different cen-

res. The two scenarios allowed us to test the effect of different factors
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Table 1 

Details of the non-imaging variables selected for our study. 

Variables Raw Units 

Harmonised Units 

chosen Value harmonised 

Whitehall UK Biobank Whitehall UK Biobank 

Demographic Age Years (continuous) Years (integer) Years (integer) 69.73 ± 5.15 61.46 ± 7.13 ∗ ∗ 

Sex Categorical (binary) Categorical (binary) Categorical 

(binary) 

M: 586 (82.19%) M: 1013 (44.33%) ∗ ∗ 

Biological Weight kg (continuous) kg (continuous) kg (continuous) 78.72 ± 13.69 74.81 ± 14.68 ∗ ∗ 

Height m (continuous) cm (integer) m (continuous) 1.74 ± 0.08 1.70 ± 0.09 ∗ ∗ 

BMI (Body Mass Index) Kg/m 

2 (continuous) Kg/m 

2 (continuous) Kg/m 

2 

(continuous) 

26.11 ± 4.09 26.05 ± 4.31 

Systolic blood pressure mmHg (integer) mmHg (integer) mmHg (integer) 141.31 ± 17.44 136.94 ± 19.03 ∗ ∗ 

Diastolic blood Pressure mmHg (integer) mmHg (integer) mmHg (integer) 77.51 ± 10.71 78.10 ± 10.44 

Pulse bpm (integer) bpm (integer) bpm (integer) 67.57 ± 12.03 70.73 ± 12.09 ∗ ∗ 

Hand class Categorical (3 classes) Categorical (4 classes) Categorical (3 

classes) 

Right: 631 (88.50%), 

Left: 59 (8.27%), 

Ambidextrous: 23 

(3.23%) 

Right: 2034 (89.01%), 

Left: 211 (9.24%), 

Ambidextrous: 40 

(1.75%) 

Socioeconomic Education Years (int) N/A N/A 19.10 ± 2.85 N/A 

Health behaviours Moderate physical 

activity 

h/week (continuous) day/week (integer), 

min/day (integer) 

h/week 

(continuous) 

16.99 ± 27.59 4.27 ± 5.96 ∗ ∗ 

Vigorous physical 

activity 

h/week (continuous) min/day (integer) h/week 

(continuous) 

9.41 ± 17.06 1.47 ± 2.27 ∗ ∗ 

Combination of 

different motorial tasks 

h/week (continuous) day/week (integer), 

min/day (integer) 

h/week 

(continuous) 

25.16 ± 34.87 5.32 ± 6.79 ∗ ∗ 

Time spent watching TV h/week (continuous) h/day (integer) h/week (integer) 5.62 ± 3.28 19.07 ± 10.09 ∗ ∗ 

Total walking activity h/week (continuous) min/day (integer) h/week 

(continuous) 

10.10 ± 8.00 6.36 ± 6.68 ∗ ∗ 

Sleep duration h/day (continuous) h/day (integer) h/day (integer) 6.92 ± 1.01 7.21 ± 0.96 ∗ ∗ 

Smoker status Categorical (binary) Categorical (4 classes) Categorical 

(binary) 

Smoker: 27 (3.79%) Smoker: 65 (2.84%) 

Cigarette units units/day (integer) units/day (integer) units/day (integer) 0.45 ± 2.84 0.32 ± 2.20 

Alcohol status Categorical (binary) Categorical (4 classes) Categorical 

(binary) 

Consumer: 639 

(89.62%) 

Consumer: 2206 

(96.54%) 

∗ ∗ 

Alcohol units units/month 

(continuous) 

units/day (categorical, 

5 classes), day/week 

(categorical, 5 classes) 

units/month 

(continuous) 

14.83 ± 15.16 5.26 ± 39.05 ∗ ∗ 

CVD 

(cardiovascular 

disease) 

Medications for 

Cardiovascular Disease 

Categorical (binary) Categorical (6 classes) Categorical 

(binary) 

Yes: 381 (53.44%) Yes: 228 (9.98%) ∗ ∗ 

History of 

Cardiovascular Disease 

Categorical (binary) Categorical (6 classes) Categorical 

(binary) 

Yes: 133 (18.65%) Yes: 442 (19.34%) 

General health Self-rated health Categorical (4 classes) Categorical (9 classes) Categorical (4 

classes) 

Poor: 6 (0.84%), Fair: 

52 (7.29%), Good: 224 

(31.42%), Very 

good/Excellent: 431 

(60.45%) 

Poor: 17 (0.74%), Fair: 

249 (10.90%), Good: 

1425 (62.36%), Very 

good/Excellent: 594 

(26.00%) 

∗ ∗ 

Total number of 

medications 

units (integer) units (integer) units (integer) 2.84 ± 2.49 1.60 ± 1.81 ∗ ∗ 

Medications for Blood 

Pressure 

Categorical (binary) Categorical (6 classes) Categorical 

(binary) 

Yes: 232 (32.54%) Yes: 227 (9.93%) ∗ ∗ 

History of Diabetes Categorical (binary) Categorical (4 classes) Categorical 

(binary) 

Yes: 62 (8.70%) Yes: 68 (2.98%) ∗ ∗ 

Mental health Center for 

Epidemiologic 

Studies-Depression 

(CES-D) scale 

Categorical (4 classes) Categorical (5 classes) Categorical (4 

classes) 

Not at all: 600 

(84.15%), Several days: 

90 (12.62%), More than 

half the days: 18 

(2.53%), Nearly every 

day: 5 (0.70%) 

Not at all: 1879 

(82.23%), Several days: 

362 (15.84%), More 

than half the days: 28 

(1.23%), Nearly every 

day: 16 (0.70%) 

∗ 

Depression - 

Medications 

Categorical (binary) N/A N/A Yes: 29 (4.07%) N/A 

Cognitive skills Trail Making Test (TMT) 

A 

seconds (integer) seconds (continuous) seconds (integer) 30.69 ± 11.10 37.72 ± 13.46 ∗ ∗ 

Trail Making Test (TMT) 

B 

seconds (integer) seconds (continuous) seconds (integer) 66.75 ± 33.72 62.15 ± 22.16 ∗ ∗ 

Digit CODing (DCOD) Correct answers 

(integer) 

~ ~ 63.13 ± 13.01 ~

Digit Span Backward 

(DSB) 

u (integer) u (integer) u (integer) 9.67 ± 2.44 7.07 ± 1.42 ∗ ∗ 

Reaction time ms (continuous) ~ ~ 315.45 ± 68.03 ~

For each variable we display the raw units (used at the time of data collection), the units chosen to harmonise the data, and the numerical values for the two 

cohorts in harmonised units, which allowed us to compare the two cohorts. The last column displays the results of the tests ( t -test or chi-square, as appropriate) 

showing non-imaging differences between the two cohorts ( ∗ for p -values < 0.05 and ∗ ∗ for p -values < 0.01). Variables requiring the application of non-imaging 

harmonisation strategies are highlighted in bold. Legend: N/A = excluded due to lack of availability for all participants within the UK Biobank cohort, ~ = excluded 

due to substantial differences in the data collection across the two datasets. 

4 
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Table 2 

Acquisition details for the three scanners involved in our study. 

Whitehall UK Biobank 

3T Siemens Verio (WH1) 3T Siemens Prisma (WH2) 3T Siemens Skyra (UKB) 

Sequence FLAIR T1 (MEMPR) dMRI (EPI) FLAIR T1 (MPRAGE) dMRI (EPI) FLAIR T1 

TR (ms) 9000 2530 8900 9000 1900 8900 5000 2000 

TE (ms) 73 1.79/3.65/5.51/7.37 91.2 73 3.97 91 395.0 2.01 

Flip angle (degrees) 150 7 —– 150 8 —– —– 8 

Voxel dimension (mm 

3 ) 0.9x0.9x3 1x1x1 2x2x2 0.4x0.4x3 1x1x1 2x2x2 1.05x1x1 1x1x1 

FoV read (mm) 220 256 192 220 192 192 256 256 

FoV phase (%) 100 100 100 100 100 100 100 100 

Base resolution 256 256 96 256 256 96 256 256 

Phase resolution (%) 100 100 100 100 100 100 100 100 

TI (ms) 2500 1380 —– 2500 904 —– 1800 880 

Bandwidth (Hz/Px) 283 651 1680 283 200 1680 781 240 

Orientation Transversal Sagittal Transversal Transversal Transversal Transversal Sagittal Sagittal 

b-value (s/mm 

2 ) —– —– 1500 —– —– 1500 —– —–

Directions (n.) —– —– 60 + 6 b0 (1 

reversed PE) 

—– —– 60 + 6 b0 (1 

reversed PE) 

—– —–

Acquisition time 4m 14s 6m 12s 9m 56s 4m 14s 5m 31s 10m 41s 5m 52s 4m 54s 

Legend: FLAIR, fluid attenuated inversion recovery; MEMPR, Multi-Echo MPRAGE; MPRAGE, Magnetisation Prepared Rapid Acquisition Gradient Echo; dMRI, 

diffusion MRI; EPI, Echo Planar Imaging; TR, repetition time; TE, echo time; FoV, field of view; TI, inversion time; PE, Phase Encoding. 
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ffecting data and required some changes in the harmonisation pipelines

pplied. 

Scanner upgrade (Whitehall) – We started the analysis with the scan-

er upgrade scenario (WH1 and WH2) that included prospective har-

onisation in the study design: the same non-imaging variables were

ollected and the MRI protocol was as close as possible for the two

canners. Retrospective harmonisation was therefore not needed for the

on-imaging data but carried out on the images. 

The availability of manual masks from multiple raters, ‘traveling

eads’ data and FA maps for most of the participants allowed us to study

he impact of: (i) the rater performing the manual labelling, (ii) the pro-

ess of bias field correction on FLAIR images, (iii) the composition of

he dataset used to train BIANCA (training set) and (iv) the inclusion

f FA as one of the MRI modalities used by the segmentation tool to

erive intensity features. We compared one option at a time using the

etrics described in the Evaluation metrics section, while keeping the

thers fixed, in order to understand how each one could influence the

esults. We then identified optimal pre-processing and analysis strate-

ies to reduce non-biological variability across datasets, while retaining

r taking into account (modelling) the biological variability. 

Effect of rater : in the training phase, BIANCA requires manually

elineated WMH masks, which are known to suffer from inter- and

ntra-rater variability ( Guo et al., 2019 ). We wanted to assess whether

IANCA trained with different manual masks (either multiple annota-

ions by different raters or repeated annotations by the same rater) gen-

rates WMH segmentations that are more or less variable than the man-

al annotations among themselves. If BIANCA produced more consistent

MH masks than manual operators, the use of this automated segmen-

ation tool would be advisable to obtain more consistent results. We

valuated this on data from a single scanner (WH1). We had multiple

nnotations for 24 MRI scans (two raters - R1, R2; and two annotations

y R2 one year apart - R2a, R2b - corresponding manual masks M1,

2a, M2b). Between-rater (M1 vs M2a; M1 vs M2b) and within-rater

M2a vs M2b) agreement was calculated in terms of overlap between

he manual masks using Dice Similarity Index (DI – see Griffanti et al.,

016 ). Each set of ratings was then used to train BIANCA and the au-

omated WMH masks (B1, B2a, B2b) were generated using a leave-one-

ut approach. We then calculated between-rater (B1 vs B2a; B1 vs B2b)

nd within-rater (B2a vs B2b) agreement also on the automatically seg-

ented masks using DI. Finally, we compared DI values using paired

-tests to assess whether consistency within the automatic WMH seg-

entations was higher or lower with respect to consistency within the

anually labelled masks. 
5 
Effect of bias field correction : we assessed the impact of bias field

orrection (BC) in multiple ways. One indication of successful harmoni-

ation is that harmonised images should be more similar to each other.

e evaluated this aspect on the ‘traveling heads’ data available for the

H dataset. Corresponding scans from each of the 5 subjects were first

egistered to each other and then resampled into the space half-way be-

ween the two. We then calculated the cost function (correlation ratio)

etween the registered images as a measure of image similarity that

s not influenced by head position (lower cost function indicates more

imilar images). The same procedure was repeated on the bias field cor-

ected images. The values of the cost function before and after BC were

ompared with a paired t -test. Secondly, we investigated the effect of

C on BIANCA performance (i.e. overlap with manual WMH masks) as

escribed in the Evaluation metrics section. The manual rater was R2

or both datasets and the training set for BIANCA was the same (24

ubjects from WH1). We compared the results obtained before and af-

er BC, to test whether the adoption of this pre-processing step could

rovide more consistent results across datasets. We then evaluated the

ffect of BC on the relationship between WMHs and age, and in terms of

xplained variability of the scanner effect in a multivariate regression

odel (see Evaluation metrics for details). 

Effect of training set composition for BIANCA : we compared three

ptions that could be used to train BIANCA when performing WMH

egmentation on multiple datasets: single-site training (using the same

raining set for all datasets, with examples coming only from one site - 24

ubjects from WH1 in our case), site-specific training (training BIANCA

n each dataset separately) and mixed training (combining examples

rom WH1 and WH2, 24 subjects each, in a single training set to apply

o all datasets). As before, we exploited several analysis approaches to

valuate which option would lead to better harmonised WMH measures.

e investigated the effect of each option on: BIANCA performance, the

elationship between WMHs and age, and the weight of the scanner vari-

ble in the multivariate regression model. All data were bias field cor-

ected before the analysis (see Evaluation metrics for details). 

Effect of FA information : as previously mentioned, we did not use

A maps derived from dMRI to inform WMH segmentation for the UKB

ataset, but FA maps were used in the WH dataset. Aiming to ultimately

ntegrate the two datasets, we assessed on WH datasets the impact of not

sing FA as an additional intensity feature for BIANCA. We compared

he FA inclusion/exclusion cases in terms of BIANCA performance, re-

ationship between WMHs and age, and the weight of the scanner vari-

ble in the multivariate regression model (see Evaluation metrics for

etails). For testing this option, we only used bias field corrected im-



V. Bordin, I. Bertani, I. Mattioli et al. NeuroImage 237 (2021) 118189 

a  

f

 

t  

t  

i  

u  

n

 

W  

w  

C  

p  

i  

d  

o  

i  

u  

s

 

t  

w  

p  

A  

t  

B  

d  

F  

p  

b  

u  

t  

m

 

s

 

s  

d  

S  

F  

G  

m  

v  

p  

t  

e  

m  

e  

p  

(  

t  

(  

F  

v  

(

 

r  

a  

t  

a  

t  

n  

t  

i  

s

 

w  

w  

u  

s  

(  

A  

i  

t

 

t  

s  

w  

%  

o  

o  

a  

c  

o  

a  

A  

i  

(  

e  

i  

e  

h  

s  

n  

v  

s

 

r  

s  

e  

fi  

i  

c  

i  

l  

l  

a

3

3

 

m  

m  

v  

(  

t  

b  

B  

o  

s  

v  

w  

w  

t  

o  

n  

p  

r

ges and fixed BIANCA training set to be mixed (i.e. including examples

rom WH1 and WH2). 

Retrospective harmonisation of Whitehall and UK Biobank datasets – We

hen extended the investigation to include data from the UKB cohort. In

his case, no prospective harmonisation had been performed for imag-

ng or non-imaging variables. The cohorts, despite being ageing pop-

lations, differ in many aspects (see Table 1 for details). Hence, both

on-imaging and imaging data required harmonisation. 

Non-imaging harmonisation : non-imaging data available for both

H and UKB were converted to a common format. The conversion

as conducted using the FMRIB UKBiobank Normalisation, Parsing And

leaning Kit (FUNPACK) ( McCarthy, 2019 ), a Python library for pre-

rocessing of UKB data containing a large number of procedures allow-

ng us to perform various data sanitisation and processing steps. We

efined a configuration file for FUNPACK, currently available online

n GitLab ( https://issues.dpuk.org/eugeneduff/wmh_harmonisation ). It

ncludes both built-in rules and new conversion functions that allowed

s to obtain non-imaging variables expressed in the same units of mea-

urements. 

Imaging data harmonisation – effect of training set composi-

ion for BIANCA : for WH-UKB integration, the manual WMH masks

ere generated by different raters, bias field correction was already

erformed as part of the automated pre-processing pipeline ( Alfaro-

lmagro et al., 2018 ) and FA was not used as additional intensity fea-

ure. We therefore tested whether the use of a specific training set for

IANCA could improve harmonisation between UKB and WH, despite

ifferent raters providing WMH examples and the use of only T1 and

LAIR as intensity features. Similar to the previous scenario, we com-

ared the impact of site-specific and mixed training sets (this time com-

ining examples from WH1, WH2 and UBK). Also in this case, the eval-

ation included comparing BIANCA performance, the relationship be-

ween WMHs and age, and the weight of the scanner variable in the

ultivariate regression model (see Evaluation metrics for details). 

Evaluation metrics – We evaluated the success of harmonisation in

everal ways. 

First, the harmonised WMH segmentation pipeline should have the

ame (or as close as possible) WMH segmentation performance across

atasets. To assess this, we calculated a series of overlap measures: Dice

imilarity Index (DI), voxel-level False Positive Ratio (FPR), voxel-level

alse Negative Ratio (FNR), cluster-level FPR, cluster-level FNR (see

riffanti et al., 2016 for details) between manual WMH masks and auto-

atically segmented WMH masks (obtained using leave-one-out cross-

alidation whenever appropriate). We matched the number and the ap-

roximate lesion load of the manually annotated scans used to evaluate

he automatic segmentation performance for all datasets (12 subjects for

ach dataset, WH1, WH2, UKB). We then looked at how different these

etrics were between datasets for each option tested (across-scanner

valuation within option). In the scanner upgrade scenario we com-

ared metrics between SC1 and SC2 for each of the following options:

A) without BC, single-site training, FA included; (B) with BC, single-site

raining, FA included; (C) with BC, site-specific training, FA included;

D) with BC, mixed training, FA included; (E) with BC, mixed training,

A excluded. For the WH-UKB harmonisation we compared SC1 vs SC2

s UKB for the (A) site-specific training and (B) mixed training options

both with BC and no FA). 

Alongside the harmonisation aim, we also took into account the accu-

acy of the WMH segmentation (since consistent BIANCA performance

cross datasets does not necessarily correspond to accurate segmenta-

ion). Therefore – for each dataset – we compared BIANCA performance

cross different options ((A) vs (B) for bias field, (B) vs (C) vs (D) for

raining set, (D) vs (E) for effect of FA – for the scanner upgrade sce-

ario; (A) vs (B) for training set – for the WH-UKB scenario) to inves-

igate whether the adoption of one of them could lead to substantial

mprovements in terms of either segmentation accuracy, sensitivity or

pecificity (within-scanner evaluation across options). 
6 
When the number of available options for both the across- and

ithin-subject factors (being dataset and analysis option, respectively)

as equal to two (as for the rater, bias field, and FA assessment) we

sed two-sample independent t-tests and paired t-tests for statistical as-

essment. When the number of available options was higher than two

as for the training set assessment) we first performed a two-way mixed

NOVA test, to test for potential interaction between factors and then,

f results were significant, we investigated the main effect of each factor

hrough separate one-way ANOVA tests. 

We then extended the evaluation to the full sample by considering

he output of the automatic WMH segmentation for all the available

ubjects (WH1 = 513, WH2 = 200, UKB = 2285), instead of just for those

ith manual WMH mask. We calculated WMH volumes (expressed as

 of total brain volume) and compared them across datasets for each

ption of the two scenarios. In doing this we wanted to take sources

f biological variability into account. Given that age is known to be

mong the strongest risk factors for WMHs, we started by looking at the

orrelation between WMH volumes and age in our datasets. We used a

ne-way ANCOVA test, with WMH volumes as the dependent variable,

ge as the main covariate and scanner/site as the categorical factor.

ge was demeaned to avoid multicollinearity and make results more

nterpretable. With this test we assessed differences in terms of slope

interaction between age and scanner) and intercept at mean age (main

ffect of scanner) for each option. Similar regression slopes (no signif-

cant interaction) and reduced or no volume bias (no significant main

ffect of scanner) would indicate successful harmonisation. When the

ypothesis of homogeneous regression slopes was not met (i.e. when

lopes were significantly different), we used the Johnson–Neyman tech-

ique to identify the “region of non-significance ”, i.e. the range of age

alues for which there are no significant differences in WMH% between

canners ( White, 2003 ). 

Finally, harmonisation was evaluated by the extent to which it

educed the variation in WMH volumes that could be explained by

canner and dataset. We assessed this by examining the fit of a lin-

ar multivariate model, estimated using Elastic Net to reduce over-

tting ( Pedregosa et al., 2011 ), that predicted WMH volumes from non-

maging variables (see Table 1 for details) (including a variable asso-

iated with scanner/dataset). Well harmonised datasets will have min-

mal variance attributed to the scanner/dataset variables. While non-

inearities are likely to be present in the data, this linear approach al-

owed us to compare the effect of the different processing approaches in

 highly interpretable way. 

. Results 

.1. Scanner upgrade (Whitehall) 

Effect of rater. Overall, BIANCA produced more consistent WMH

asks than manual operators ( Fig. 1 ). Comparing manual and auto-

atic segmentation procedures in terms of between-rater variability (R1

s R2), we obtained opposite results when considering either the first

R2a) or second rating (R2b) from the second rater. The comparison be-

ween R1 and R2a highlighted a higher agreement (higher DI values)

etween manual masks (M1 vs M2a) than between the corresponding

IANCA output (B1 vs B2a) ( Fig. 1. A, p < 0.001 paired t -test). On the

ther hand, the comparison between R1 and R2b showed better con-

istency for BIANCA results (B1 vs B2b) than manual annotations (M1

s M2b) ( Fig. 1. B, p < 0.001 paired t -test). It is worth noting that the

orst agreements (both between manual masks and BIANCA outputs)

ere observed for subjects characterised by very low WMH loads (dot-

ed lines). For within-rater (R2) variability, we observed that BIANCA

utputs (B2a vs B2b) had higher consistency than manual masks an-

otated twice by the same operator (M2a vs M2b) ( Fig. 1. C, p < 0.001

aired t -test). For full details of the DI statistics across these comparisons

efer to Supplementary Table S2. 

https://issues.dpuk.org/eugeneduff/wmh_harmonisation
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Fig. 1. Effect of rater, assessed both in terms of between- (A and B) and within-rater variability (C). Each panel displays a comparison of the agreement (measured 

with Dice Similarity Index) between manual masks annotated by the raters (left box-plots) and BIANCA outputs generated with masks from those raters (right 

box-plot). Solid and dotted lines refer to results obtained on subjects characterised, respectively, by high and low WMH load. Legend: R1 = rater 1, R2a = Rater 2, 

first rating, R2b = rater 2, second rating (1 year apart from the first rating, blind to first rating), M = manual, B = BIANCA. 

Fig. 2. Effect of bias field correction (BC) on ‘travelling heads’ data from the WH dataset. (A) example data from 1 subject acquired on both scanners, before and after 

BC showing improvement in image similarity after BC (B) Cost function (correlation ratio) between Scanner1/Scanner2 images of the 5 traveling head participants, 

calculated before and after BC ( ∗ ∗ ∗ - p < 0.001). 

 

w  

c  

b  

(

 

s  

e  

t  

w  

a  

M  

d  

t  

o  

c  

d  

T  

W  

s  

a  

d

 

t  

s  

w  

w  

(  

s  

d  

f  

a

 

t  

o  

f  
Effect of bias field correction. BC led to increased image similarity,

hen comparing ‘traveling heads’ data from the two WH scanners, as

learly visible from the example shown in Fig. 2. A. This was confirmed

y a significant decrease in the cost function (correlation-ratio) after BC

 p < 0.001 paired t -test; Fig. 2. B). 

The effects of bias field correction on BIANCA performance are

hown in Table 3 and Fig. 3 (where Fig. 3 displays DI values, while the

quivalent plots for the other metrics are reported in the Supplemen-

ary material). Comparing segmentation performance within scanner,

e observed a significant increase in the overall segmentation accuracy

fter BC, with higher DI values for both WH1 and WH2 datasets ( Fig. 3 ).

oreover, BC led to a greater level of specificity for the WH2 dataset,

emonstrated by a significant decrease in FPR and cluster-level FPR. For

he WH1 dataset, the DI improvement was accompanied by a decrease

f FNR and cluster-level FNR values. This was at the expense of an in-

rease in the WH1 FPR and cluster-level FPR. There was a significant

ifference in DI values between WH1 and WH2 after but not before BC.

his was likely due to a combination of uneven increase of accuracy in
7 
H1 and WH2 and a reduction of the variability of DI values within

canner (smaller interquartile range in boxplots – Fig. 3 ). However, BC

lso had a positive impact on FPR which were no longer significantly

ifferent across-scanners. 

We then analysed the correlation between WMH volumes and age

o determine the extent to which this relationship was affected by the

canner for the two BC options ( Fig. 4. A and B). Results of the one-

ay ANCOVA tests reported in Table 5 show no significant difference

hen comparing regressions slopes between scanners for both options

 p -value = 0.836 before BC; p -value = 0.892 after BC). A significant across-

canner difference was instead found in the intercepts – in correspon-

ence to the mean age – both before and after BC. However, the dif-

erence was reduced after BC ( p -value < 0.001 before BC; p -value = 0.029

fter BC). 

Finally, the implemented Elastic Net model showed that, after BC,

he amount of variance in WMH volume attributed to the scanner/site

f acquisition was lower (from 0.046 to 0.012, see Table 6 ), passing

rom second to sixth position ( Fig. 5. A and B). Elastic Nets were used to
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Table 3 

BIANCA performance – scanner upgrade scenario – Summary of all the overlap measures between BIANCA output and the corresponding manual mask, calculated for the different analysis options tested in our study 

(using leave-one-out cross-validation whenever appropriate). Statistical tests performed on data to assess the impact of bias field correction, training modalities and FA inclusion/exclusion on the segmentation 

performance. 

DI FPR FNR cluster-level FPR cluster-level FNR 

WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 

Overlap 

measures 

Mean ± std Option A 0.52 ± 0.10 0.59 ± 0.07 0.05 ± 0.04 0.33 ± 0.16 0.63 ± 0.09 0.43 ± 0.08 0.09 ± 0.07 0.69 ± 0.14 0.610.13 0.48 ± 0.11 

Option B 0.75 ± 0.06 0.64 ± 0.03 0.18 ± 0.08 0.22 ± 0.10 0.28 ± 0.09 0.42 ± 0.07 0.33 ± 0.17 0.57 ± 0.18 0.35 ± 0.17 0.47 ± 0.09 

Option C 0.75 ± 0.06 0.73 ± 0.05 0.18 ± 0.08 0.26 ± 0.12 0.28 ± 0.09 0.24 ± 0.08 0.33 ± 0.17 0.53 ± 0.18 0.35 ± 0.17 0.35 ± 0.12 

Option D 0.76 ± 0.05 0.71 ± 0.04 0.22 ± 0.09 0.23 ± 0.11 0.23 ± 0.08 0.30 ± 0.07 0.42 ± 0.16 0.52 ± 0.17 0.28 ± 0.15 0.40 ± 0.10 

Option E 0.48 ± 0.11 0.45 ± 0.06 0.07 ± 0.05 0.09 ± 0.09 0.66 ± 0.09 0.68 ± 0.06 0.15 ± 0.09 0.17 ± 0.10 0.55 ± 0.14 0.63 ± 0.10 

Effect of Bias 

field 

correction 

Between-subject 

analysis: independent 

t-test 

WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option A 0.061 < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 0.020 ∗ 

Option B < 0.001 ∗ ∗ ∗ 0.259 < 0.001 ∗ ∗ ∗ 0.004 ∗ ∗ 0.049 ∗ 

Within-subject analysis: 

paired t-test 

Option A vs 

Option B 

< 0.001 ∗ ∗ ∗ 0.035 ∗ < 0.001 ∗ ∗ ∗ 0.002 ∗ ∗ < 0.001 ∗ ∗ ∗ 0.531 < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 0.306 

Effect of 

Training 

modalities 

Training - Scanner 

interaction: two-ways 

mixed ANOVA test 

< 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 

Main effect of the 

Scanner 

(between-subject factor): 

independent t-test 

WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option B < 0.001 ∗ ∗ ∗ 0.259 < 0.001 ∗ ∗ ∗ 0.004 ∗ ∗ 0.049 ∗ 

Option C 0.433 0.071 0.272 0.013 ∗ ∗ 0.998 

Option D 0.046 ∗ 0.861 0.049 ∗ 0.178 0.049 ∗ 

Main effect of the 

Training (within-subject 

factor): repeated 

measures one-way 

ANOVA test (F-test and 

post-hocs) 

0.466 < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 0.036 ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 

Option B vs 

Option C 

——— < 0.001 ∗ ∗ ∗ ——— < 0.001 ∗ ∗ ∗ ——— < 0.001 ∗ ∗ ∗ ——— 0.45 ——— < 0.001 ∗ ∗ ∗ 

Option B vs 

Option D 

——— < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 0.309 < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 0.045 ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 

Option C vs 

Option D 

——— 0.044 ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 1 < 0.001 ∗ ∗ ∗ 0.002 ∗ ∗ 

Effect of FA 

inclusion/ 

exclusion 

Between-subject 

analysis: independent 

t-test 

WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option D 0.046 ∗ 0.861 0.049 ∗ 0.178 0.049 ∗ 

Option E 0.462 0.461 0.484 0.565 0.134 

Within-subject analysis: 

paired t-test 

Option D vs 

Option E 

< 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ < 0.001 ∗ ∗ ∗ 

Options tested in our study are: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA 

included; (E) with BC, mixed training, FA excluded. For each metric we reported: (i) mean ± std values relative to all datasets involved in our study (WH1, WH2); (ii) impact exerted by bias field correction on 

BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively); (iii) impact exerted by training modalities on BIANCA performance (two-ways mixed 

ANOVA test assessing the interaction between training and scanner (between- and within-subject factors respectively); when the interaction term resulted being significant we decomposed the analysis in two 

separate components assessing the main effect of training (repeated measures one-way ANOVA test evaluating differences between the investigated options for each dataset involved in our study; F-test and 

post-hoc comparisons are displayed) and the main effect of scanner (independent t-test evaluating differences between the investigated dataset for each option involved in our analysis); (iv) impact exerted by FA 

inclusion/exclusion on BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively). Results relative to the statistical tests are all reported in terms of 

p -values: ∗ ( < 0.05), ∗ ∗ ( < 0.01), ∗ ∗ ∗ ( < 0.001). Legend: DI = Dice Similarity Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall dataset 2. 
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Fig. 3. BIANCA performance – scanner up- 

grade scenario. Box-plot of the Dice Similar- 

ity Index (DI) between BIANCA output and the 

corresponding manual masks for the different 

analysis options tested during our study (spec- 

ified on the x axis). All the displayed results 

were evaluated on a sub-sample of manually 

segmented subjects (12 for WH1 and 12 for 

WH2) balanced in terms of WMH load and 

using leave-one-out cross-validation whenever 

appropriate (details in the main text). 
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educe the likelihood of over-fitting of these complex models. While reg-

larisation may in some cases have unpredictable effects on regression

arameters, in this case matching results were observed when models

ere fit using standard Ordinary Least Squares (OLS). 

Effect of training set composition for BIANCA. Overall, our results

uggest that the mixed-training option offers the best trade-off among

he explored evaluation metrics, providing good and consistent BIANCA

erformance and consistent WMH volumes. 

When investigating the presence of a significant interaction be-

ween scanners (WH1/WH2) and training options (single-site/site-

pecific/mixed), a two-way mixed ANOVA test gave significant results

or all the assessed overlap measures ( Table 3 ). Therefore, we inves-

igated the effect of each factor separately, evaluating firstly across-

canner and then within-scanner performances. Site-specific training

roduced the most consistent segmentations with respect to across-

canner performance. Between the remaining two options, the mixed

raining showed better consistency with respect to single-site training,

ith no significant WH1-WH2 difference in the cluster-level FPR val-

es. When comparing segmentation performance within-scanner, we ob-

erved an overall improvement of results in WH2 when BIANCA was

rained using annotated data from WH2 (site-specific training) rather

han from WH1 (single-site training). The significant improvements in

I, FNR and cluster-level FNR were only at the expense of increased

P values. The comparison between site-specific and mixed training led

o different results for the two scanners, with significantly worse FPR

nd cluster-level FPR values for mixed training in WH1 and worse DI,

NR and cluster-level FNR values in WH2. The remaining indicators

howed improved or unaltered performance with mixed training. Re-

ults showed a favourable pattern towards mixed over single-site train-

ng. For WH1, we observed a significant improvement for both FNR and

luster-level FNR when using mixed training, no significant difference in

I, and worse FPR and cluster-level FPR. For WH2, better performances

ere observed using a mixed training for all the indicators except FPR,

hich was not significantly different from the single-site training case. 

The results obtained from the one-way ANCOVA tests ( Table 5 )

howed that site-specific training led to a significant difference between

he age regression slopes for the two scanners ( p -value = 0.004). The

ohnson–Neyman technique further confirmed that using this option led

o the highest differences in WMH% between scanners ( Fig. 4. B, C and

) as the region of non-significance between WH1 and WH2 would have

een between 51.13 and 57.95 years, a narrow range of values outside

he age range of WH data (60–85 years). The adoption of a mixed train-

ng had a positive impact on regression slopes, such that they were no
9 
onger significantly different ( p -value = 0.129) and also reduced the vol-

me bias (at the mean age) ( p -value = 0.052). 

When site-specific training was used, the weight of the scanner/site

ariable was greatly increased in the multivariate regression model,

ompared to the single-site option ( Fig. 5. B and C), with scanner/site

eing the variable that explained the greatest amount of variance (from

.012 to 0.066, see Table 6 ). The adoption of a mixed training instead,

educed the amount of variance explained by the scanner/site variable

from 0.066 to 0.008, see Table 6 ), with the variable moving to the ninth

osition ( Fig. 5. D). 

Effect of FA information. The removal of FA as an additional inten-

ity feature for WMH segmentation led to higher consistency between

ites, but lower segmentation accuracy. 

Without FA there were no significant differences between the WH1

nd WH2 datasets in all performance metrics. There was a significant de-

rease in the overall segmentation accuracy when excluding FA from the

ntensity features used by BIANCA, with lower DI performances ( Fig. 3 ),

nd a negative impact on both FNR and cluster-level FNR (worse sensi-

ivity). Removing FA also lowered FPR and cluster-level FPR, leading to

 greater level of specificity. 

For the correlation between WMH volumes and age, results of the

ne-way ANCOVA tests ( Table 5 ) showed that, excluding FA, the dif-

erence in slopes remained not significant ( p -value = 0.379). The already

mall volume bias (at mean age) was further decreased ( p -value = 0.874)

 Fig. 4. D and E). 

Extracting WMHs using FLAIR and T1-weighted images only led to

 decrease in the variance explained by the scanner/site variable (form

.008 to 0.000, see Table 6 ), which was no longer present amongst the

ost predictive features ( Fig. 5. D and E). 

Retrospective harmonisation of Whitehall and UK Biobank datasets 

Non-imaging harmonisation. By applying our configuration file for

UNPACK, we brought all the variables into the same units for both

atasets. Table 1 shows the format/units that each of the selected non-

maging variables were originally acquired with in WH and UKB, as well

s the harmonised units chosen and the resulting harmonised mean and

tandard deviation values. 

Imaging data harmonisation – effect of training set composition

or BIANCA. We next assessed the impact of different training sets (site-

pecific and mixed training) on the level of harmonisation between the

H and UKB WMH datasets (the single-site training was not tested, as

t gave poor results in the scanner upgrade scenario). 

Results for BIANCA performance in terms of Dice Similarity In-

ex (DI) are shown in Fig. 6 . The equivalent plots for the other met-
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Fig. 4. Association between WMHs and age – scanner upgrade scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume, 

y axis) and age ( x axis), for WH1 (cyan) and WH2 (purple) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the 

investigated analysis options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA 

included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded. Evaluation was conducted on the full sample of data for both datasets 

(WH1 = 513, WH2 = 200) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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ics are reported in the Supplementary material. The two-way mixed

NOVA test highlighted the presence of a significant interaction be-

ween the scanners (WH1/WH2/UKB) and the training options (site-

pecific/mixed) for all the overlap measures ( Table 4 ). For this rea-

on, we further evaluated the main effect of each factor, investigat-

ng across- and within- scanner performance separately. Results of the

ne-way ANOVA test revealed significant differences for all metrics

cross scanners when using a mixed training. The site-specific train-

ng gave more homogeneous results, (non-significant FPR and cluster-

evel FPR). Post-hoc pairwise comparisons revealed no significant dif-

erence in any overlap metrics between WH1 and WH2 for either of

he training options. On the other hand, UKB showed a different per-
10 
ormance with respect to the other datasets (WH1, WH2), using either

ite-specific or mixed training. Significant differences between WH1 and

KB were observed in DI, FNR and cluster-level FNR in the site-specific

raining case. DI, FNR and cluster-level FPR were significantly differ-

nt in the mixed training case. All overlap metrics were significantly

ifferent between WH2 and UKB, except FPR and cluster-level FPR

sing site-specific training. Within-scanner comparisons highlighted a

ore favourable pattern towards the site-specific training. In fact, the

se of a mixed training dataset led to improved segmentation sensi-

ivity only for WH1, with a significant decrease of cluster-level FNR,

nd improved specificity for UKB with lower FPR and cluster-level

PR. 
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Fig. 5. Multivariate model – scanner upgrade scenario. Percentage of variance ( y axis) explained by non-imaging variables (reported on the x axis) in the linear 

multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data (WH1 = 513, WH2 = 200). Each plot refers to one of 

the investigated analysis options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, 

FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values are reported 

in Table 6 and Supplementary Table S3 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 6. BIANCA performance – retrospective 

data merging scenario. Box-plot of the Dice 

Similarity Index (DI) between BIANCA out- 

put and the corresponding manual mask for 

the different analysis options tested during our 

study (specified on the x axis) All the dis- 

played results were evaluated on a sub-sample 

of manually segmented subjects (12 for WH1, 

12 for WH2 and 12 for UKB) balanced in terms 

of WMH load and using leave-one-out cross- 

validation. 

11 
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12 
In terms of correlation between WMH volumes and age, we com-

ared results for WH1, WH2 and UKB ( Table 5 ). With respect to the

ite-specific case, the adoption of a mixed training led to a slight de-

rease in the across-scanner difference in regression slopes, although it

till remained significant ( p -value = 0.004 mixed training; p -value = 0.001

ite-specific training, one-way ANCOVA test). However, as the hypothe-

is of homogeneous regression slopes was not met in either case, we used

he Johnson–Neyman procedure to evaluate the WMH% differences be-

ween scanners. For the site-specific case there was no region of non-

ignificance, since the three scanners were different across the whole

ange of age values. On the other hand, the use of a mixed training set

ed to a substantial decrease in the bias ( Fig. 7. A and B) and the Johnson–

eyman region of non-significance (66.06–75.54 years) fell within the

ge range of our data (46–85 years). 

The Elastic Net regression modelling showed that the scanner/site

as no longer present amongst the most predictive features when using

ixed training, compared to site-specific training ( Fig. 8. A and B) where

t explained the highest amount of variance in WMH volumes (from

.115 to 0.000, see Table 6 ). 

The same analyses were repeated on a subset of age-matched subjects

rom the three datasets to test if the different age range of the three

atasets could have biased the results. The analyses led to very similar

esults, which are reported in the supplementary material. 

Finally, we investigated how the information from the mixed training

ataset was used by BIANCA. Details of analyses and results are reported

n the supplementary material. Briefly, on a subset of subjects, for each

oint of the images we calculated the proportion of neighbours from the

hree different datasets used by the kNN classifier. We observed that,

hile the highest proportion of neighbours tended to come from the

ame site as the test subject (52.90% of the neighbours on average), in

ll cases there were neighbours from other sites (47.10% on average),

onfirming that BIANCA effectively used information from all datasets. 

. Discussion 

In this work we explored several analysis strategies to harmonise

easures of white matter hyperintensities (WMHs) of presumed vascu-

ar origin across large-scale datasets. The ability to combine different

atasets will enable addressing important questions regarding the na-

ure of WMHs and their prognostic value. We dealt with data from three

canners across two studies on healthy ageing. The study design allowed

s to assess two different scenarios: a scanner upgrade (analogous sce-

ario to a multi-centre study, involving a single population acquired

ith the same acquisition protocol on two MRI scanners) and a ret-

ospective data merging (two distinct large populations acquired with

ifferent acquisition protocols on different MRI scanners). Each dataset

ncluded both imaging and non-imaging data that were exploited to de-

elop harmonisation strategies and evaluate the results. We used an au-

omated segmentation tool, BIANCA, to extract WMH measures from

ach imaging dataset and investigated the impact of different factors

n the comparability of WMH measures: the rater performing manual

egmentation of the examples used to train BIANCA, the process of bias

eld correction of the FLAIR images, the composition of the dataset used

o train BIANCA (training set) and the inclusion/exclusion of FA as one

f the intensity features. We investigated different processing strategies

iming to find the combination that led to the most consistent results

cross scanners or studies. We evaluated the success of each strategy

ooking for the best trade-off between consistency of BIANCA perfor-

ance, segmentation accuracy and consistency of WMH volumes, after

odelling the biological variability in the datasets (age and other non-

maging variables related to WMHs). 

BIANCA needs to be trained by providing manual WMH segmenta-

ions, which are known to be affected by inter- and intra-rater variability

 Guo et al., 2019 ). We wanted to assess how BIANCA would cope with

his source of variability. On data from a single scanner (WH1) we ob-

erved that the consistency of the manual segmentation of the data has a
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Table 5 

Analysis of the relationship between WMH volumes and age – scanner upgrade and retrospective data merging scenario – Summary of the one-way ANCOVA test 

and Johnson–Neyman (J-N) procedure. 

Scanner upgrade scenario Retrospective data merging scenario 

Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option B Analysis option C 

One-way ANCOVA 

Slope 

F(1, 709) = 0.043, 

p = 0.836 

F(1, 709) = 0.019, 

p = 0.892 

F(1, 709) = 8.358, 

p = 0.004 ∗ ∗ 
F(1, 709) = 2.303, 

p = 0.129 

F(1, 709) = 0.774, 

p = 0.379 

F(1, 2994) = 10.705, 

p = 0.001 ∗ ∗ 
F(1, 2994) = 8.334, 

p = 0.004 ∗ ∗ 

One-way ANCOVA 

Intercept 

F(1, 709) = 43.678, 

p < 0.001 ∗ ∗ ∗ 
F(1, 709) = 4.772, 

p = 0.029 ∗ —————————–

F(1, 709) = 3.789, 

p < 0.052 

F(1, 709) = 0.025, 

p = 0.874 

—————————–

—————————–

J-N Region of 

non-significance 

(age interval in 

years) 

—————————– —————————–

51.13–57.95 

—————————– —————————–

N/A 66.06–75.54 

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; 

(C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective data 

merging scenario: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. The one-way ANCOVA test evaluated across-scanner 

differences (between WH1/WH2 or between WH1/WH2/UKB) characterising regression slope (interaction between age and scanner) and intercept at mean age (main 

effect of scanner) in the linear model relating WMH% to age. Results of the ANCOVA test are reported in terms of F(df)- and p -values: ∗ ( < 0.05), ∗ ∗ ( < 0.01), ∗ ∗ ∗ 

( < 0.001). When the hypothesis of homogeneous regression slopes was not met, we used the Johnson–Neyman procedure to evaluate the across-scanner differences. 

Results for the Johnson–Neyman procedure are reported in terms of age intervals. Legend: N/A = Not Available (i.e. there was no age interval where WMH% were 

not different across scanners). 

Fig. 7. Association between WMHs and age – retrospective data merging scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total 

brain volume, y axis) and age ( x axis), for WH1 (cyan), WH2 (purple) and UKB (orange) data. Regression lines with 95% confidence interval are also displayed. Each 

plot refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Evaluation was 

conducted on the full sample of data for all datasets (WH1 = 513, WH2 = 200, UKB = 2285) (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 

Table 6 

Elastic Net Regression performance – retrospective data merging scenario – Summary of the results in terms of variance explained by the model and by age and 

scanner, the features considered most relevant in our study. Full details of all the other features are provided in Supplementary Table S3. 

Scanner upgrade scenario Retrospective data merging scenario 

Analysis option 

A 

Analysis option 

B 

Analysis option 

C 

Analysis option 

D 

Analysis option 

E 

Analysis option 

A 

Analysis option 

B 

Variance explained by the model 0.243 0.161 0.207 0.173 0.125 0.190 0.098 

Variance explained by 

the features 

Age 0.060 0.043 0.048 0.054 0.034 0.052 0.070 

Scanner 0.046 0.012 0.066 0.008 0.000 0.115 0.000 

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; 

(C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective data 

merging scenario: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. The amount of WMH variance explained by the model 

is calculated using the R -squared coefficient and reported in the first row. The amount of WMH variance explained by the features is reported in the rest of the table 

for the most relevant variables (age and scanner). 
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ajor impact on the final BIANCA outputs. If the manual segmentations

rovided to BIANCA are sufficiently similar between raters/ratings, the

utomated tool improves the consistency of the output, providing bet-

er within- and between-rater agreement than the manual raters/ratings

hemselves. On the other hand, if the agreement between manual masks
13 
s low, BIANCA results can be even less consistent than manual masks.

his prompts the need to standardise the definition of WMHs, especially

n light of the fact that even if an increase in rating consistency is even-

ually achieved, this does not necessarily mean the obtained results are

etter in terms of accuracy. While for other segmentation tasks, e.g.
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Fig. 8. Multivariate model – retrospective data merging scenario. Percentage of variance (reported on the y axis) explained by non-imaging variables (reported on 

the x axis) in the linear multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data for all the involved populations 

(WH1 = 513, WH2 = 200, UKB = 2285). Each plot refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC, 

mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values are reported in Table 6 and Supplementary Table S3 (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.). 
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ippocampus segmentation, clear protocols exist for manual labelling

 Zandifar et al., 2018 ), there is no such protocol for WMHs. It is also

orth noting that the lowest agreements (both between manual and au-

omatic results) were observed for subjects characterised by a very low

MH load. In these images, WMHs are likely to be more difficult to

egment because of their less obvious appearance or small size. Spe-

ific guidelines should therefore aim to clarify these sources of ambi-

uity. This analysis was limited by the relatively small number of rat-

ngs available and the range of expertise of the raters (R1 neuroimaging

esearcher, R2 medical student trained and supervised by an experi-

nced neurologist). However, the scope of this evaluation was to explore

ow differences in manual ratings can impact a supervised segmentation

ethod like BIANCA. 

Correcting for bias field had a positive impact on almost all the

etrics used for evaluation, indicating that, overall, its adoption con-

ributes to successful harmonisation. We observed increased image sim-

larity when comparing ‘traveling heads’ data from the WH scanners,

howing a clear removal of scanner-related variability in the images, re-

ardless of the difference in time of day for the acquisition. BIANCA

erformance improved after BC, although in terms of consistency of

erformance between scanners, an improvement was only observable

hen BC was combined with a different strategy for the composition

f the training dataset, such as re-training BIANCA within each scan-

er or merging multiple examples from different scanners ( Fig. 3 ). The

uccessful removal of non-biological differences with BC was also evi-

ent when considering the correlation between WMH volumes and age,

hich showed that BC preserved the relationship with age (slopes not

ignificantly different) while causing a decrease in the volume bias in

orrespondence of the mean age. The regression modelling using Elastic

ets confirmed the improved harmonisation with a significant decrease

n the importance attributed to the scanner/site of acquisition (with sim-

lar results for OLS). Bias field correction of T2-weighted (and FLAIR)

mages is, however, not always included in pre-processing pipelines. In

his work we specifically assessed the impact of BC on WMH segmenta-

ion and confirmed that it is beneficial to obtain more consistent image

egmentation outputs across datasets. 

The information provided by dMRI proved to be useful to obtain

ccurate WMH segmentation. When using FA maps as one of the inten-

ity features for BIANCA, the performance within-scanner was higher

han when using only T1-weighted and FLAIR images. However, when

sing only two modalities, all the overlap measures were more consis-
14 
ent across scanners, and the volume bias was reduced. Furthermore,

he scanner was no longer a significant predictor of WMH volumes in

he regression model. The decision regarding whether to use FA would

herefore depend on the application. While for an accurate segmen-

ation it is useful to include features from diffusion-weighted scans,

t also constitutes an additional source of variability across datasets

nd scanners, leading to less harmonised WMH measures. dMRI data

ay be more sensitive to scanner and protocol changes than T1 and

LAIR due to the complexity of the sequence. Extra sources of vari-

bility in the measurements can be introduced by differences in the

ngular and spatial resolution, the number and distribution of diffu-

ion gradient directions, the b-values, and other acquisition protocol

arameters ( Tax et al., 2019 ; Fortin et al., 2017 ). Several harmonisation

trategies have been developed for dMRI including statistical data pool-

ng techniques ( Fortin et al., 2017 ), dictionary learning architectures

 St ‐Jean et al., 2020 ) and registration-based methods ( Mirzaalian et al.,

016 ; Mirzaalian et al., 2018 ), but it remains an active area of research

 Tax et al., 2019 ; Ning et al., 2019 , 2020 ). Further work in this area

hould allow integration of DTI-derived measures in multimodal analy-

es such as ours, while maintaining good consistency of results. Another

spect to keep in mind is that FA might not always be available (while

2-FLAIR and T1 scans are more commonly acquired), preventing the

ntegration of datasets (or participants within a dataset) that do not have

ll of them available and usable. 

Regarding the choice of the composition of the training dataset for

IANCA we started by exploring three options in the scanner upgrade

cenario. We compared the effect of using the same set for all the sites

single site), re-training BIANCA within-scanner (site-specific), or merg-

ng examples from different scanners (mixed). Single site training led

o the biggest difference in BIANCA performance across datasets and

 significant bias in the volumes (significantly different intercept at the

ean age), although the relationship with age remained consistent (non-

ignificant difference in regression slopes, highest amount of variance

xplained by age). On the other hand, the site-specific training pro-

ided the highest and most consistent BIANCA performance (overlap

ith manual masks on the subset of subjects with manual labels avail-

ble) but led to the biggest difference in WMH volumes on the whole

ample (significantly different slopes of the regression lines, Johnson–

eyman region of non-significance not within the age range of interest,

ighest amount of variance explained by the scanner variable). The re-

ults observed for the mixed training set suggest it represents the best
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rade-off between good and consistent BIANCA performance, and con-

istent WMH volumes. Although this could also be due to the fact that

ore images were used in the mixed training, similar results were ob-

erved when using the same number of images (12 from each scanner).

We further compared the best performing options (site-specific vs

ixed) when harmonising WMH measures between WH and UKB. Us-

ng bias field corrected data and FLAIR and T1 as intensity features,

he results were similar to the scanner upgrade scenario. While the seg-

entation performance was overall higher in the case of site-specific

raining, the most consistent results were those obtained with the mixed

raining set. To better understand these results we investigated how the

nformation from the mixed datasets was used by BIANCA. In fact, even

f the training points come from different datasets, only the ( k = 40)

eighbours are used in the classification of each point. We therefore

onfirmed that in the mixed training option, the neighbours used by the

lgorithm were indeed coming from a mixture of examples from the dif-

erent datasets (see supplementary material for details). Moreover, we

erified that our results were not driven by the significantly different

ge ranges of the three datasets by repeating our analyses on a subset of

ge-matched subjects and finding very similar results (see supplemen-

ary material for details). We still cannot exclude the possibility of some

olume over/underestimation especially in the younger subjects. Future

valuations on additional samples of younger subjects and with manual

asks will be important to further investigate this aspect. 

The choice of the most suitable training set should hence be made

epending on the application. When prioritising a more accurate WMH

egmentation, a site-specific training is likely to give the best perfor-

ance. When the aim is to compare or merge multiple datasets, a mixed

raining set is more appropriate. 

Both of the optimal options identified above would require the effort

f generating, or having access to, some manual masks and having to re-

rain BIANCA. Even if the numbers required are not high (12 images per

ataset proved to be enough), this could still be an unfeasible option for

ome applications. The use of a single training set for multiple datasets

ould still be a valid option, but in light of our results, the recommenda-

ion would be to carefully check the segmentation accuracy and, when

ombining the resulting volumes, to consider the use of further strate-

ies in the analyses to address potential biases (e.g. additional covariate

n statistical analyses). The fact that including more examples from dif-

erent datasets improved the results suggests that a promising solution

ould be to build a larger and more representative/generalisable train-

ng set, including examples from more scanners/datasets, that could be

idely used. Towards this, we are publicly sharing our mixed training

ets 1 . Future work on more datasets should assess if, with a sufficiently

arge set of examples, a single training set is general enough to be able

o be successfully applied to new datasets. 

The implemented multivariate linear regression approach suggested

hat major differences between datasets were removed with optimal

re-processing without direct harmonisation between datasets. How-

ver, direct harmonisation approaches such as ComBat ( Fortin et al.,

018 ), which estimate corrections between datasets, applied either di-

ectly to T2 images, or to the output of BIANCA, could further enhance

he harmonisation of these datasets. ComBat, specifically, is focused

n small datasets, taking advantage of commonalities across “batches ”

here, space) to improve estimation of site effects. While it may not pro-

ide substantial benefits for the large datasets analysed here, this could

ring benefits to the harmonisation of smaller datasets. Approaches such

s ComBat could also correct for multiplicative site effects, although it is

ot clear these are a major factor for WMHs. We expect that non-linear

odelling of the non-imaging variables of interest would be valuable in

his endeavour, as WMHs greatly increase in prevalence at later ages. 

An important part of retrospective data merging was also the har-

onisation of non-imaging variables. Modelling the biological variabil-
1 https://issues.dpuk.org/eugeneduff/wmh_harmonisation 

F  

c  

o  

15 
ty is crucial to obtain imaging measurements that are well aligned

cross datasets. The ad-hoc configuration file we created for FUNPACK

llowed us to obtain matched variables, with the same units across the

H and UKB datasets. The configuration file is openly available 1 and

ully customizable, so it can be adapted to different datasets and ex-

anded to include more variables and conversion rules. 

To conclude, we identified processing strategies to maximise the con-

istency across two large datasets, Whitehall II and UK Biobank, for the

tudy of WMHs. We harmonised non-imaging variables and proposed a

rocessing pipeline to minimise the effect of non-biological sources of

ifference in the imaging data. The main recommendations emerging

rom this work are the following: 

• Use WMH manual masks generated from the same rater whenever

possible and establish guidelines to maximise consistency of the

manual masks; 
• Perform bias field correction; 
• Carefully consider the trade-off between improving segmentation

performance with additional modalities (e.g., FA) and using a

smaller set of modalities (T1-weighted and FLAIR), which are more

reliably present across studies and provide better dataset harmoni-

sation; 
• Train BIANCA on data coming from a mix of different scan-

ners/studies when working with more than one dataset. 

We showed that with these steps, and appropriate modelling of sam-

le differences through the alignment of demographic, cognitive and

hysiological variables, we can provide highly consistent WMH mea-

ures. These results open up a wide range of applications for the study

f WMHs and potentially other neuroimaging markers across extensive

atabases of clinical data. 
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